
LANGUAGE TECHNOLOGY ALGORITHMS

INSPIRED BY AN AGGLUTINATIVE,

FREE-PHRASE-ORDER LANGUAGE

Gábor Prószéky & Csaba Merényi
MTA-PPKE Hungarian Language Technology Research Group

and

MorphoLogic

Abstract

A crucial requirement for doing machine translation, machine-aided translation,

information retrieval or computational information processing of texts of

agglutinative languages, in general, is an efficient computational morphology.

Having done the morphological processing of the word-forms of sentences, the

sentence structure itself should be identified. This step is also common in all

human languages. In case of agglutinative languages, like Hungarian,

morphological processing provides a lot of information expressed by syntax in

other, less-inflectional languages. Syntactic processing of highly inflectional

languages, therefore, can use a lot of syntactic information identified by the

morphological subsystem. It is needed, because the agglutinative nature of

morphology results in free phrase order on the sentence level.

In the first part of the paper we introduce Humor, a morphological description

formalism and algorithm inspired by an agglutinative language, Hungarian. In the

second part of the paper we describe a syntactic parsing formalism and algorithm

inspired by Hungarian, a free-phrase-order language, and show the way how it is

used in the Hungarian–English MetaMorpho machine translation system.

1. Morphological analysis inspired by Hungarian, an

agglutinative language

A crucial requirement for doing machine translation, machine-aided translation,

information retrieval or computational information processing of texts of

agglutinative and highly inflectional languages, in general, is an efficient

computational morphology. Having done the morphological processing of the

word-forms of sentences, the sentence structure itself should be basically

identified. In case of agglutinative languages, like Hungarian, morphological

processing provides a lot of information expressed by syntax in other, less-

inflectional languages. Syntactic processing, therefore, can use a lot of syntactic

information already identified by the morphological system. It is needed, because

the rich case system of Hungarian results in free phrase order on the sentence

level. We describe here an approach to morphological analysis called Humor

(High-speed Unification Morphology), which successfully copes with problems of

agglutinative and other (highly) inflectional languages very effectively.

1.1 A morphological description formalism

Our approach to computational morphology belongs to the ‗item-and-

arrangement‖ paradigm. The method itself uses lexicons of allomorphs and

adjacency restrictions between them. A feature system and a unification

algorithm—or better said: checking a relation called unfiability —is also used, as

described later. Concatenation points between morphs are defined by continuation

classes, and the basic idea behind the algorithmic description is—instead of a real-

time analysis of every morpho-phonological attribute—that there are no more

active operations in this approach to computational morphology. Due to its

minimal memory requirements even the first versions of the system (since 1991)

could effectively run even on early PC‘s (Prószéky & Kis 1999).

Treatment of written word-forms is a starting point to a large set of

computational linguistic applications. Since the introduction of two-level

morphology by Koskenniemi (1983) morphological processing has been widely

known as the first step of processing running texts. Here we stress the importance

of Koskenniemi‘s dissertation, because in the same year another important book

was published by Winograd (1983) on natural language processing which does not

mention the term ―morphology‖ at all. This book was meant as a general

introduction to computational linguistic applications but dealt mainly with English.

In general, we can say that a morphological analyzer is able to

 identify the lexical form (stem) of the actual word-form and its part-of-

speech:

kesztyű > kesztyű[N]

 list the inflectional features of the actual word-form:

kesztyűimet > kesztyű[N][PSsg1i][ACC]

 show the derivational suffixes attached to the actual word-form:

tartónak > tart@ó[N][DAT]

 show the eventual compounding boundaries in the actual word-form:

kesztyűtartóba > kesztyű|tart@ó[N][INE]

Generation of word-forms is a morphological synthesis producing the actual

surface form of a lexical stem combined with given morpho-syntactic features (1).

(1) kesztyű[N][PSsg2i][ACC] > kesztyűidet

Morphology always meets phonology via a phonology–morphology interface,

but an orthography–morphology interface should also be applied in computational

linguistics. In the following examples we can see two morpho-phonological

phenomena: application of vowel harmony (2) and vowel lengthening (3), while an

orthography-motivated treatment of gemination of the Hungarian digraph „ly‟ is

shown by (4):

(2) nyelv + vAl → nyelv + vel → nyelvvel

(3) technológia + vAl → technológiá + val → technológiával

(4) bagoly + vAl → bagolly + al → bagollyal

In the generative grammar formalism not only surface and underlying forms are

used, but many layers in between them. The most famous morphological system

without intermediate levels is two-level morphology, but the approach introduced

in this paper is also belongs here. The entire algorithm shows features similar to

the hypothesis according to which most segments of word-forms in agglutinative

languages are handled as a whole un-analyzed construction by native speakers,

instead of parsing them on-the-fly. Psycholinguists use the term ―Gestalt‖ to refer

to this phenomenon (Bryant & Miikkulainen 2001), but the idea is also known in

the theoretical linguistic literature: ―a psycholinguistic argument for treating

(some) ending sequences as wholes comes from the observation that children

acquiring inflectional languages seldom make errors involving the order of

morphemes in a word.‖ (Bybee 1985) Another source is Karlsson (1986): ―The

endings and entries are often listed as wholes, especially in close-knit

combinations. Such combinations are often subject to bi-directional dependencies

that are hard to capture otherwise‖. A good example is the linguistic tradition

handling number and person combinations of Hungarian conjugation (Tompa

1962), where, for example, -unk[PSpl1] is treated as a single morph, although its -

