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Abstract 
 

A crucial requirement for doing machine translation, machine-aided translation, 

information retrieval or computational information processing of texts of 

agglutinative languages, in general, is an efficient computational morphology. 

Having done the morphological processing of the word-forms of sentences, the 

sentence structure itself should be identified. This step is also common in all 

human languages. In case of agglutinative languages, like Hungarian, 

morphological processing provides a lot of information expressed by syntax in 

other, less-inflectional languages. Syntactic processing of highly inflectional 

languages, therefore, can use a lot of syntactic information identified by the 

morphological subsystem. It is needed, because the agglutinative nature of 

morphology results in free phrase order on the sentence level.  

In the first part of the paper we introduce Humor, a morphological description 

formalism and algorithm inspired by an agglutinative language, Hungarian. In the 

second part of the paper we describe a syntactic parsing formalism and algorithm 

inspired by Hungarian, a free-phrase-order language, and show the way how it is 

used in the Hungarian–English MetaMorpho machine translation system. 

 

1. Morphological analysis inspired by Hungarian, an 

agglutinative language 
 

A crucial requirement for doing machine translation, machine-aided translation, 

information retrieval or computational information processing of texts of 

agglutinative and highly inflectional languages, in general, is an efficient 

computational morphology. Having done the morphological processing of the 

word-forms of sentences, the sentence structure itself should be basically 

identified. In case of agglutinative languages, like Hungarian, morphological 

processing provides a lot of information expressed by syntax in other, less-



inflectional languages. Syntactic processing, therefore, can use a lot of syntactic 

information already identified by the morphological system. It is needed, because 

the rich case system of Hungarian results in free phrase order on the sentence 

level. We describe here an approach to morphological analysis called Humor 

(High-speed Unification Morphology), which successfully copes with problems of 

agglutinative and other (highly) inflectional languages very effectively.  

 

1.1 A morphological description formalism  
 

Our approach to computational morphology belongs to the ‗item-and-

arrangement‖ paradigm. The method itself uses lexicons of allomorphs and 

adjacency restrictions between them. A feature system and a unification 

algorithm—or better said: checking a relation called unfiability —is also used, as 

described later. Concatenation points between morphs are defined by continuation 

classes, and the basic idea behind the algorithmic description is—instead of a real-

time analysis of every morpho-phonological attribute—that there are no more 

active operations in this approach to computational morphology. Due to its 

minimal memory requirements even the first versions of the system (since 1991) 

could effectively run even on early PC‘s (Prószéky & Kis 1999).  

Treatment of written word-forms is a starting point to a large set of 

computational linguistic applications. Since the introduction of two-level 

morphology by Koskenniemi (1983) morphological processing has been widely 

known as the first step of processing running texts. Here we stress the importance 

of Koskenniemi‘s dissertation, because in the same year another important book 

was published by Winograd (1983) on natural language processing which does not 

mention the term ―morphology‖ at all. This book was meant as a general 

introduction to computational linguistic applications but dealt mainly with English. 

In general, we can say that a morphological analyzer is able to  

 identify the lexical form (stem) of the actual word-form and its part-of-

speech:  

kesztyű > kesztyű[N]  

 list the inflectional features of the actual word-form:  

kesztyűimet > kesztyű[N][PSsg1i][ACC] 

 show the derivational suffixes attached to the actual word-form:  

tartónak > tart@ó[N][DAT]  

 show the eventual compounding boundaries in the actual word-form:  

kesztyűtartóba > kesztyű|tart@ó[N][INE] 

Generation of word-forms is a morphological synthesis producing the actual 

surface form of a lexical stem combined with given morpho-syntactic features (1). 

(1) kesztyű[N][PSsg2i][ACC] > kesztyűidet  



Morphology always meets phonology via a phonology–morphology interface, 

but an orthography–morphology interface should also be applied in computational 

linguistics. In the following examples we can see two morpho-phonological 

phenomena: application of vowel harmony (2) and vowel lengthening (3), while an 

orthography-motivated treatment of gemination of the Hungarian digraph „ly‟ is 

shown by (4):  

(2)  nyelv + vAl → nyelv + vel → nyelvvel 

(3) technológia + vAl → technológiá + val → technológiával 

(4) bagoly + vAl → bagolly + al → bagollyal  

In the generative grammar formalism not only surface and underlying forms are 

used, but many layers in between them. The most famous morphological system 

without intermediate levels is two-level morphology, but the approach introduced 

in this paper is also belongs here. The entire algorithm shows features similar to 

the hypothesis according to which most segments of word-forms in agglutinative 

languages are handled as a whole un-analyzed construction by native speakers, 

instead of parsing them on-the-fly. Psycholinguists use the term ―Gestalt‖ to refer 

to this phenomenon (Bryant & Miikkulainen 2001), but the idea is also known in 

the theoretical linguistic literature: ―a psycholinguistic argument for treating 

(some) ending sequences as wholes comes from the observation that children 

acquiring inflectional languages seldom make errors involving the order of 

morphemes in a word.‖ (Bybee 1985) Another source is Karlsson (1986): ―The 

endings and entries are often listed as wholes, especially in close-knit 

combinations. Such combinations are often subject to bi-directional dependencies 

that are hard to capture otherwise‖. A good example is the linguistic tradition 

handling number and person combinations of Hungarian conjugation (Tompa 

1962), where, for example, -unk[PSpl1] is treated as a single morph, although its -

