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Abstract. Consider the divisor sum
∑

n≤N τ(n2 +2bn+ c) for integers b
and c which satisfy certain extra conditions. For this average sum we ob-
tain an explicit upper bound, which is close to the optimal. As an appli-
cation we improve the maximal possible number of D(−1)-quadruples.
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1. Introduction

Let τ(n) denote the number of positive divisors of the integer n and
P (x) ∈ Z[x] be a polynomial. There is a lot of research on estimating average
sums of divisors

N∑
n=1

τ (P (n)) . (1.1)

One of the ground-laying results was obtained by Erdős [4], who showed that
for an irreducible polynomial P (x) ∈ Z[x] and for any N > 1, we have

N logN �P

N∑
n=1

τ(P (n))�P N logN,

where the dependence in the constants can be both on the degree and the
coefficients of the polynomial P (x). While for quadratic polynomials there
are asymptotic formulas for the sum (1.1) , e.g. in works of Hooley [7], McKee
[9], [10], and most recently in the paper of Dudek [5], the case degP (x) ≥ 3
is much harder, and no asymptotic formulas for (1.1) are known in this case.
A certain progress in this direction was made by Elsholtz and Tao in §7 of [3].
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For some applications one needs explicit upper bounds for sum of divi-
sors, rather than asymptotic formulas. Such explicit upper bounds for qua-
dratic polynomials are scarce in the literature, and not always close to the op-
timal, i.e. with a main term of the same order of magnitude as the main term
in the asymptotic formula. For example, for the polynomial P (n) = n2 + 1
one can apply the theorem of McKee [9] and obtain

N∑
n=1

τ(n2 + 1) =
3

π
N logN +O(N) ∼ 0.955 ·N logN . (1.2)

For this polynomial in Lemma 3.7 of [2] Elsholtz, Filipin and Fujita give the
explicit bound

N∑
n=1

τ(n2 + 1) < N
(
(logN)2 + 4 logN + 2

)
, (1.3)

which is clearly larger by a factor of logarithm from the expected growth.
This explicit upper bound was improved by Trudgian in [14], but still with a
main term of magnitude N(logN)2.

In this note we present an explicit upper bound for (1.1) for a family of
quadratic polynomials, which includes the polynomial P (n) = n2 + 1 as well.
Our bound will be of the right order of magnitude N logN , as predicted
by the asymptotic formulas. The reason for considering only polynomials
P (n) = an2 + bn + c with a = 1 and even integer b is the main role of
a certain Dirichlet convolution described in Lemma 2.1 below. Here is our
main result.

Theorem 1.1. Let f(n) = n2 + 2bn + c for integers b and c, such that the
discriminant δ := b2 − c is non-zero and square-free, and δ 6≡ 1 (mod 4).
Assume also that for n ≥ 1 the function f(n) is positive and non-decreasing.
Then for any integer N ≥ 1 there exist positive constants C1, C2 and C3,
such that

N∑
n=1

τ(n2 + 2bn+ c) < C1N logN + C2N + C3.

Let A be the least positive integer such that A ≥ max
(
|b|, |c|1/2

)
, let ξ =√

1 + 2|b|+ |c| and κ = g(4|δ|) for g(q) =
4

π2

√
q log q + 0.648

√
q. Then we

have

C1 =
12

π2
(logκ + 1) ,

C2 = 2

[
κ + (logκ + 1)

(
6

π2
log ξ + 1.166

)]
, (1.4)

C3 = 2κA .

The constant κ comes from an effective Pólya-Vinigradov inequality
for a real Dirichlet character. We introduce the quantities ξ = ξ(b, c) and
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A = A(b, c), such that always when n ≥ 1, we have
√
f(n) ≤ ξn and√

f(n) ≤ n+A.

When we know the precise form of the quadratic polynomial and the
corresponding character, we might achieve better upper bounds than the ones
provided in Theorem 1.1. This is the case for the polynomial f(n) = n2 + 1.

Theorem 1.2. For any integer N ≥ 1 we have

N∑
n=1

τ(n2 + 1) <
12

π2
N logN + 4.332 ·N.