n refers to first person and -k means plural. There are several ways in which lexical

forms of words may be constructed: full listing, minimal listing, methods with

unique lexical forms and methods with phonologically distinct stem variants

(Karlsson 1986). Full listing does not need rules at all, but it is implausible for

agglutinative languages. Minimal listings need a quite large rule system in the case

of highly inflectional languages, although their lexicons are relatively small. In

methods based on unique lexical forms allowing diacritics and morpho-phonemes

paradigms are represented by a single base form (Koskenniemi 1983; Abondolo

1988). This is one of the reasons why it is very difficult to add new entries to the

lexicons automatically in real language technology environments. Our approach is

close to the minimal listing methods, but fewer rules are needed. Finally, the

representation presented here regards phonologically distinct bound variants of a

base form as separate stems. Actual two-level and some other morphological

descriptions apply similar methods in order to cope with morphotactic problems

that cannot be treated phonologically in an elegant way.

 There are two known important variants of this method: one using technical

stems, that is, orthographically motivated strings that linguists do not consider

‗real‘ stem variants (Karttunen 1981), and the other using real allomorphs

(Karlsson 1986). Thus, Humor lexicons contain stem allomorphs (which were

generated by the learning phase mentioned above) instead of single stems. A

morphological parser need not be directly concerned with the derivation of

allomorphs from their base forms, for example, it does not matter how

technológiá- is derived from technológia-, for example before accusative -t. This

phenomenon—a consequence of the orthographical system—is handled by the off-

line linguistic process of Humor, which makes the analysis much faster. This

method is close to the lexicon compilation used in finite-state models. Relations

among allomorphs of the same base form (e.g. technológia-, technológiá-) are,

however, rather important not only for theoretical linguists, but also for further

syntactic processing. According to the above principle, the lexicon of stem

allomorphs contain even non-lexical forms, e.g. bagoly- bagolly-, bagly-, …,

kesztyű-, …, nyelv-, …, tart-, …, technológia-, technológiá-, … The lexicon of

suffix allomorphs is generated exactly the same way: -k, -ak, -ek, -ok, -ök, …, -t, -

at, -et, -ot, -öt, …, -nak, -nek, …, -val, -vel, … Concatenation of stem allomorphs

and suffix allomorphs is licensed with the help of the following two factors:

continuation classes defined by paradigm descriptions, and classes of surface

allomorphs belonging to them. The approach is somewhat similar to the two-level

descriptions‘ continuation classes (Koskenniemi 1983). A simplified description of

Hungarian continuation classes are shown below, where % indicates here the

starting state, and $ indicates ending (or accepting) states:
START:%

 PREFIX -> STEM_REQUIRED

 STEM1 -> STEM1_PASSED

STEM_REQUIRED:

 STEM1 -> STEM1_PASSED

STEM1_PASSED:$

 STEM2 -> AFFIXES_POSSIBLE

 DERIV_AFF -> INFL_AFF_POSSIBLE

 INFL_AFF -> END

AFFIXES_POSSIBLE:$

 DERIV_AFF -> INFL_AFF_POSSIBLE

 INFL_AFF -> END

INFL_AFF_POSSIBLE:$

 INFL_AFF -> END

END:$

In fact, there are more concatenation points in the description of a single

Hungarian word form for handling eventual prefixes and compounding. Recent

implementations of Humor define continuation classes with the help of a so-called

meta-dictionary, in fact, a finite-state automaton.

Because segmentation of a word-form in Humor is based on surface patterns,

typical sequences of suffix morphemes are analyzed as a whole. For example, the

Hungarian nominal ending string -amé (PersSg1+Poss) consisting of -am

(PersSg1) and -é (Poss) is in fact a complex affix but handled as an atomic symbol

in Humor. The string amé is generated from am+é separately, in an earlier

development phase by a dedicated utility. The generator is able to make a finite set

of affix sequences from a description of possible continuation classes. Suffix

combinations beginning with the same morpheme are considered equivalent

because the only relevant pieces of information come from the suffix that

immediately follows the stem. For example, from the point of view of the

preceding stem, for example, ház-, morpheme combinations like -am[PersSg1], -

amé[PersSg1][Poss], -amnak [PersSg1][Dat], -aménak[PersSg1][Poss][Dat]

behave as the suffix -am itself (Table 1).

Word-

form

Humor’s real-

time

segmentation

Humor’s output

segmentation

házam ház + am ház + am

házamé ház + amé ház + am + é

házamnak ház + amnak ház + am + nak

házaménak ház + aménak ház + am + é + nak

Table 1.

Therefore, every affix array is represented by its starting affix. We can say that

there is an equivalence relation on the set of affix arrays. Each equivalence class

and each paradigm is given an abstract name, that is, each existing set of

equivalence classes can have its own abstract name.

Table 2 shows a partial morphotactic paradigm of nominals. Features (morpho-

phonological properties) are used to characterize both stem and suffix allomorphs.

For instance, the stem piros- belongs to the paradigm that can be described by the

set of Feature=Value pairs (5).