n refers to first person and -k means plural. There are several ways in which lexical 

forms of words may be constructed: full listing, minimal listing, methods with 

unique lexical forms and methods with phonologically distinct stem variants 

(Karlsson 1986). Full listing does not need rules at all, but it is implausible for 

agglutinative languages. Minimal listings need a quite large rule system in the case 

of highly inflectional languages, although their lexicons are relatively small. In 

methods based on unique lexical forms allowing diacritics and morpho-phonemes 

paradigms are represented by a single base form (Koskenniemi 1983; Abondolo 

1988). This is one of the reasons why it is very difficult to add new entries to the 

lexicons automatically in real language technology environments. Our approach is 

close to the minimal listing methods, but fewer rules are needed. Finally, the 

representation presented here regards phonologically distinct bound variants of a 

base form as separate stems. Actual two-level and some other morphological 

descriptions apply similar methods in order to cope with morphotactic problems 

that cannot be treated phonologically in an elegant way. 

 There are two known important variants of this method: one using technical 

stems, that is, orthographically motivated strings that linguists do not consider 



‗real‘ stem variants (Karttunen 1981), and the other using real allomorphs 

(Karlsson 1986). Thus, Humor lexicons contain stem allomorphs (which were 

generated by the learning phase mentioned above) instead of single stems. A 

morphological parser need not be directly concerned with the derivation of 

allomorphs from their base forms, for example, it does not matter how 

technológiá- is derived from technológia-, for example before accusative -t. This 

phenomenon—a consequence of the orthographical system—is handled by the off-

line linguistic process of Humor, which makes the analysis much faster. This 

method is close to the lexicon compilation used in finite-state models. Relations 

among allomorphs of the same base form (e.g. technológia-, technológiá-) are, 

however, rather important not only for theoretical linguists, but also for further 

syntactic processing. According to the above principle, the lexicon of stem 

allomorphs contain even non-lexical forms, e.g. bagoly- bagolly-, bagly-, …, 

kesztyű-, …, nyelv-, …, tart-, …, technológia-, technológiá-, … The lexicon of 

suffix allomorphs is generated exactly the same way: -k, -ak, -ek, -ok, -ök, …, -t, -

at, -et, -ot, -öt, …, -nak, -nek, …, -val, -vel, … Concatenation of stem allomorphs 

and suffix allomorphs is licensed with the help of the following two factors: 

continuation classes defined by paradigm descriptions, and classes of surface 

allomorphs belonging to them. The approach is somewhat similar to the two-level 

descriptions‘ continuation classes (Koskenniemi 1983). A simplified description of 

Hungarian continuation classes are shown below, where % indicates here the 

starting state, and $ indicates ending (or accepting) states: 
START:% 

 PREFIX  -> STEM_REQUIRED 

 STEM1  -> STEM1_PASSED 

STEM_REQUIRED: 

 STEM1  -> STEM1_PASSED 

STEM1_PASSED:$ 

 STEM2  -> AFFIXES_POSSIBLE 

 DERIV_AFF  -> INFL_AFF_POSSIBLE 

 INFL_AFF  -> END 

AFFIXES_POSSIBLE:$ 

 DERIV_AFF  -> INFL_AFF_POSSIBLE 

 INFL_AFF -> END 

INFL_AFF_POSSIBLE:$ 

 INFL_AFF  -> END 

END:$ 

In fact, there are more concatenation points in the description of a single 

Hungarian word form for handling eventual prefixes and compounding. Recent 

implementations of Humor define continuation classes with the help of a so-called 

meta-dictionary, in fact, a finite-state automaton. 

Because segmentation of a word-form in Humor is based on surface patterns, 

typical sequences of suffix morphemes are analyzed as a whole. For example, the 

Hungarian nominal ending string -amé (PersSg1+Poss) consisting of -am 

(PersSg1) and -é (Poss) is in fact a complex affix but handled as an atomic symbol 



in Humor. The string amé is generated from am+é separately, in an earlier 

development phase by a dedicated utility. The generator is able to make a finite set 

of affix sequences from a description of possible continuation classes. Suffix 

combinations beginning with the same morpheme are considered equivalent 

because the only relevant pieces of information come from the suffix that 

immediately follows the stem. For example, from the point of view of the 

preceding stem, for example, ház-, morpheme combinations like -am[PersSg1], -

amé[PersSg1][Poss], -amnak [PersSg1][Dat], -aménak[PersSg1][Poss][Dat] 

behave as the suffix -am itself (Table 1).  

 

Word-

form 

Humor’s real-

time 

segmentation 

Humor’s output 

segmentation 

házam ház + am ház + am 

házamé ház + amé ház + am + é 

házamnak ház + amnak ház + am + nak 

házaménak ház + aménak ház + am + é + nak 

Table 1. 