We can give an application of Theorem 1.2. Define a D(n)−m-tuple for
a nonzero integer n and a positive integer m to be a set of m integers such
that the product of any two of them increased by n is a perfect square. In
the paper of Elsholtz, Filipin and Fujita [2] a crucial role for bounding from
above the possible number of D(−1)-quadruples plays the inequality (1.3).
Plugging the result of Theorem 1.2 in the proof of Theorem 1.3 [2] from the
paper of Elsholtz et al. we obtain

Theorem 1.3. There are not more than 4.7 · 1058 D(−1)-quadruples.

This improves the upper bounds 4 · 1070 from [1], 5 · 1060 from [2] and
3.01 · 1060 from [14] for the maximal possible number of D(−1)-quadruples,
whereas it is conjectured there are none. Note, however, that even if we could
supply constants closer to the ones in the asymptotic formula (1.2), we could
not achieve essentially useful upper bound for the maximal possible number
of D(−1)-quadruples without any new ideas. This is due to the method used
in the proof of Theorem 1.3 [2] and the central role of the variable N ∼ 1055.

2. Proof of Theorem 1.1

Since δ 6= 0, the polynomial f(n) is not a full square. It also represents posi-
tive non-decreasing function, therefore we can apply the Dirichlet hyperbola
method :∑
n≤N

τ(n2+2bn+c) =
∑
n≤N

∑
d|f(n)

1 = 2
∑
n≤N

∑
d≤
√
f(N)

d|f(n)

1 = 2
∑

d≤
√
f(N)

∑
n≤N

f(n)≡0(d)

1 .

Let

ρ(d) := #
{

0 ≤ m < d : m2 + 2bm+ c ≡ 0 (mod d)
}
. (2.1)

Then for the innermost sum we have∑
n≤N

f(n)≡0(d)

1 ≤
[
N

d

]
ρ(d) + ρ(d) ≤ N

d
ρ(d) + ρ(d) ,
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so we obtain ∑
n≤N

τ(f(n)) ≤ 2N
∑

d≤
√
f(N)

ρ(d)

d
+ 2

∑
d≤
√
f(N)

ρ(d) . (2.2)

We will bound the sums involving the function ρ(d). For this a crucial
role plays the presentation of ρ(d) as a Dirichlet convolution of two other well-
understood multiplicative functions. More precisely, consider the function
µ2(n), where µ is the Möbius function, i.e. this is the square-free characteristic
function. Also let χ(n) be the real Dirichlet character given by χ(1) = 1 and
for n ≥ 1

χ(n) =

{ (
δ
n

)
, if (n, 2δ) = 1;

0 , otherwise ,
(2.3)

where
(
δ
n

)
is the Jacobi symbol.

The following lemma can be considered on the one hand as a generaliza-
tion of an identity due to Hooley [6], which he shows only for b = 0. On the
other hand, we work on a simplified case, with certain limitations on the dis-
criminant δ. Interestingly, in [7] Hooley claims that with his methods he can
give an asymptotic formula for the divisor sum (1.1) for a general quadratic
polynomial P (n) = an2 + bn+ c. Our guess is that he had in mind a similar
Dirichlet series presentation as formula (8) in [7], but he never published this
argument for the more general case. So, albeit not unexpected, our Lemma
has not been published before.

Lemma 2.1. Let δ = b2 − c be square-free and δ 6≡ 1 (mod 4). Given the
definitions (2.1) and (2.3), we have the identity

ρ(d) =
∑
lm=d

µ2(l)χ(m) .

Proof. First we notice that ρ(1) = 1, ρ(2) = 1 and ρ(2k) = 0 for k ≥ 2.
Indeed, n2 + 2bn+ c = (n+ b)2 − b2 + c = (n+ b)2 − δ , so we have

ρ(d) = #
{
b ≤ x < d+ b : x2 ≡ δ (mod d)

}
.

When the integer δ is odd, the congruence x2 ≡ δ (mod 4) has a solution
only if δ ≡ 1 (mod 4), which is not true by our assumptions. If δ is even, we
do not have solutions of x2 ≡ δ (mod 4) because δ is square-free.
For primes p > 2 and (p, δ) = 1, we have ρ(p) = #

{
0 ≤ x < p : x2 ≡ δ (mod p)

}
, so ρ(pk) = 1+

(
δ
p

)
for k ≥ 1. If (p, δ) > 1, clearly ρ(p) = 1. If x is a solution

of x2 ≡ δ (mod p2), then p divides x, and δ ≡ 0 (mod p2), which contradicts
with δ being square-free. Therefore ρ(pk) = 0 if k ≥ 2.