(5) piros- [Cat=Nom, Pos=Adj, Deriv=Abstr, Deg=Comp]

-abb [Cat=Nom, Pos=Adj, Deg=Comp]

Checking ‗appropriateness‘ is based on unification, or, strictly speaking,

checking unifiability of the adequate features of stems and suffixes. The word-

form pirosabb is morphotactically licensed by the unifiability of the two

structures: the feature ‗Deg‘ occurs in both with the same value (6)

 Stems

 Features= Cat=Nom

 +/- Values Pos=N Pos=Adj Pos=Num

 Morph hal- ház- piros- magas- nyolc-

A
ff

ix
es

 Nbr=Pl -ak + + + + +

Deriv=Adj -i- - + - - -

Deriv=Abstr -ság- - - + + -

Deriv=Multipl -szor - - - - +

Deg=Comp -abb- - - + + -

Table 2.

 (6) INPUT: pirosabb

 ANALYSIS: piros[Adj] + abb[Comp]

 OUTPUT: piros[Adj][Comp]

The most important advantage of this feature-based method is that possible

paradigms and morpho-phonological types need not be defined previously; only

the classification criteria have to be clarified. Here you find some criteria used in

the morpho-phonological description of Hungarian:

 α = + α = –

1 α nominal nominal verb

2 α frontness front vowel back vowel

3 α roundness rounded vowel unrounded vowel

4 α ACC has accusative does not have accusative

5 α ACCvowel with vowel (-Vt) without vowel (-t)

6 α PL has plural does not have plural

7 α PLvowel with vowel (-Vk) without vowel (-k)

8 α lexical lexical form non-lexical form

9 α PERS has personal suffix does not have personal suffix

10 α DAT has dative does not have dative

11 α INS:ß has instrumentalis does not have instrumentalis

12 α ÁS has derivation –ás/-és does not have derivation -ás/-és

… … … ...

Table 3.

Since the number of these criteria is around a few dozen (in case of a language

with rather complicated morphology), the number of theoretically possible

paradigm classes is several million or more. According to the general linguistic

practice, about 10-20 orthogonal properties are chosen which produce 2
10

-2
20

possible classes. In the reality, most of these potential combinations are

hypothetical. That is, there are many empty classes. We have got an n-dimensional

„morphological periodic table‖ based on the actual set of binary features

describing potential, not-yet-existing forms as well. If we have 12 features, as in

the description of Hungarian shown by Table 3, altogether we get 2
12

=4096

potential vectors, but in the actual Hungarian morphology only 2792 are used out

of them. We must not forget that not all the original morpho-phonological features

are independent: for example, the vowel V in the Hungarian plural (-Vk) and V in

the accusative ending (-Vt) show the following phonological interdependencies: -

Vit → -Vk, but –Vik → {Vit, 0t}. It means that if the accusative form of ház is

házat, then we know that házak is its plural. On the other hand, the plural of kép is

képek and plural of bér is bérek, but the accusative forms are képet and bért,

respectively. Thus, the vowel of the accusative morph cannot be calculated on the

basis of the vowel of the plural morph.

1.2 The process of the morphological analysis

The morphological analysis process is as follows. The continuation matrix

provides concatenation licensing based on paradigm descriptions. The columns

represent the paradigms themselves, the rows show the suffix category types by

which the word to be analyzed can be followed.

The Feature=Value pairs control concatenation licensing based on unifiability

checking introduced earlier. In the actual descriptions we use binary features, so 0

or 1 represent ‗–‗ or ‗+‘ values of the feature represented by the n-th column. A

small segment of the internal lexical database is shown by Table 5. Allomorphs are

shown in the first column, followed by the (right and left) continuation classes and

the Feature=Value pairs. The last column shows the part-of-speech of the morph,

preceded by the lexical form of the actual allomorph.

Table 4.

Continuation class information says that bokrot can be analyzed as a potential

concatenation of stem bokr- and terminal suffix -ot. The second column of Table 5

says that bokr- belongs to paradigm ‗H‘ and type of suffix -ot is ‗l‘. We see an

asterisk in the paradigm matrix at the coincidence point of column ‗H‘ and row ‗l‘

(Table 4), meaning that paradigm ‗H‘ of bokr- contains suffix type ‗l‘ of -ot.

According to this, the algorithm can go on. According to Table 5, -ot offers four

features to unifiability check: 1st, 2nd, 3rd and 5th columns with values 101 an 1.

These four Feature=Value pairs according to Table 3 are the following:

Nominal=‘+‘, Front=‗–‗, Rounded=‘+‘ and Has-Accusative=‘+‘. Allomorph bokr-

fulfills all the requirements, namely Table 5 says that its right feature vector is

10111010 01000010, which has 101 and 1 on the first three and the fifth positions.

The unfiability check is positive, so the actual form is licensed by our description.

The output is the lexical form of the actual allomorph followed by the part-of-

speech of both the stem and the suffix: bokrot=bokor[N][ACC].

Table 5.

Table 6.

The above tables are rather difficult to produce by hand and there are a lot of

potential sources of errors. For this reason, Novák developed an additional system

to Humor (Novák & Wenszky 2007) which made it possible to start with basic

lexical forms instead of allomorphs, and a special program generates the internal

Humor formalism shown by Table 4 and Table 5. A sketch of this formalism (from

Novák & Wenszky 2007) is shown by Table 6.

