
INTRODUCTION
The ultimate causes or chain of events trigger-

ing mass extinctions are difficult to study but of
fundamental scientific interest. Extraterrestrial
impacts, climate changes, sea-level changes,
oceanic anoxia, and flood basalt volcanism are
some of the most often cited possible triggers for
elevated extinction rates or wholesale ecosystem
collapse. In all instances, hypotheses can be
properly tested only if precise timing and corre-
lation of events are possible. A second-order
extinction event involving several marine groups
occurred in Early Jurassic time (Hallam, 1986).
There is a well-established connection between
this extinction and a period of oceanic anoxia,
which in turn appears to be related to a significant
sea-level rise (Jenkyns, 1988; Hallam, 1997).
However, some workers argue that either extra-
terrestrial impacts or flood basalt volcanism were
the prime causes of many or all extinctions, on
the basis of their mutual periodicity and some
well-established cases of synchrony (Raup and
Sepkoski, 1984; Rampino and Stothers, 1988;
Stothers, 1993).

Herein we discuss the temporal relationship
between the Early Jurassic extinction and vol-
canism in the Karoo and Ferrar large igneous
provinces of southern Gondwana. A possible
causal link has been tentatively proposed before,
but large uncertainties in the Early Jurassic time
scale and inaccuracies in dating the magmatism
hindered the testing of this hypothesis (Courtillot,
1994). We review paleontological data pertaining
to the Early Jurassic extinction, summarize recent
advances in dating the Karoo and Ferrar igneous
rocks, assess the temporal relationship between
extinction and volcanism in the context of a newly

revised, zonally resolved time scale for the criti-
cal Pliensbachian-Toarcian interval, examine the
geochemical evidence for the oceanic anoxic
event and environmental change, and discuss
some possible extinction scenarios and relation-
ships of the Early Jurassic events.

EARLY JURASSIC EXTINCTION
An Early Jurassic (Pliensbachian) extinction

event was recognized from a global database of
the stratigraphic ranges of marine animal families
and genera. Of lesser scale than the celebrated
“Big Five” (i.e., the five greatest extinction events
recognized), this extinction, in which about 5%
of families were lost, was nonetheless a signifi-
cant event (Raup and Sepkoski, 1984). An inde-
pendent compilation of fossil families detected
as much as 5% marine extinction in both the
Pliensbachian and Toarcian, and 2.4%–12.8%
extinction among continental organisms in the
Toarcian (Benton, 1995). On the basis of detailed
analysis of the fossil record of northwest Euro-
pean epicontinental seas, Hallam (1986, 1996)
regarded the extinction as a regional event, the
later phase of which coincided with widespread
anoxia in the early Toarcian (Fig. 1D). The recog-
nition of an oceanic anoxic event in the
Falciferum Zone (Jenkyns, 1988) provided an
extinction mechanism that could inflict losses on
marine biota by the spread of the oxygen-deficient
bottom waters. Little and Benton (1995) ana-
lyzed the time distribution of global family
extinctions and found that a protracted interval of
five zones spanning the Pliensbachian-Toarcian
stage boundary showed elevated extinction levels
(Fig. 1C). However, outcrop-scale studies of the
most fossiliferous sections in England and Ger-

many displayed a clear species extinction peak
correlating with the anoxic event in the Falciferum
Zone (Little, 1996). The global extent of the
Pliensbachian-Toarcian extinction event was
established through detailed studies in the Andean
basin (Aberhan and Fürsich, 1997) and deep-
water facies of the western Tethys (Vörös, 1993)
and Japan (Hori, 1993).

AGE OF KAROO AND FERRAR
IGNEOUS PROVINCES

The Karoo province in South Africa and the
Ferrar province in Antarctica are disjunct parts of
a once contiguous large igneous province of
Jurassic age in Gondwana. It ranks among the
most voluminous flood basalt provinces of the
Phanerozoic (Rampino and Stothers, 1988).
Early radiometric dating, relying on the K-Ar
method, was plagued with problems. A suite of
whole-rock ages for the Karoo Group is dis-
tributed between 135 and 225 Ma, with apparent
peaks of volcanic intensity at 193 ± 5 and 178 ±
5 Ma (Fitch and Miller, 1984). The K-Ar
chronometer often yields anomalously young or
old ages in disturbed systems, due to Ar loss or
uptake of excess Ar, respectively. The use of
40Ar-39Ar and U-Pb dating, however, permits
reliable determination of the true crystallization
age of mafic igneous rocks. For valid comparison
between dates recently obtained using different
isotopic methods, we recalculated the published
ages to reflect external errors (i.e., including
decay constant uncertainty) at the 2 σ level and
the currently accepted ages of standards for
40Ar-39Ar dating (Renne et al., 1998).1

Duncan et al. (1997) reported 28 precise
40Ar-39Ar plateau ages from Karoo Group basalts
and dolerites in South Africa and Namibia.
The ages range between 179 and 186 Ma, the
majority being at 183 ± 2 Ma (Fig. 1E). A U-Pb
age of 183.7 ± 1.9 Ma obtained by Encarnación
et al. (1996) from a tholeiitic sheet in South
Africa is in good agreement with the 40Ar-39Ar
results (Fig. 1E).