For a multiplicative function λ(n) we denote the Dirichlet seriesDλ(s) :=∑∞
n=1 λ(n)/ns. By the Chinese Remainder Theorem ρ(d) is multiplicative,

but not completely multiplicative. Obviously by definition (2.1) ρ(d) ≤ d, so
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the Dirichlet series Dρ(s) is absolutely convergent for Re(s) > 2. Therefore
for Re(s) > 2 we can write

Dρ(s) =
∑
n≥1

ρ(n)

ns
=
∏
p

(
1 +

ρ(p)

ps
+
ρ(p2)

p2s
+ . . .

)

=

(
1 +

ρ(2)

2s

)∏
p>2

(
1 +

ρ(p)

ps
+
ρ(p2)

p2s
+ . . .

)
=
(
1 + 2−s

)∏
p>2
p|δ

(
1 + p−s

) ∏
p>2

(p,δ)=1

(
1 +

(
1 +

(
δ

p

))(
1

ps
+

1

p2s
+ . . .

))

=
(
1 + 2−s

)∏
p>2
p|δ

(
1 + p−s

) ∏
p>2

( δp )=1

(
1 + 2

(
1

ps
+

1

p2s
+ . . .

))

=
(
1 + 2−s

)∏
p>2
p|δ

(
1 + p−s

) ∏
p>2

( δp )=1

(
−1 +

2

1− p−s

)

=
(
1 + 2−s

)∏
p>2
p|δ

(
1 + p−s

) ∏
p>2

( δp )=1

1 + p−s

1− p−s
.

Using definition (2.3) we can write∏
p>2

1 + p−s

1− χ(p)p−s
=
∏
p>2
p|δ

(
1 + p−s

) ∏
p>2

( δp )=1

1 + p−s

1− p−s
∏
p>2

( δp )=−1

1 + p−s

1 + p−s
.

The third product equals 1, so we get

Dρ(s) =
(
1 + 2−s

)∏
p>2

1 + p−s

1− χ(p)p−s
=
∏
p

(
1 + p−s

)∏
p

1

1− χ(p)p−s

= Dµ2(s)Dχ(s) .

Then the coefficients of the Dirichlet series satisfy the identity

ρ(d) =
∑
lm=d

µ2(l)χ(m) . �

For any positive integer N we denote

X(N) :=
∑

1≤n≤N

χ(n) . (2.4)

We will need an explicit upper bound for the character sum |X(N)|. There
are lots of works on such Pólya-Vinegradov inequalities, aiming to reduce the
upper bound, e.g. the papers of Qiu [12] and Pomerance [11]. It is a question
of taste which one to choose. We will apply the estimate of Qiu since its
minor terms are somewhat easier.
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Lemma 2.2. Let δ be square-free, δ 6≡ 1 (mod 4), and consider the Dirichlet
character χ defined in (2.3). For any N ≥ 1 we have∣∣∣∣∣

N∑
n=1

χ(n)

∣∣∣∣∣ < κ ,

where κ = g(4|δ|) and g(q) :=
4

π2

√
q log q + 0.648

√
q.

Proof. By the Theorem of Qiu [12] for a primitive Dirichlet character χ mod-
ulo q we have the inequality∣∣∣∣∣

N∑
n=1

χ(n)

∣∣∣∣∣ < 4

π2

√
q log q + 0.38

√
q + 0.608/

√
q + 0.116(N, q)2/q

3
2 .

Trivially (N, q)2 ≤ q2 and we can further bound from above the latter ex-
pression ∣∣∣∣∣

N∑
n=1

χ(n)

∣∣∣∣∣ < 4

π2

√
q log q + 0.496

√
q + 0.608/

√
q .