An excerpt from the real Humor lexicon (in human readable format) is shown

below:

szó [+nominal +noun +lexical –front –rounded –PL –PERS +ACC –ACCvowel

+DAT +INS:V]

 []

szav [+nominal +noun – lexical –front –rounded +PL +PLvowel +PERS –ACC

+DAT –INS]

 [+nominal +noun + lexical +front –rounded +PL +PLvowel +ACC

–ACCvowel +DAT +INS:S]

ak [+nominal –front –rounded +PL +PLvowel]

 [+nominal –front –rounded –PL –PERS +ACC +ACCvowel +DAT +INS:K]

ek [+nominal +front –rounded +PL +PLvowel]

 [+nominal +front –rounded –PL –PERS +ACC +ACCvowel +DAT +INS:K]

at [+nominal –front –rounded +ACC +ACCvowel]

 []

et [+nominal +front –rounded +ACC +ACCvowel]

 []

nak [+nominal –front +DAT]

 []

nek [+nominal +front +DAT]

 []

val [+nominal –front +INS:V]

 []

vel [+nominal +front +INS:V]

 []

kal [+nominal –front +INS:K]

 []

With the help of the above lexicon we can see how unifiability checking is done.

In case of failed constructions (marked by an asterisk before the word form) the

critical features that cannot be unified are underlined:

szó [+nominal +noun +lexical –front –rounded –PL –PERS +ACC

–ACCvowel +DAT +INS:V]

*szav [+nominal +noun –lexical –front –rounded +PL +PLvowel +PERS

–ACC +DAT –INS]

 szó+nak [+nominal +noun +lexical –front –rounded –PL –PERS +ACC

–ACCvowel +DAT +INS:V]

 [+nominal –front +DAT]

 szó+val [+nominal +noun +lexical –front –rounded –PL –PERS +ACC

–ACCvowel +DAT +INS:V]

 [+nominal –front +INS:V]

*szav+val [+nominal +noun –lexical –front –rounded +PL +PLvowel +PERS

–ACC +DAT –INS]

 [+nominal –front +INS:V]

*szó+vel [+nominal +noun +lexical –front –rounded –PL –PERS +ACC

–ACCvowel +DAT +INS:V]

 [+nominal +front +INS:V]

szav+ak+at [+nominal +noun –lexical –front –rounded +PL +PLvowel +PERS

–ACC +DAT –INS]

 [+nominal –front –rounded +PL +PLvowel]

 [+nominal –front –rounded –PL –PERS +ACC +ACCvöwel +DAT

+INS:K]

 [+nominal –front –rounded +ACC +ACCvowel]

szav+ak+kal [+nominal +noun –lexical –front –rounded +PL +PLvowel

+PERS –ACC +DAT –INS]

 [+nominal –front –rounded +PL +PLvowel]

 [+nominal –front –rounded –PL –PERS +ACC +ACCvowel +DAT

+INS:K]

 [+nominal –front +INS:K]

Some examples for the analysis:

játszunk = játszik[V][Pl1]
 └─játszik[V]=játsz─unk[Pl1]

játszottam = játszik[V][PastSg1] |

 játszik[V][DefPastSg1] |

 játszik[V][PPartic][PsSg1]
 └─játszik[V]=játsz┬─ottam[PastSg1]

 ├─ottam[DefPastSg1]

 └─ott[PPartic]─am[PsSg1]

barátokért = barát[N][Pl][Cau]
 └─barát[N]─ok[Pl]─ért[Cau]

könyveimet = könyv[N] [PsSg1[Acc]
 └─könyv[N]─eim[PsSg1]─et[Acc]

szebben = szép[Comp][Adj][Ine] |

 szép[Comp][Adj][Sup]|

 szép[Comp][Adj][EssMod]
 └─szép[Adj]=sze─bb[Comp]┬─en[Ine]

 ├─en[Sup]

 └─en[EssMod]

mentek = ment[Adj][Pl] |

 ment[V][Sg1] |

 megy[V][Pl2] |

 megy[V][PastPl3] |

 megy[V][PPartic]
 ├─ment[Adj]────────────────┬─ek[Pl]

 ├─ment[V]───────ek[Sg1] │

 └─megy[V]=men┬─tek[Pl2] │

 ├─tek[PastPl3]│

 └─t[PPartic] ─┘

biztosításaitokkal = biztosítás[N][PsPl2pl][Ins]
 ├─biztosítás[N]───────┬aitok[PsPl2pl]─kal[Ins]

 └─biztosít[V]─ás[V2N]─┘

There are only a few general, reversible morphological systems that are suitable

for more than a single language. The most well-known approach is the two-level

morphology (Koskenniemi 1983) and its modifications (Karttunen 1993, Beesley

& Karttunen 2003). There are some computational morphological description

systems showing some features in common with Humor—like paradigmatic

morphology (Calder 1989), or the Paradigm Description Language (Anick &

Artemieff 1992)—but they don‘t have large-scale implementations. Two-level

morphology is a reversible, orthography-based system that has several advantages

from a linguist‘s point of view. Namely, the morpho-phonemic/graphemic rules

can be formalized in a general and very elegant way. It also has computational

advantages, but the lexicons contain entries with extra symbols and other

sophisticated elements in order to produce the necessary surface forms. Non-

linguist users need an easy-to-extend dictionary into which words can be inserted

easily. The lexical entries of Humor consist of surface characters only, which

makes adding new entries to the system rather easy.