Various units within the Ferrar Group in
Antarctica have also been dated (Fig. 1F). From
the Kirkpatrick Basalt, Foland et al. (1993)
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reported two nearly identical incremental heating
40Ar-39Ar ages of 180.4 ± 2.1 Ma. Heimann et al.
(1994) reported 11 40Ar-39Ar plateau ages from
the Kirkpatrick Basalt that form a tight cluster
and permit a composite age determination of
180.3 ± 3.6 Ma. Basalts from the Kirwan Moun-
tains, East Antarctica, yielded 40Ar-39Ar plateau
ages of 180.6 ± 1.8, 182.7 ± 1.8, and 182.8 ±
1.8 Ma (Duncan et al., 1997). Concordant U-Pb
ages of 183.4 ± 1.9 and 183.8 ± 1.9 were obtained
by Encarnación et al. (1996) from sills within
the Ferrar Group. Minor and Mukasa (1997)
dated (U-Pb) two samples from the Dufek intru-
sion (which forms part of the Ferrar Group) as
183.9 ± 0.4 and 182.7 ± 0.5 Ma.

These radiometric ages suggest a short-lived
magmatic episode, represented by coeval rocks of
the Karoo and Ferrar Groups. Such brevity of vol-

canism is typical of most other large flood basalt
provinces of the world (Coffin and Eldholm,
1994). The cluster of ages around 183 ± 2 Ma is
interpreted as the peak of magmatic activity.
Additional support for a short-lived magmatic
episode is provided by paleomagnetic results.
Hargraves et al. (1997) demonstrated that the bulk
of basalts in the Karoo province erupted during a
single polarity epoch.

REVISED TIME SCALE FOR
PLIENSBACHIAN-TOARCIAN
TRANSITION WITHIN THE 
EARLY JURASSIC

The Early Jurassic part of the most widely
used time scales is poorly constrained. Previous
best estimates for the Pliensbachian-Toarcian
boundary are 187.0 ± 15 Ma (Harland et al.,

1990) and 189.6 ± 4.0 (Gradstein et al., 1994).
We constructed a revised Jurassic time scale, using
several recently obtained U-Pb ages from vol-
canic layers that are also dated by ammonoid
biochronology in the North American Cordillera,
and additional U-Pb dates compiled from recent
reports (Pálfy et al., 2000b). The density and
biochronologic resolution of the isotopic age
database across the Pliensbachian-Toarcian transi-
tion allows, for the first time, the estimation of
zonal boundary ages for six consecutive zones.
None of the 14 relevant isotopic ages listed in
Table 1 were used in earlier time scales. Zonal
boundary ages are calculated using the chrono-
gram method (Harland et al., 1990), except for
the base of the Crassicosta Zone, which is
directly dated in the Queen Charlotte Islands
(Pálfy et al., 1997). Ammonoid provinciality
warrants the use of the North American regional
ammonoid zonal scale (Fig. 1A), which is cor-
related with the northwest European standard
chronostratigraphy following Smith et al. (1988)
and Jakobs et al. (1994) (Fig. 1B). Calculated best
estimates for initial zonal boundaries are as follows
(Fig. 1A): Kunae Zone (early-late Pliensbachian
boundary), 185.7 +0.5/–0.6; Carlottense Zone,
184.1 +1.2/–1.6 Ma; Kanense Zone (Pliensbachian-
Toarcian boundary), 183.6 +1.7/–1.1 Ma; Planulata
Zone, 182.0 +3.3/–1.8 Ma; Crassicosta Zone,
181.4 ± 1.2 Ma.