The expression on the right-hand side suggests to introduce the function

K(x) :=
8

π2
x log x+ 0.496x+ 0.608/x. By a simple calculation we can check

that for x ≥ 2 we have K(x) <
8

π2
x log x+ 0.648x. Then∣∣∣∣∣

N∑
n=1

χ(n)

∣∣∣∣∣ < K(
√
q) <

8

π2

√
q log(

√
q) + 0.648

√
q

=
4

π2

√
q log q + 0.648

√
q = g(q) . (2.5)

Now we return to our character χ defined in (2.3). We notice that we can
write

χ(n) =

(
4δ

n

)
,

where
(
.
.

)
is the Kronecker symbol. Since δ ≡ 2, 3 (mod 4) is square-free,

4δ is a fundamental discriminant. Therefore χ(n) is a primitive character of
conductor q = 4|δ|. Since

√
q ≥ 2, we needed to find a convenient upper

bound for K(x) for x ≥ 2. Now the statement of the Lemma follows from
(2.5).

�

Let x ≥ 1 be a real number. Using Lemma 2.1 and Lemma 2.2 we get

∑
d≤x

ρ(d) =
∑
lm≤x

µ2(l)χ(m) =
∑
l≤x

µ2(l)
∑
m≤x/l

χ(m)

≤ κ
∑
l≤x

µ2(l) ≤ κx . (2.6)
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Now returning to (2.2) we see that we need to estimate the sums
∑
d≤x ρ(d)/d,

for which we use again Lemma 2.1:∑
d≤x

ρ(d)

d
=
∑
d≤x

∑
lm=d

µ2(l)χ(m)

lm
=
∑
l≤x

µ2(l)

l

∑
m≤x/l

χ(m)

m
. (2.7)

Consider the sum
∑
m≤x χ(m)/m for a positive real x ≥ 1. By Abel’s sum-

mation formula we have

Σ :=
∑
m≤x

χ(m)

m
=
X(x)

x
−
∫ x

1

X(u)

(
1

u

)′
du =

X(x)

x
+

∫ x

1

X(u)

u2
du . (2.8)

If x ≤ κ, the trivial bound
∣∣∣∑m≤x χ(m)

∣∣∣ ≤ x is better than the universal

bound provided by Lemma 2.2. Indeed, in that case from (2.8) we obtain

Σ ≤ x

x
+

∫ x

1

u

u2
du = 1 + log x ≤ 1 + logκ .

If x > κ, for (2.8) we can write

Σ ≤ κ
x

+

∫ κ

1

u

u2
du+

∫ x

κ

κ
u2
du

≤ κ
x

+ logκ + κ
∫ x

κ

du

u2
=

κ
x

+ logκ − κ
x

+ 1 = logκ + 1 .

We conclude that for any x ≥ 1∑
m≤x

χ(m)

m
≤ logκ + 1 (2.9)

and then (2.7) transforms into∑
d≤x

ρ(d)

d
≤ (logκ + 1)

∑
l≤x

µ2(l)

l
. (2.10)

For the last sum we apply an explicit upper bound due to Ramaré (Lemma
3.4 in [13]) :

Lemma 2.3. (Ramaré, [13]) Let x ≥ 1 be a real number. We have∑
n≤x

µ2(n)

n
≤ 6

π2
log x+ 1.166 .

Applying this lemma in (2.10) we get∑
d≤x

ρ(d)

d
< (logκ + 1)

(
6

π2
log x+ 1.166

)
. (2.11)

We plug the inequalities (2.6) and (2.11), with x =
√
f(N), into (2.2):∑

n≤N

τ(f(n)) ≤ 2N (logκ + 1)

(
6

π2
log
(√

f(N)
)

+ 1.166

)
+ 2κ

√
f(N) . (2.12)
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Now notice that f(n) = n2 + 2bn + c ≤ n2 + 2|b|n + |c| ≤ (1 + 2|b| + |c|)n2
for n ≥ 1. Then

√
f(N) ≤ ξN , where ξ = ξ(b, c) =

√
1 + 2|b|+ |c|. Thus

log
(√

f(N)
)
≤ log ξ + logN .

Let A be the least positive integer such that A ≥ max
(
|b|, |c|1/2

)
. An-

other way to bound from above
√
f(N) is by using f(n) = n2 + 2bn + c ≤

n2 + 2|b|n+ |c| ≤ n2 + 2An+A2 = (n+A)2. Then
√
f(N) ≤ N +A.