2. Syntax and translation algorithm inspired by Hungarian, a

free-phrase-order language

MorphoLogic's English-Hungarian and Hungarian-English machine translation

software is based on the MetaMorpho MT engine. This engine was developed by

MorphoLogic specifically for the purposes of the machine translation project, and

some of its features were inspired by the difficulties inherent in analyzing

Hungarian input. In the first part of this chapter we will give the reader an

overview of MetaMorpho technology, and in subsequent subsections we will go on

to describe how certain phenomena characteristic of the Hungarian language were

successfully handled with it.

2.1 An overview of the MetaMorpho technology

MetaMorpho (Novák, Tihanyi & Prószéky 2008) is a rule-based system that uses

immediate transfer (Prószéky 2006), which means that any constituent captured by

the parser has its translation (or at least one possible translation) ready at the

moment of analysis. The analysis itself is based on a monolithic grammar

described in a unified formalism called mmo, which comprises the whole lexicon,

the set of usual context-free rules needed to capture regularities in the source

language, and also a number of 'patterns'—some of which may be less

linguistically motivated—describing linguistic phenomena that do not easily lend

themselves to compositional analysis or translation. The same mmo rules that we

use to analyze the input contain the target-language equivalent or possible

alternative equivalents.

The technology encompasses a parser-generator called Moose, the high-level

mmd language and a converter to transform it into low-level mmo rules, and the

Humor morphological analyzer and generator described in the first part of the

paper. The capabilities of the MetaMorpho system are best explained in terms of

the mmd language.

2.2 The syntactic description formalism

The core of MetaMorpho technology is an enhanced context-free grammar,

which is represented as a set of mmd rules. All rules have a unique identifier, an

analysis-side, a generation-side, and possibly a list of kills, which will be explained

later. The simple mmd rule below exemplifies the basic syntax (7).

The analysis-side, which is the second line, immediately below the rule

identifier, is very much like an ordinary CF rule. On the left hand side, there is a

single non-terminal category symbol, which is followed by an equal sign, which in

turn is followed by a list of terminal and/or non-terminal category symbols

separated by plus signs. Obviously, the analysis-side rules are used by the parser to

find valid tree representations of the input constituent structure.

 (7) *NP=DET+NX:12345678-1

HU.NP[det=YES, def=DET.def] = DET(art=YES) + NX(allowdet=YES)

EN.NP(HU.DET.def=YES) = DET[lex=‖the‖] + NX

EN.NP(HU.DET.def=NO) = DET[lex=‖a‖] + NX

!12345678-2, 12345678-3

Below the analysis-side, there are one or more generation-side rules. These rules

also follow the general context-free pattern. They represent the target-language

equivalents of the source-language constituent, and are invoked at generation time.

TL non-terminals are generated by the same rules that created the corresponding

SL node. The choice between multiple generation-side rules in a particular

instance is governed by the left hand side conditions.

As is apparent from the example (7), all categories have a set of attributes or

features as they are usually referred to in our terminology. The list of categories

and their features are defined separately in an XML-based format. Attributes fall

into three types: symbolic, string, and pointer. Both analysis-side and generation-

side rules may check the values of any of these features and may also assign values

to them. Application of the rules is subject to meeting the conditions imposed on

feature values. Conditions are given in parentheses right next to the category

symbols, while value assignments appear inside square brackets.

Symbolic features have a finite set of permissible values, and they are typically

used to carry grammatical (syntactic or morphological) information, e.g. number,

person, gender, subcategory codes, etc. String features typically store the lexical

content of most categories. They are predominantly used by lexicon-level rules

simply to identify the lexical item. VP patterns or other higher level rules may also

refer to string features to impose lexical constraints on their complements. The

concept of pointer features is MetaMorpho technology‘s most valuable addition to

the basic context-free attribute grammar underlying it. These features can store

entire constituents (together with their analysis). Passing such pointers up to parent

elements during analysis and back down during generation allows us to move

constituents great distances in translation. Features, as expected, may be assigned

constant values, and more importantly, they may inherit the value of another

feature that belongs to a child or parent element. In such a way practically any

amount of structural and grammatical information can be percolated through an

inheritance chain. Checking feature values is not limited to the equality and non-

equality operators. A so-called compatibility operator may be defined for any pair

of symbolic features. Also, the values assigned to symbolic features may be

computed by user-defined binary operators.

The last line in (7) contains a list of rule identifiers preceded by an exclamation

mark. In MetaMorpho terminology, these are called kills. If a rule can be

successfully applied to a given range of input tokens, and it contains kills, then the

rules so referenced are overridden if they are to be applied to the exact same range.

This mechanism allows us to create very simple rules for general cases without

having to worry about exceptions, and then list more specific special cases as

separate rules. By killing the general rules with the more specific ones, the

superfluous analyses are suppressed.

Mmd rules are created by our linguists to define the grammar and the lexicon of

the MT system, while mmo is a slightly less human-readable form that can be

directly complied into the binary representation required by the parser. A converter

is used to syntax-check and transform high-level mmd descriptions into low-level

mmo rules. There is not much formal difference between mmd and mmo, in fact as

far as syntax is concerned, all mmo rules are valid mmd rules. The opposite is not

necessarily true because the mmd language allows some extra features such as

shorthand notations for manipulating large groups of features and some meta-

features that influence the conversion process. Such group identifiers are

converted to the whole set of features they represent, while meta-features are

stripped from the mmo output when they are no longer needed.