TOARCIAN STABLE ISOTOPE
STRATIGRAPHY

Recognition of a prominent positive δ13C
excursion in the Falciferum Zone, along with
widespread organic-rich facies, is the basis for
defining an early Toarcian oceanic anoxic event
(Jenkyns, 1988). Originally the δ13C maximum
was thought to be restricted to the Falciferum
Zone, but in several Tethyan sections, the rise of
δ13C begins in the Tenuicostatum Zone (Jenkyns
et al., 1991; Jiménez et al., 1996; E. Morettini,
1999, personal commun.) (Fig. 1G). Organic-rich
black shale deposition is also known in the
Tenuicostatum Zone in Spain and Italy (Jiménez
et al., 1996; E. Morettini, 1999, personal
commun.), and manganese-rich deposits are
widespread in the Tenuicostatum to Falciferum
zones (Jenkyns et al., 1991). Jenkyns and Clayton
(1997) argued that such temporal differences
stemmed from correlation problems of the
ammonoid biochronology, but it is feasible that
environmental changes leading to the widespread
oceanic anoxia were gradually developing during
the first two chrons of the Toarcian.

A δ18O minimum in the Falciferum Zone
records a paleotemperature maximum for the
Toarcian (Jenkyns and Clayton, 1997). Those
authors considered that a correlation with in-
creased CO2 level is a strong possibility supported
by low levels of δ13C of organic matter. We note
that the CO2 in voluminous volcanic outgassing is
a possible cause of greenhouse warming.
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Figure 1. Correlation of marine extinction event, Karoo and Ferrar flood basalt volcanism, and
carbon and strontium isotope stratigraphy in numerically calibrated ammonoid zonal chrono-
stratigraphic framework.A:North American regional standard ammonoid zonation (Pliensbachian,
Smith et al., 1988;Toarcian, Jakobs et al., 1994); lack of horizontal line between zones indicates
that no numeric estimate is available for zone boundary. B: Northwest European standard
ammonoid zonation; shading indicates extent of organic-rich deposits in Tenuicostatum and
Falciferum zones in western Tethys and northwest Europe. C: Number of global family extinctions
by zone (Little and Benton, 1995). D: Cumulative species diversity per zone, expressed in number
of species of bivalves, ammonoids, rhynchonellid brachiopods, crinoids, foraminifera, and
ostracods from Britain (Hallam, 1996). E: Radiometric ages from Karoo Group (recalculated from
published sources with corrected standard ages for 40Ar-39Ar geochronology and 2 σ external
errors, unless indicated otherwise) for valid comparison (Renne et al., 1998); age spectrum histo-
gram of 28 40Ar-39Ar dates with 1 σ internal errors (Duncan et al., 1997) and error bar of U-Pb age
(Encarnación et al., 1996). F: 40Ar-39Ar and U-Pb (heavy lines) ages from Ferrar Group (recalculated
from published sources with corrected standard ages for 40Ar-39Ar geochronology and 2 σ
external errors for valid comparison (Renne et al., 1998). Error bars from left to right: i, composite
of 11 40Ar-39Ar ages by Heimann et al. (1994); ii, composite of two 40Ar-39Ar ages by Foland et al.
(1993); iii, three 40Ar-39Ar ages by Duncan et al. (1997); iv, two U-Pb ages by Encarnación et al.
(1996); and v, two U-Pb ages by Minor and Mukasa (1997). G: Carbon isotope profiles: horizontal
rule—composite profile from Central Apennines, Italy (E. Morettini, 1999, personal commun.);
vertical rule—Dorset, England (Jenkyns and Clayton, 1997); solid line—composite curve from
Tethyan sections (Jenkyns et al., 1991). H: Seawater 87Sr/86Sr curve simplified from Jones et al.
(1994); monotonous decline of curve starts in Hettangian from values >0.7077.



PLIENSBACHIAN-TOARCIAN
STRONTIUM ISOTOPE STRATIGRAPHY

Temporal variations in the 87Sr/86Sr ratio of the
Early Jurassic oceans were measured by Jones
et al. (1994) (Fig. 1H) and refined by McArthur
et al. (2000). Following a nearly continuous
decline from the Hettangian to the Pliensbachian,
the curve reaches a minimum at the Pliensbachian-
Toarcian boundary and rises in the Toarcian; the
steepest slope is recorded for the Falciferum
Zone. It is notable that the major Early Jurassic
inflection appears to coincide with the inception
of Karoo-Ferrar volcanism. The early Toarcian
rise can be related to increased humidity and conti-
nental weathering, possibly enhanced by acid rain,
under escalating greenhouse conditions triggered
by volcanic emissions.