Therefore, every affix array is represented by its starting affix. We can say that 

there is an equivalence relation on the set of affix arrays. Each equivalence class 

and each paradigm is given an abstract name, that is, each existing set of 

equivalence classes can have its own abstract name.  

Table 2 shows a partial morphotactic paradigm of nominals. Features (morpho-

phonological properties) are used to characterize both stem and suffix allomorphs. 

For instance, the stem piros- belongs to the paradigm that can be described by the 

set of Feature=Value pairs (5). 

(5)  piros-  [Cat=Nom, Pos=Adj, Deriv=Abstr, Deg=Comp]  

-abb  [Cat=Nom, Pos=Adj, Deg=Comp] 

 

Checking ‗appropriateness‘ is based on unification, or, strictly speaking, 

checking unifiability of the adequate features of stems and suffixes. The word-

form pirosabb is morphotactically licensed by the unifiability of the two 

structures: the feature ‗Deg‘ occurs in both with the same value (6) 

 
   Stems 

 Features=  Cat=Nom 

 +/- Values  Pos=N Pos=Adj Pos=Num 

  Morph hal- ház- piros- magas- nyolc- 

A
ff

ix
es

 Nbr=Pl -ak + + + + + 

Deriv=Adj -i- - + - - - 

Deriv=Abstr -ság- - - + + - 

Deriv=Multipl -szor - - - - + 



Deg=Comp -abb- - - + + - 

Table 2. 

 (6)  INPUT:  pirosabb 

 ANALYSIS: piros[Adj] + abb[Comp] 

 OUTPUT: piros[Adj][Comp] 

The most important advantage of this feature-based method is that possible 

paradigms and morpho-phonological types need not be defined previously; only 

the classification criteria have to be clarified. Here you find some criteria used in 

the morpho-phonological description of Hungarian: 

 
  α = + α = – 

1 α nominal nominal verb 

2 α frontness front vowel back vowel 

3 α roundness rounded vowel unrounded vowel 

4 α ACC  has accusative does not have accusative 

5 α ACCvowel  with vowel (-Vt) without vowel (-t) 

6 α PL  has plural does not have plural 

7 α PLvowel with vowel (-Vk) without vowel (-k) 

8 α lexical  lexical form non-lexical form 

9 α PERS  has personal suffix  does not have personal suffix  

10 α DAT  has dative does not have dative 

11 α INS:ß  has instrumentalis does not have instrumentalis  

12 α ÁS  has derivation –ás/-és  does not have derivation -ás/-és 

… … … ... 

Table 3. 

Since the number of these criteria is around a few dozen (in case of a language 

with rather complicated morphology), the number of theoretically possible 

paradigm classes is several million or more. According to the general linguistic 

practice, about 10-20 orthogonal properties are chosen which produce 2
10

-2
20

 

possible classes. In the reality, most of these potential combinations are 

hypothetical. That is, there are many empty classes. We have got an n-dimensional 

„morphological periodic table‖ based on the actual set of binary features 

describing potential, not-yet-existing forms as well. If we have 12 features, as in 

the description of Hungarian shown by Table 3, altogether we get 2
12

=4096 

potential vectors, but in the actual Hungarian morphology only 2792 are used out 

of them. We must not forget that not all the original morpho-phonological features 

are independent: for example, the vowel V in the Hungarian plural (-Vk) and V in 

the accusative ending (-Vt) show the following phonological interdependencies: -

Vit → -Vk, but –Vik → {Vit, 0t}. It means that if the accusative form of ház is 

házat, then we know that házak is its plural. On the other hand, the plural of kép is 

képek and plural of bér is bérek, but the accusative forms are képet and bért, 

respectively. Thus, the vowel of the accusative morph cannot be calculated on the 



basis of the vowel of the plural morph.  

 

1.2 The process of the morphological analysis 
 

The morphological analysis process is as follows. The continuation matrix 

provides concatenation licensing based on paradigm descriptions. The columns 

represent the paradigms themselves, the rows show the suffix category types by 

which the word to be analyzed can be followed. 

The Feature=Value pairs control concatenation licensing based on unifiability 

checking introduced earlier. In the actual descriptions we use binary features, so 0 

or 1 represent ‗–‗ or ‗+‘ values of the feature represented by the n-th column. A 

small segment of the internal lexical database is shown by Table 5. Allomorphs are 

shown in the first column, followed by the (right and left) continuation classes and 

the Feature=Value pairs. The last column shows the part-of-speech of the morph, 

preceded by the lexical form of the actual allomorph. 

 

Table 4. 

Continuation class information says that bokrot can be analyzed as a potential 

concatenation of stem bokr- and terminal suffix -ot. The second column of Table 5 

says that bokr- belongs to paradigm ‗H‘ and type of suffix -ot is ‗l‘. We see an 

asterisk in the paradigm matrix at the coincidence point of column ‗H‘ and row ‗l‘ 

(Table 4), meaning that paradigm ‗H‘ of bokr- contains suffix type ‗l‘ of -ot. 

According to this, the algorithm can go on. According to Table 5, -ot offers four 

features to unifiability check: 1st, 2nd, 3rd and 5th columns with values 101 an 1. 