The reason why we decided to have the higher-level mmd description on top of

mmo is efficiency. Especially in the case of lexicon-level rules, but also in many

other cases, a rule has a lot of predictable content while the amount of unique, non-

predictable information is very little in comparison. In an mmd rule, only the non-

predictable part must be present, the rest is supplied by the converter, therefore an

immense amount of typing can be spared. The converter is not restricted to adding

missing feature checks and assignments to a rule. It may even generate a large

number of related rules based on a single mmd description. For example the

converter is responsible for creating the active and passive forms of an English VP

from a single common mmd definition. As can be seen from this, some linguistic

knowledge may be encoded in the converter itself. While it may deduct from the

purity of the MetaMorpho system that not all the regularities of language are

captured in the formal grammar, the simplicity of performing certain

transformations with the aid of a computer program rather than the limited

capabilities a CF transducer, and the amount of redundancy that can be avoided

this way outweigh other considerations.

2.3 Parsing and translating Hungarian with MetaMorpho

Hungarian syntax has a number of phenomena which are difficult to handle with

the usual tools based on context-free grammars, which are best suited to

configurational languages such as English. In the following chapters we will

discuss how the special features of MetaMorpho technology enabled us to tackle

problems like free phrase order within the sentence, long distance dependencies,

the prevalence of zero constituents, and the translation of nominal predicates.

While lexical phrases in Hungarian have a well-defined word order and are

easily handled by well-established methods, sentence structure is much more

complicated. Grammatical functions such as subject, object, etc. and argument

structure are not identified by structural position but solely by case endings and/or

post-positions. There do seem to be some fixed positions inside a clause, but these

have to do with logical, semantic and pragmatic rather than syntactic functions.

The basic Hungarian finite clause follows the pattern: Topic—Focus—Predicate.

The topic is the pragmatically most salient element in the predication, which can

be any constituent, even a free adverbial. The focus position is obligatorily

occupied by constituents with negative polarity or 'restrictive' meaning, and may

also express contrastive meaning, similarly to the structure that traditional

grammars call the 'cleft sentence' in English. The verb, or an auxiliary, when one is

present, is always at the left edge of the predicate, but the rest of the verb's

complements and any free modifiers may follow in just about any order. In

summary, without going into now irrelevant details, it may be said that for the

purposes of MT, Hungarian clauses can be regarded as having absolutely free

phrase order.

The random order of sentence constituents is not the only problem we have to

face. In surface structure we can also have a number of different disjointed

constituents. It is not unusual for the possessor in possessive NP constructions to

leave the NP and move into topic position. So the following two sentences are

nearly identical in meaning (8).

(8) Ellopták Mari pénztárcáját.

Ellopták NP[Mari pénztárcáját].

steal[PAST][PL3] Mary[NOM] wallet[ACC][possSG3]

―They stole Mary's wallet.‖

Marinak ellopták a pénztárcáját.

[Marinak] ellopták NP[a pénztárcáját].

Mary[GEN/DAT] steal[PAST][PL3] the wallet[ACC][possSG3]

―Mary had her wallet stolen.‖

Complement clauses also have a tendency to be extraposed to the right edge of

the sentence, leaving a pronominal antecedent behind. Finally, relative clauses may

also move to the right edge, while the phrases they modify remain in their original

position. As a result, a single logical constituent may show up on the surface in

two or even three separate pieces, which for the purposes of argument

identification and translation have to be matched to each other.

The number of surface constituents may also be less than expected. Hungarian

subjects and objects can be realized as phonologically zero elements. Since the

verb is inflected for subject and object agreement, the pronominal subject and

object can be recovered from the verb ending (9). Depending on the analysis one

chooses, it may be argued that sometimes even other complements of the verb may

be zero constituents. In this case, an incorporated adverbial particle, usually

referred to as the verb modifier, allows us to infer the presence and the

grammatical case of the covert constituent. Zero pronouns in Hungarian are

illustrated below by (9) and (10).

(9) Szeretlek.

love[PRES][SG3][objSG2]

―I love you.‖

(10) A könyvet beleraktam a táskába.

The book[ACC] into-put[PAST][SG1] the bag[INE]

―I put the book in the bag.‖

Beleraktam a könyvet.

into-put[PAST][SG1] the book[ACC]

―I put the book in it.‖

Pronouns are not the only syntactic category that may be realized as

phonologically zero elements. In sentences with a nominal predicate, the copula

may or may not be overt depending on tense and mood. Compare for example the

present and past tense of The grass is green in Hungarian (11).

(11) A fű zöld.

the grass[NOM] green

―The grass is green.‖

A fű zöld volt.

The grass[NOM] green be[PAST][SG3]

―The grass was green.‖

In order to translate verb phrases adequately, one has to identify the complete

argument structure, the verb and its complements cannot be translated in isolation.

Therefore, once the individual clause constituents have been parsed, somehow

they have to be put together as the right lexical item. We call the mmd rules that

describe Hungarian verbal phrases and the corresponding English translations VP

patterns. Here is an actual example (12).

(12) *VP=találkozik:15577

HU.VP = SUBJ + TV(:lex="találkozik") + COMPL#1(pos=N, case=INS,

abstract=NO)

EN.VP = SUBJ + TV[lex="meet"] + COMPL#1

The fundamental problem is how to make such a VP pattern match an almost

random sequence of phrases in a scenario where the arguments of the verb may

appear in any order, sometimes as disjointed constituents, sometimes they do not

appear at all, even the head of the VP may be missing in some special

constructions, and there may be any number of sentence-level adverbial modifiers

interspersed.