DISCUSSION
Synchrony and possible causal links between

mass extinctions and continental flood basalts
have been postulated by several authors (e.g.,
Rampino and Stothers, 1988; Stothers, 1993;
Courtillot, 1994). However, evidence for precise
and reliable correlation was tenuous in many
cases. A proposed link between the South African
flood basalts and the Pliensbachian extinction
(Rampino and Stothers, 1988; Stothers, 1993)
was based on a fortuitous coincidence near
190 Ma of the anomalously old K-Ar ages and
the overestimate of the Pliensbachian-Toarcian
boundary age in older time scales. Duncan et al.
(1997) compared their 40Ar-39Ar dating results
with the time scale of Gradstein et al. (1994), and
suggested that the Karoo volcanism may have
contributed to the Toarcian-Aalenian faunal
turnover, although the latter does not correspond
to an extinction peak. Rampino and Stothers
(1988) and Stothers (1993) suggested that the
Antarctic flood basalts played a role in a pur-

ported Bajocian extinction, but this correlation
was based on anomalously young K-Ar ages.
Moreover, the Bajocian is not a time of signifi-
cant extinction (e.g., Benton, 1995).

The two major impediments to establishing
synchrony, namely inaccurate dating of mafic
igneous rocks and inadequate numeric time
scales, are being removed by improved isotopic
dating methods, chiefly the U-Pb and 40Ar-39Ar
techniques. Now there is a strong case for a tem-
poral relationship between three of the major
mass extinctions and magmatic activity associ-
ated with large igneous provinces. Eruption of
the Siberian Traps coincided with the end-Permian
mass extinction at 251 Ma (e.g., Renne et al.,
1995), a volcanic spasm of the Central Atlantic
Magmatic Province at 200 Ma (Marzoli et al.,
1999), and is coeval with the end-Triassic crisis
(Pálfy et al., 2000a), whereas the end-Cretaceous
mass extinction occurred at 65 Ma during
paroxysmal volcanism of the Deccan Traps
(Baksi and Farrar, 1991). As demonstrated here,
the synchrony of the Pliensbachian-Toarcian
extinction and volcanism of the Karoo-Ferrar
large igneous province is now well established at
184–182 Ma. Such temporal coincidence requires
consideration of a possible causal linkage.

The end-Pliensbachian reversal and Toarcian
increase of the Sr isotope ratio is suggested to
record the onset of Karoo-Ferrar volcanism.
A similar inflection occurs in the Late Permian,
although it appears to predate slightly the Siberian
Traps (Martin and Macdougall, 1995). The
formation of the Central Atlantic Magmatic
Province around the Triassic-Jurassic boundary
coincides with a downturn of the Sr curve. Model-
ing results suggest that continental flood basalt
volcanism could alter seawater chemistry via
enhanced weathering and increase of riverine
flux (Martin and Macdougall, 1995). We specu-

late that changes of opposite sense across the
Triassic-Jurassic boundary may reflect the equa-
torial latitude of the Central Atlantic Magmatic
Province (vs. the middle- to high-latitude Siberian
Traps and Karoo-Ferrar province), whereby
basalt weathering exerts greater influence on the
oceanic Sr budget and explains a shift toward less
radiogenic values (Taylor and Lasaga, 1999).

The sudden climate and other environmental
changes associated with the Karoo-Ferrar volcan-
ism could have triggered the end-Pliensbachian
extinction. The early Toarcian sea-level rise may
or may not be related to the mantle plume under
southern Gondwana and associated tectonic
processes, but it would have had significant envi-
ronmental impact. With intense volcanism sus-
tained for 1–2 m.y., further climate warming
occurred (as recorded in the δ18O curve). Oceano-
graphic changes induced by coupled effects of
warming, transgression, and increased nutrient
availability via more intensive weathering gener-
ated an oceanic anoxic event that started in the
Tenuicostatum Zone. Indication of increasing
productivity during the early Toarcian (Veto� et al.,
1997), clearly a factor in black shale formation,
raises the possibility of volcanically derived iron
fertilization of the world ocean (Coale et al.,
1996). Peak extinction of marine benthos,
observed at the species level in the Falciferum
Zone, coincided with maximum spread of anoxic
bottom waters. The pulse of flood basalt volcan-
ism likely waned by the time of the end of the
Bifrons Zone. Despite several parallels with the
end-Permian mass extinction (linked to flood
basalt eruption, climate warming, anoxia, and iso-
topic trends), the Pliensbachian-Toarcian extinc-
tion is clearly of much lesser magnitude. Besides
the smaller size of the Karoo-Ferrar igneous prov-
ince, its position at high southern latitude might
also explain its less severe effect on the biota.
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Future research should test the possible role of
Karoo-Ferrar volcanism in triggering environ-
mental change and concomitant mass extinction
by quantitatively modeling the scenarios outlined
herein, i.e., the possible effects of volcanic output
on the biogeochemical cycles, climate, and sea-
water Sr isotope evolution.
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