These four Feature=Value pairs according to Table 3 are the following: 

Nominal=‘+‘, Front=‗–‗, Rounded=‘+‘ and Has-Accusative=‘+‘. Allomorph bokr- 

fulfills all the requirements, namely Table 5 says that its right feature vector is 



10111010 01000010, which has 101 and 1 on the first three and the fifth positions. 

The unfiability check is positive, so the actual form is licensed by our description. 

The output is the lexical form of the actual allomorph followed by the part-of-

speech of both the stem and the suffix: bokrot=bokor[N][ACC]. 

 

 

Table 5. 

 

 

Table 6. 



The above tables are rather difficult to produce by hand and there are a lot of 

potential sources of errors. For this reason, Novák developed an additional system 

to Humor (Novák & Wenszky 2007) which made it possible to start with basic 

lexical forms instead of allomorphs, and a special program generates the internal 

Humor formalism shown by Table 4 and Table 5. A sketch of this formalism (from 

Novák & Wenszky 2007) is shown by Table 6. 

An excerpt from the real Humor lexicon (in human readable format) is shown 

below: 

szó [+nominal +noun +lexical –front –rounded –PL –PERS +ACC –ACCvowel 

+DAT +INS:V] 

 [] 

szav [+nominal +noun – lexical –front –rounded +PL +PLvowel +PERS –ACC 

+DAT –INS] 

 [+nominal +noun + lexical +front –rounded +PL +PLvowel +ACC  

–ACCvowel +DAT +INS:S] 

ak [+nominal –front –rounded +PL +PLvowel] 

 [+nominal –front –rounded –PL –PERS +ACC +ACCvowel +DAT +INS:K] 

ek [+nominal +front –rounded +PL +PLvowel] 

 [+nominal +front –rounded –PL –PERS +ACC +ACCvowel +DAT +INS:K] 

at [+nominal –front –rounded +ACC +ACCvowel] 

 [] 

et [+nominal +front –rounded +ACC +ACCvowel] 

 [] 

nak [+nominal –front +DAT ] 

 []  

nek [+nominal +front +DAT] 

 []  

val [+nominal –front +INS:V] 

 []  

vel [+nominal +front +INS:V] 

 [] 

kal [+nominal –front +INS:K] 

 [] 

With the help of the above lexicon we can see how unifiability checking is done. 

In case of failed constructions (marked by an asterisk before the word form) the 

critical features that cannot be unified are underlined: 

szó [+nominal +noun +lexical –front –rounded –PL –PERS +ACC  

–ACCvowel +DAT +INS:V] 

*szav [+nominal +noun –lexical –front –rounded +PL +PLvowel +PERS  

–ACC +DAT –INS] 



 szó+nak [+nominal +noun +lexical –front –rounded –PL –PERS +ACC  

–ACCvowel +DAT +INS:V] 

 [+nominal –front +DAT ] 

 szó+val [+nominal +noun +lexical –front –rounded –PL –PERS +ACC  

–ACCvowel +DAT +INS:V] 

 [+nominal –front +INS:V] 

*szav+val [+nominal +noun –lexical –front –rounded +PL +PLvowel +PERS  

–ACC +DAT –INS] 

 [+nominal –front +INS:V] 

*szó+vel [+nominal +noun +lexical –front –rounded –PL –PERS +ACC  

–ACCvowel +DAT +INS:V] 

 [+nominal +front +INS:V] 

szav+ak+at [+nominal +noun –lexical –front –rounded +PL +PLvowel +PERS 

–ACC +DAT –INS] 

 [+nominal –front –rounded +PL +PLvowel] 

 [+nominal –front –rounded –PL –PERS +ACC +ACCvöwel +DAT 

+INS:K] 

 [+nominal –front –rounded +ACC +ACCvowel] 

szav+ak+kal [+nominal +noun –lexical –front –rounded +PL +PLvowel 

+PERS –ACC +DAT –INS] 

 [+nominal –front –rounded +PL +PLvowel] 

 [+nominal –front –rounded –PL –PERS +ACC +ACCvowel +DAT 

+INS:K] 

 [+nominal –front +INS:K] 

 

Some examples for the analysis: 

játszunk = játszik[V][Pl1] 
     └─játszik[V]=játsz─unk[Pl1] 

 

játszottam = játszik[V][PastSg1] |  

                    játszik[V][DefPastSg1] |  

                    játszik[V][PPartic][PsSg1] 
     └─játszik[V]=játsz┬─ottam[PastSg1] 

                       ├─ottam[DefPastSg1] 

                       └─ott[PPartic]─am[PsSg1] 

 

barátokért = barát[N][Pl][Cau] 
     └─barát[N]─ok[Pl]─ért[Cau] 

 

 



könyveimet = könyv[N] [PsSg1[Acc] 
     └─könyv[N]─eim[PsSg1]─et[Acc] 

 

szebben = szép[Comp][Adj][Ine] |  

                 szép[Comp][Adj][Sup]| 

                 szép[Comp][Adj][EssMod] 
     └─szép[Adj]=sze─bb[Comp]┬─en[Ine] 

                             ├─en[Sup] 