The simple straightforward solution to identifying VP patterns would be to

generate all possible configurations from the mmd rule in (6) using the mmd to

mmo converter. Unfortunately, however, the enormous number of mmo rules thus

obtained would not be manageable. There are tens of thousands of VP patterns in

our lexicon. Given the number of possible permutations of sentence constituents

combined with the possibility of one or more of them being zero, and also

counting some other quirks of Hungarian grammar that we have not even

mentioned, we may well end up having several hundred and maybe more rules for

each VP pattern. The resulting grammar file would take up gigabytes at least and

the parsing process despite all optimizations would slow down drastically.

Another approach could be combining the parser with a software module that

can somehow access the VP pattern descriptions and the pool of existing partial

analyses, and using a set of algorithms designed for the purpose, create the correct

VP nodes and place them back in the analysis space. This solution is not

impracticable, but taking full advantage of the tools provided by the MetaMorpho

framework, we came up with a solution that does not require external tinkering

with the parsing process and can be implemented with the mmd language alone. The

basic idea is that a CF parser itself can be used as a simple computer, and the

grammar can serve as a program that can be executed on it. We obviously do not

have the space here to develop this theory, but suffice it to say that with user-defined

operators it is possible to define an arithmetic over symbolic features used as

variables, and a set of recursive rules and some features functioning as status

indicators or flags for exit conditions can serve as execution loops. Such techniques

enabled us to implement all necessary algorithms within the grammar itself.

The main goal was to find a way to identify VP patterns using a single mmo rule

only. To do so, we used the mmd-to-mmo converter to create a 'canonical form' of

the pattern and made sure that regardless of the accidents of surface form, the

sentence constituents appear to the mmo VP rule to be in the same 'canonical form'.

Let us briefly show how we achieved that.

We introduced a purely technical category named VPP and a set of core grammar

rules that operate on it recursively. Starting from the verb and then going first right

and then left, these rules gather all the constituents one by one and store them in an

ordered list of pointer features. During this process the constituents which are

potential arguments of the verb are sorted according to an arbitrarily determined

ordering based on their grammatical case and some other syntactic features. This

ordering is part of the 'canonical form', which makes permuting the constituents

unnecessary, thereby solving the problem of free phrase order. It should be noted

that generating all permutations of the arguments is also possible using such

'grammar-programs', but less efficient. Disjointed constituents are 'reunited' during

this process by placing them in associated pointer features after checking for

compatibility. At generation time the constituent that stores the head of a disjointed

phrase is passed the extraposed parts via these associated pointers.

In order for the checking of arguments to be a uniform process, zero constituents

must be supplied. A simple CF grammar is incapable of handling an element that is

simply not there, but using a trick with pointers we can overcome this difficulty as

well. The idea is to use the entire clause to represent the zero element whose

existence can be inferred from it. We build an ARG (the category that represents

an argument) on top of the VPP, and store the VPP in a pointer. Then we build a

VPP on top of the ARG, restore its original attributes form the pointer, and store

the faked ARG in the appropriate argument pointer. The end result is a VPP which

contains the zero argument in exactly the same manner as any other overt

constituent, namely a pointer. The concept is illustrated by the following pair of

simplified rules.

(13) HU.ARG[zero=YES, Vpp<-VPP] = VPP(zeroarg=NO)

EN.ARG = PRON

HU.VPP[Arg<-ARG, zeroarg=YES, :features=ARG.Vpp->:features] =

ARG[zero=YES]

EN.VPP = VPP{HU.ARG.Vpp}

During the 'VPP stage' we may also perform transformations to adjust for

passive, factitive or participial constructions, so that all these may finally be

represented as the 'canonical form'.

We still haven't accounted for how we differentiate arguments from free

modifiers. Case marked NPs and phrases containing post-positions may generally

both serve either as complements of the verb or as free adverbials. We could of

course have alternative analyses for these constituents, but the number of possible

combinations of arguments and modifiers may result in unnecessarily high

memory requirements during parsing. So taking advantage of multiple generation-

side lines in an mmd rule, we create polymorphic constituents. Instead of

determining the role of such NPs before VP pattern identification, all of them have

an ADVP layer above the NP. ARGs are then created from such ADVPs with

multiple generation-side rules. Depending on a left hand side condition, these rules

translate the phrase either as an adverbial or as a simple noun phrase.

VP patterns do not check the arguments directly. Instead, the constraints are

copied into a set of features, and once again technical rules take over and check the

arguments one by one based on the contents of these features. Whenever these

rules encounter a constituent that turns out not to be an argument, the rest of the

potential arguments are shifted while the current constituent is assigned modifier

status. At generation time the constituent is translated accordingly.

Although giving a full account of how we handled the more difficult aspects of

Hungarian sentence structure would have been far beyond the scope of the present

paper, we hope that we have managed to give at least an interesting insight into our

work.

3. Conclusion

The first part of the paper has described a morphological system inspired by an

agglutinative language, Hungarian. The solution belongs to the ‗item-and-

arrangement‖ paradigm. The method itself uses lexicons of allomorphs and

adjacency restrictions between them. A feature system and a unification algorithm

—or better said: checking a relation called unifiability—is also used.

Concatenation points between morphs are defined by continuation classes, and the

basic idea behind the algorithmic description is—instead of a real-time analysis of

every morpho-phonological attribute—that there are no more active operations in

this computational morphology. Due to its minimal memory requirements even the

first versions of the system could effectively run even on early PC‘s (since 1991).

In the second part of the paper we have dealt with the syntactic processing of

Hungarian texts and the way it is used in the Hungarian–English MetaMorpho

machine translation system. First the sentence is segmented into terminal symbols,

and the morphological analyzer determines all the needed morpho-syntactic

attributes of these symbols. The syntactic parser analyzes the input sequence and if

it is recognized as a correct sentence, comes up with one or more root symbols on

the source side. When the whole input is processed and no applicable patterns

remain, the target equivalent is read top-down from the root symbols by firing the

target pattern corresponding to the source pattern that created the edge at parse

time. This solution—a sort of ―immediate transfer‖—uses no separate transfer

steps or target transformations. In the remaining part of the chapter we show how

certain linguistic phenomena of Hungarian are described with the help of this

formalism.

Implementations of both algorithms run in machine translation, proofing tools,

intelligent search and comprehension assistance applications.

4. References

Abondolo, D. M. 1988, Hungarian Inflectional Morphology. Budapest: Akadémiai

Anick, P. & Artemieff, S. 1992, A High-level Morphological Description

Language Exploiting Inflectional Paradigms. Proceedings of COLING-92,

Nantes, France, 67–73

Beesley, K. R., Karttunen, L. 2003, Finite State Morphology. CSLI Studies in

Computational Linguistics. Stanford:CSLI

Bryant, B.D., Miikkulainen, R. 2001, From Word Stream to Gestalt: A Direct

Semantic Parse for Complex Sentences. AI Technical Report TR-AI98-274,

Austin:University of Texas

Bybee, J. L. 1985, Morphology. A Study of the Relation Between Meaning and

Form. Amsterdam: John Benjamins

Calder, J. 1989, Paradigmatic Morphology. Proceedings of 4th Conference of

EACL 89. Manchester, United Kingdom, 58-65

Karlsson, F. 1986, A Paradigm-based Morphological Analyzer. Papers from the

Fifth Scandinavian Conference of Computational Linguistics,

Helsinki:University of Helsinki, 95-112

Karttunen, L., Root, R. and Uszkoreit, H. 1981, Morphological Analysis of Finnish

by Computer. Proceedings of the 71st Annual Meeting of the SASS.

Albuquerque, New Mexico.

Karttunen, L.1993, Finite-State Lexicon Compiler. Technical Report. ISTL-

NLTT-1993-04-02. Palo Alto: Xerox PARC

 Koskenniemi, K. 1983, Two-level Morphology: A General Computational Model

for Word-form Recognition and Production. Publications No.11,

Helsinki:University of Helsinki

Novák, A. 2008, Language Resources for Uralic Minority Languages. In:

Proceedings of the SALTMIL Workshop “Collaboration: Interoperability

Between People in the Creation of Language Resources for Less-resourced

Languages”. Marrakech, 27–32

Novák, A., Wenszky N. 2007, Mire jó és hogyan készül egy számítógépes

morfológia. In: Alberti G., Fóris Á. (eds.): A mai magyar formális

nyelvtudomány műhelyei. Budapest:Nemzeti Tankönyvkiadó, 157–169

Novák, A., Tihanyi L., Prószéky, G. 2008, The MetaMorpho Translation System.

In: Proceedings of the Third Workshop on Statistical Machine Translation.

Columbus, 111–114

Prószéky, G. 2006, Translating While Parsing. In: Suominen, M. et al (eds.) A

Man of Measure (Festschrift in Honour of Fred Karlsson on his 60th

Birthday). Turku:The Linguistic Association of Finland, 449-459

Prószéky, G., Földes A. 2005, Between Understanding and Translating: A

Context-Sensitive Comprehension Tool. Archives of Control Sciences 15(4),

637-644

Prószéky, G. Kis B. 1999, A Unification-based Approach to Morpho-syntactic

Parsing of Agglutinative and Other (Highly) Inflectional Languages.

Proceedings of the 37th Annual Meeting of the Association for Computational

Linguistics. College Park, 261-268

Prószéky, G., Kis, B., Pál, M. 2004, Specialties and Applications of Hungarian

Proofing Tools. Pre-Proceedings of the 1st International Workshop on

Proofing Tools and Language Technologies. Patras:Conference and Cultural

Centre, 113–116

Tompa, J. (ed.) 1962, A mai magyar nyelv rendszere. Budapest: Akadémiai

Winograd, T. 1983, Language as a Cognitive Process. Reading:Addison-Wesley

Wołosz, R. 2005, Efektywna metoda analizy i syntezy morfologicznej w jezyku

polskim. Warszawa:Akademicka Oficyna Wydawnicza EXIT

Appendix: Glosses for Hungarian words used in the examples

Hungarian POS English

barát N friend

bagoly N owl

bér N wages/pay

biztosít V assure/insure

biztosítás N insurance

bokor N bush

hal N fish

hát N back

ház N house

játszik V play

kép N picture

kesztyű N glove

kesztyűtartó N glove box

könyv N book

kutya N dog

magas ADJ high/tall

megy V go

ment ADJ safe/free from sth

ment V save

nyelv N language

nyolc NUM eight

piros ADJ red

szép ADJ beautiful

szó, szavak N word, words

tart V hold

tartó N holder/container

technológia N technology