                             └─en[EssMod] 

mentek = ment[Adj][Pl] |  

                ment[V][Sg1] |             

                megy[V][Pl2] |  

                megy[V][PastPl3] |           

                megy[V][PPartic] 
     ├─ment[Adj]────────────────┬─ek[Pl]  

     ├─ment[V]───────ek[Sg1]    │   

     └─megy[V]=men┬─tek[Pl2]    │  

                  ├─tek[PastPl3]│ 

                  └─t[PPartic] ─┘  

 

biztosításaitokkal = biztosítás[N][PsPl2pl][Ins] 
     ├─biztosítás[N]───────┬aitok[PsPl2pl]─kal[Ins]  

     └─biztosít[V]─ás[V2N]─┘ 

 

There are only a few general, reversible morphological systems that are suitable 

for more than a single language. The most well-known approach is the two-level 

morphology (Koskenniemi 1983) and its modifications (Karttunen 1993, Beesley 

& Karttunen 2003). There are some computational morphological description 

systems showing some features in common with Humor—like paradigmatic 

morphology (Calder 1989), or the Paradigm Description Language (Anick & 

Artemieff 1992)—but they don‘t have large-scale implementations. Two-level 

morphology is a reversible, orthography-based system that has several advantages 

from a linguist‘s point of view. Namely, the morpho-phonemic/graphemic rules 

can be formalized in a general and very elegant way. It also has computational 

advantages, but the lexicons contain entries with extra symbols and other 

sophisticated elements in order to produce the necessary surface forms. Non-

linguist users need an easy-to-extend dictionary into which words can be inserted 

easily. The lexical entries of Humor consist of surface characters only, which 

makes adding new entries to the system rather easy.  

 

 

 

  



2. Syntax and translation algorithm inspired by Hungarian, a 

free-phrase-order language 
 

MorphoLogic's English-Hungarian and Hungarian-English machine translation 

software is based on the MetaMorpho MT engine. This engine was developed by 

MorphoLogic specifically for the purposes of the machine translation project, and 

some of its features were inspired by the difficulties inherent in analyzing 

Hungarian input. In the first part of this chapter we will give the reader an 

overview of MetaMorpho technology, and in subsequent subsections we will go on 

to describe how certain phenomena characteristic of the Hungarian language were 

successfully handled with it. 

 

 

2.1 An overview of the MetaMorpho technology 
 

MetaMorpho (Novák, Tihanyi & Prószéky 2008) is a rule-based system that uses 

immediate transfer (Prószéky 2006), which means that any constituent captured by 

the parser has its translation (or at least one possible translation) ready at the 

moment of analysis. The analysis itself is based on a monolithic grammar 

described in a unified formalism called mmo, which comprises the whole lexicon, 

the set of usual context-free rules needed to capture regularities in the source 

language, and also a number of 'patterns'—some of which may be less 

linguistically motivated—describing linguistic phenomena that do not easily lend 

themselves to compositional analysis or translation. The same mmo rules that we 

use to analyze the input contain the target-language equivalent or possible 

alternative equivalents. 

The technology encompasses a parser-generator called Moose, the high-level 

mmd language and a converter to transform it into low-level mmo rules, and the 

Humor morphological analyzer and generator described in the first part of the 

paper. The capabilities of the MetaMorpho system are best explained in terms of 

the mmd language. 

 

 

2.2 The syntactic description formalism  
 

The core of MetaMorpho technology is an enhanced context-free grammar, 

which is represented as a set of mmd rules. All rules have a unique identifier, an 

analysis-side, a generation-side, and possibly a list of kills, which will be explained 

later. The simple mmd rule below exemplifies the basic syntax (7). 

The analysis-side, which is the second line, immediately below the rule 

identifier, is very much like an ordinary CF rule. On the left hand side, there is a 

single non-terminal category symbol, which is followed by an equal sign, which in 

turn is followed by a list of terminal and/or non-terminal category symbols 



separated by plus signs. Obviously, the analysis-side rules are used by the parser to 

find valid tree representations of the input constituent structure. 

 

 (7) *NP=DET+NX:12345678-1 

HU.NP[det=YES, def=DET.def] = DET(art=YES) + NX(allowdet=YES) 

EN.NP(HU.DET.def=YES) = DET[lex=‖the‖] + NX 

EN.NP(HU.DET.def=NO) = DET[lex=‖a‖] + NX 

!12345678-2, 12345678-3 

 

Below the analysis-side, there are one or more generation-side rules. These rules 

also follow the general context-free pattern. They represent the target-language 

equivalents of the source-language constituent, and are invoked at generation time. 

TL non-terminals are generated by the same rules that created the corresponding 

SL node. The choice between multiple generation-side rules in a particular 

instance is governed by the left hand side conditions. 

As is apparent from the example (7), all categories have a set of attributes or 

features as they are usually referred to in our terminology. The list of categories 

and their features are defined separately in an XML-based format. Attributes fall 

into three types: symbolic, string, and pointer. Both analysis-side and generation-

side rules may check the values of any of these features and may also assign values 

to them. Application of the rules is subject to meeting the conditions imposed on 

feature values. Conditions are given in parentheses right next to the category 

symbols, while value assignments appear inside square brackets. 

Symbolic features have a finite set of permissible values, and they are typically 

used to carry grammatical (syntactic or morphological) information, e.g. number, 

person, gender, subcategory codes, etc. String features typically store the lexical 

content of most categories. They are predominantly used by lexicon-level rules 

simply to identify the lexical item. VP patterns or other higher level rules may also 

refer to string features to impose lexical constraints on their complements. The 

concept of pointer features is MetaMorpho technology‘s most valuable addition to 

the basic context-free attribute grammar underlying it. These features can store 

entire constituents (together with their analysis). Passing such pointers up to parent 

elements during analysis and back down during generation allows us to move 

constituents great distances in translation. Features, as expected, may be assigned 

constant values, and more importantly, they may inherit the value of another 

feature that belongs to a child or parent element. In such a way practically any 

amount of structural and grammatical information can be percolated through an 

inheritance chain. Checking feature values is not limited to the equality and non-

equality operators. A so-called compatibility operator may be defined for any pair 

of symbolic features. Also, the values assigned to symbolic features may be 

computed by user-defined binary operators. 

The last line in (7) contains a list of rule identifiers preceded by an exclamation 

mark. In MetaMorpho terminology, these are called kills. If a rule can be 

successfully applied to a given range of input tokens, and it contains kills, then the 



rules so referenced are overridden if they are to be applied to the exact same range. 

This mechanism allows us to create very simple rules for general cases without 

having to worry about exceptions, and then list more specific special cases as 

separate rules. By killing the general rules with the more specific ones, the 

superfluous analyses are suppressed. 

Mmd rules are created by our linguists to define the grammar and the lexicon of 

the MT system, while mmo is a slightly less human-readable form that can be 

directly complied into the binary representation required by the parser. A converter 

is used to syntax-check and transform high-level mmd descriptions into low-level 

mmo rules. There is not much formal difference between mmd and mmo, in fact as 

far as syntax is concerned, all mmo rules are valid mmd rules. The opposite is not 

necessarily true because the mmd language allows some extra features such as 

shorthand notations for manipulating large groups of features and some meta-

features that influence the conversion process. Such group identifiers are 

converted to the whole set of features they represent, while meta-features are 

stripped from the mmo output when they are no longer needed. 

The reason why we decided to have the higher-level mmd description on top of 

mmo is efficiency. Especially in the case of lexicon-level rules, but also in many 

other cases, a rule has a lot of predictable content while the amount of unique, non-

predictable information is very little in comparison. In an mmd rule, only the non-

predictable part must be present, the rest is supplied by the converter, therefore an 

immense amount of typing can be spared. The converter is not restricted to adding 

missing feature checks and assignments to a rule. It may even generate a large 

number of related rules based on a single mmd description. For example the 

converter is responsible for creating the active and passive forms of an English VP 

from a single common mmd definition. As can be seen from this, some linguistic 

knowledge may be encoded in the converter itself. While it may deduct from the 

purity of the MetaMorpho system that not all the regularities of language are 

captured in the formal grammar, the simplicity of performing certain 

transformations with the aid of a computer program rather than the limited 

capabilities a CF transducer, and the amount of redundancy that can be avoided 

this way outweigh other considerations.  

 

 

2.3 Parsing and translating Hungarian with MetaMorpho  

 
Hungarian syntax has a number of phenomena which are difficult to handle with 

the usual tools based on context-free grammars, which are best suited to 

configurational languages such as English. In the following chapters we will 

discuss how the special features of MetaMorpho technology enabled us to tackle 

problems like free phrase order within the sentence, long distance dependencies, 

the prevalence of zero constituents, and the translation of nominal predicates. 

While lexical phrases in Hungarian have a well-defined word order and are 

easily handled by well-established methods, sentence structure is much more 



complicated. Grammatical functions such as subject, object, etc. and argument 

structure are not identified by structural position but solely by case endings and/or 

post-positions. There do seem to be some fixed positions inside a clause, but these 

have to do with logical, semantic and pragmatic rather than syntactic functions. 

The basic Hungarian finite clause follows the pattern: Topic—Focus—Predicate. 

The topic is the pragmatically most salient element in the predication, which can 

be any constituent, even a free adverbial. The focus position is obligatorily 

occupied by constituents with negative polarity or 'restrictive' meaning, and may 

also express contrastive meaning, similarly to the structure that traditional 

grammars call the 'cleft sentence' in English. The verb, or an auxiliary, when one is 

present, is always at the left edge of the predicate, but the rest of the verb's 

complements and any free modifiers may follow in just about any order. In 

summary, without going into now irrelevant details, it may be said that for the 

purposes of MT, Hungarian clauses can be regarded as having absolutely free 

phrase order. 

The random order of sentence constituents is not the only problem we have to 

face. In surface structure we can also have a number of different disjointed 

constituents. It is not unusual for the possessor in possessive NP constructions to 

leave the NP and move into topic position. So the following two sentences are 

nearly identical in meaning (8). 

 

(8) Ellopták Mari pénztárcáját. 

Ellopták NP[Mari pénztárcáját]. 

steal[PAST][PL3] Mary[NOM] wallet[ACC][possSG3] 

―They stole Mary's wallet.‖ 

Marinak ellopták a pénztárcáját. 

[Marinak] ellopták NP[a pénztárcáját]. 

Mary[GEN/DAT] steal[PAST][PL3] the wallet[ACC][possSG3] 

―Mary had her wallet stolen.‖ 

 

Complement clauses also have a tendency to be extraposed to the right edge of 

the sentence, leaving a pronominal antecedent behind. Finally, relative clauses may 

also move to the right edge, while the phrases they modify remain in their original 

position. As a result, a single logical constituent may show up on the surface in 

two or even three separate pieces, which for the purposes of argument 

identification and translation have to be matched to each other. 

The number of surface constituents may also be less than expected. Hungarian 

subjects and objects can be realized as phonologically zero elements. Since the 

verb is inflected for subject and object agreement, the pronominal subject and 

object can be recovered from the verb ending (9). Depending on the analysis one 

chooses, it may be argued that sometimes even other complements of the verb may 

be zero constituents. In this case, an incorporated adverbial particle, usually 

referred to as the verb modifier, allows us to infer the presence and the 

grammatical case of the covert constituent. Zero pronouns in Hungarian are 



illustrated below by (9) and (10). 

(9) Szeretlek. 

love[PRES][SG3][objSG2] 

―I love you.‖ 

(10) A könyvet beleraktam a táskába. 

The book[ACC] into-put[PAST][SG1] the bag[INE] 

―I put the book in the bag.‖ 

Beleraktam a könyvet. 

into-put[PAST][SG1] the book[ACC] 

―I put the book in it.‖ 

 

Pronouns are not the only syntactic category that may be realized as 

phonologically zero elements. In sentences with a nominal predicate, the copula 

may or may not be overt depending on tense and mood. Compare for example the 

present and past tense of The grass is green in Hungarian (11). 

(11)   A fű zöld. 

the grass[NOM] green 

―The grass is green.‖ 

A fű zöld volt. 

The grass[NOM] green be[PAST][SG3] 

―The grass was green.‖ 

 

In order to translate verb phrases adequately, one has to identify the complete 

argument structure, the verb and its complements cannot be translated in isolation. 

Therefore, once the individual clause constituents have been parsed, somehow 

they have to be put together as the right lexical item. We call the mmd rules that 

describe Hungarian verbal phrases and the corresponding English translations VP 

patterns. Here is an actual example (12). 

(12) *VP=találkozik:15577 

HU.VP = SUBJ + TV(:lex="találkozik") + COMPL#1(pos=N, case=INS, 

abstract=NO) 

EN.VP = SUBJ + TV[lex="meet"] + COMPL#1 

 

The fundamental problem is how to make such a VP pattern match an almost 

random sequence of phrases in a scenario where the arguments of the verb may 

appear in any order, sometimes as disjointed constituents, sometimes they do not 

appear at all, even the head of the VP may be missing in some special 

constructions, and there may be any number of sentence-level adverbial modifiers 

interspersed. 

The simple straightforward solution to identifying VP patterns would be to 

generate all possible configurations from the mmd rule in (6) using the mmd to 

mmo converter. Unfortunately, however, the enormous number of mmo rules thus 



obtained would not be manageable. There are tens of thousands of VP patterns in 

our lexicon. Given the number of possible permutations of sentence constituents 

combined with the possibility of one or more of them being zero, and also 

counting some other quirks of Hungarian grammar that we have not even 

mentioned, we may well end up having several hundred and maybe more rules for 

each VP pattern. The resulting grammar file would take up gigabytes at least and 

the parsing process despite all optimizations would slow down drastically. 

Another approach could be combining the parser with a software module that 

can somehow access the VP pattern descriptions and the pool of existing partial 

analyses, and using a set of algorithms designed for the purpose, create the correct 

VP nodes and place them back in the analysis space. This solution is not 

impracticable, but taking full advantage of the tools provided by the MetaMorpho 

framework, we came up with a solution that does not require external tinkering 

with the parsing process and can be implemented with the mmd language alone. The 

basic idea is that a CF parser itself can be used as a simple computer, and the 

grammar can serve as a program that can be executed on it. We obviously do not 

have the space here to develop this theory, but suffice it to say that with user-defined 

operators it is possible to define an arithmetic over symbolic features used as 

variables, and a set of recursive rules and some features functioning as status 

indicators or flags for exit conditions can serve as execution loops. Such techniques 

enabled us to implement all necessary algorithms within the grammar itself. 

The main goal was to find a way to identify VP patterns using a single mmo rule 

only. To do so, we used the mmd-to-mmo converter to create a 'canonical form' of 

the pattern and made sure that regardless of the accidents of surface form, the 

sentence constituents appear to the mmo VP rule to be in the same 'canonical form'. 

Let us briefly show how we achieved that. 

We introduced a purely technical category named VPP and a set of core grammar 

rules that operate on it recursively. Starting from the verb and then going first right 

and then left, these rules gather all the constituents one by one and store them in an 

ordered list of pointer features. During this process the constituents which are 

potential arguments of the verb are sorted according to an arbitrarily determined 

ordering based on their grammatical case and some other syntactic features. This 

ordering is part of the 'canonical form', which makes permuting the constituents 

unnecessary, thereby solving the problem of free phrase order. It should be noted 

that generating all permutations of the arguments is also possible using such 

'grammar-programs', but less efficient. Disjointed constituents are 'reunited' during 

this process by placing them in associated pointer features after checking for 

compatibility. At generation time the constituent that stores the head of a disjointed 

phrase is passed the extraposed parts via these associated pointers. 

In order for the checking of arguments to be a uniform process, zero constituents 

must be supplied. A simple CF grammar is incapable of handling an element that is 

simply not there, but using a trick with pointers we can overcome this difficulty as 

well. The idea is to use the entire clause to represent the zero element whose 

existence can be inferred from it. We build an ARG (the category that represents 



an argument) on top of the VPP, and store the VPP in a pointer. Then we build a 

VPP on top of the ARG, restore its original attributes form the pointer, and store 

the faked ARG in the appropriate argument pointer. The end result is a VPP which 

contains the zero argument in exactly the same manner as any other overt 

constituent, namely a pointer. The concept is illustrated by the following pair of 

simplified rules. 

 

(13) HU.ARG[zero=YES, Vpp<-VPP] = VPP(zeroarg=NO) 

EN.ARG = PRON 

HU.VPP[Arg<-ARG, zeroarg=YES, :features=ARG.Vpp->:features] = 

ARG[zero=YES] 

EN.VPP = VPP{HU.ARG.Vpp} 

 

During the 'VPP stage' we may also perform transformations to adjust for 

passive, factitive or participial constructions, so that all these may finally be 

represented as the 'canonical form'. 

We still haven't accounted for how we differentiate arguments from free 

modifiers. Case marked NPs and phrases containing post-positions may generally 

both serve either as complements of the verb or as free adverbials. We could of 

course have alternative analyses for these constituents, but the number of possible 

combinations of arguments and modifiers may result in unnecessarily high 

memory requirements during parsing. So taking advantage of multiple generation-

side lines in an mmd rule, we create polymorphic constituents. Instead of 

determining the role of such NPs before VP pattern identification, all of them have 

an ADVP layer above the NP. ARGs are then created from such ADVPs with 

multiple generation-side rules. Depending on a left hand side condition, these rules 

translate the phrase either as an adverbial or as a simple noun phrase. 

VP patterns do not check the arguments directly. Instead, the constraints are 

copied into a set of features, and once again technical rules take over and check the 

arguments one by one based on the contents of these features. Whenever these 

rules encounter a constituent that turns out not to be an argument, the rest of the 

potential arguments are shifted while the current constituent is assigned modifier 

status. At generation time the constituent is translated accordingly. 

Although giving a full account of how we handled the more difficult aspects of 

Hungarian sentence structure would have been far beyond the scope of the present 

paper, we hope that we have managed to give at least an interesting insight into our 

work. 

 

3. Conclusion 
 

The first part of the paper has described a morphological system inspired by an 

agglutinative language, Hungarian. The solution belongs to the ‗item-and-

arrangement‖ paradigm. The method itself uses lexicons of allomorphs and 



adjacency restrictions between them. A feature system and a unification algorithm 

—or better said: checking a relation called unifiability—is also used. 

Concatenation points between morphs are defined by continuation classes, and the 

basic idea behind the algorithmic description is—instead of a real-time analysis of 

every morpho-phonological attribute—that there are no more active operations in 

this computational morphology. Due to its minimal memory requirements even the 

first versions of the system could effectively run even on early PC‘s (since 1991). 

In the second part of the paper we have dealt with the syntactic processing of 

Hungarian texts and the way it is used in the Hungarian–English MetaMorpho 

machine translation system. First the sentence is segmented into terminal symbols, 

and the morphological analyzer determines all the needed morpho-syntactic 

attributes of these symbols. The syntactic parser analyzes the input sequence and if 

it is recognized as a correct sentence, comes up with one or more root symbols on 

the source side. When the whole input is processed and no applicable patterns 

remain, the target equivalent is read top-down from the root symbols by firing the 

target pattern corresponding to the source pattern that created the edge at parse 

time. This solution—a sort of ―immediate transfer‖—uses no separate transfer 

steps or target transformations. In the remaining part of the chapter we show how 

certain linguistic phenomena of Hungarian are described with the help of this 

formalism.  

Implementations of both algorithms run in machine translation, proofing tools, 

intelligent search and comprehension assistance applications. 
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Appendix: Glosses for Hungarian words used in the examples 

Hungarian POS English 

barát N friend 

bagoly N owl 



bér N wages/pay  

biztosít V assure/insure 

biztosítás N insurance 

bokor N bush 

hal N fish 

hát N back 

ház N house 

játszik V play 

kép N picture 

kesztyű N glove 

kesztyűtartó N glove box 

könyv N book 

kutya N dog 

magas ADJ high/tall 

megy  V go 

ment ADJ safe/free from sth 

ment V save 

nyelv N language 

nyolc NUM eight 

piros ADJ red 

szép ADJ beautiful 

szó, szavak N word, words 

tart V hold 

tartó N holder/container 

technológia N technology 

 

 