We apply these two bounds to transform further (2.12).∑
n≤N

τ(f(n)) ≤ 2N(logκ + 1)

(
6

π2
logN +

6

π2
log ξ + 1.166

)
+ 2κ(N +A) =

12

π2
(logκ + 1)N logN

+ 2

[
κ + (logκ + 1)

(
6

π2
log ξ + 1.166

)]
N + 2κA

= C1N logN + C2N + C3 ,

with the constants C1, C2, C3 defined in (1.4). This proves Theorem 1.1.

3. Proof of Theorem 1.2

If we apply Theorem 1.1 for the polynomial f(n) = n2 + 1, we obtain the
bound ∑

n≤N

τ(n2 + 1) < 2.291 ·N logN + 10.026 ·N + 4.84 .

We can do better if we notice that in (2.3) we actually deal with the odd
Dirichlet character modulo 4:

χ(n) =


1, if n ≡ 1 (mod 4);

−1, if n ≡ 3 (mod 4);

0, otherwise .

In this case the character sum X(N) defined in (2.4) can take only values 0 or
1, so we do not need to use Lemma 2.2. We can replace the expressions κ in
(2.6) and logκ + 1 in (2.11) simply by 1. Moreover, the summation in (2.2)

over d ≤
√
N2 + 1 is actually over d ≤ N . Therefore Theorem 1.2 follows

from plugging the estimates (2.6) and (2.11) into (2.2), with x = N , and 1
instead of κ and logκ + 1.

Remark 3.1. In the estimate (2.6) we used the trivial bound
∑
l≤N µ

2(l) ≤ N ,
but we can do slightly better for larger values of N . First we can use again
Lemma 3.4 (Ramaré, [13]) which says that for N ≥ 1000 the constant 1.166
from its statement can be substituted by 1.048. Another result of Ramaré
(Lemma 3.1, [13]) says that for N ≥ 1700 we have

∑
l≤N µ

2(l) ≤ 0.62 · N .
After a simple computer check for the cases 1000 ≤ N < 1700 we see that this
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holds also for any positive integer in this range. Therefore for any N ≥ 1000
we have slightly smaller upper bound:∑
n≤N

τ(n2 +1) ≤ 2N(
6

π2
logN +1.048)+ 2 ·0.62 ·N =

12

π2
N logN +3.336 ·N .

4. Some examples

Using McKee’s theorem from [9] we can compute numerically the constant
λ(δ) from the asymptotic formula∑

n≤N

τ(f(n)) ∼ λ(δ)N logN ,

where f(n) = n2 + 2bn+ c and δ = b2 − c < 0. Let (C1, C2, C3) be the triple
of constants from Theorem 1.1, such that∑

n≤N

τ(f(n)) < C1N logN + C2N + C3 .

With this notation for the polynomial f(n) = n2 + 1 we have λ(−1) ∼ 0.955
and (C1, C2, C3) ∼ (2.291, 10.026, 4.84), whereas Theorem 1.2 improves this
to (C1, C2, C3) ∼ (1.216, 4.332, 0). In general for large |δ| we have C1 ∼ log |δ|,
which is not too far from the coefficient in McKee’s formula. By the class num-
ber formula one can see that λ(δ) is close to the value of the corresponding
Dirichlet L-function at 1.

More examples of the explicit upper bounds for few more polynomials
are given in the following table.

f(n) δ λ(δ) (C1, C2, C3)

n2 + 1 −1 0.955 (1.216, 4.332, 0)

n2 + 10n+ 27 −2 1.351 (2.97, 19.6, 50.6)

n2 + 4n+ 10 −6 1.56 (3.96, 31.9, 75.9)

n2 + 52n+ 706 −30 1.395 (5.29, 84.4, 1531.1)

n2 + 10n− 26 51 − (5.71, 101.4, 480.5)

The (easy) code for the performed computations can be found in [8]. It
can be used to estimate explicitly the divisor sum over any other quadratic
polynomial f(n) which satisfies the conditions of Theorem 1.1.
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[4] P. Erdős, On the sum
∑x

k=1 d(f(k)), J. London Math. Soc. 27 (1952), 7–15

[5] A. Dudek, On the number of divisors of n2 − 1, Bull. Aust. Math. Soc. (2015),
available on CJO2015, doi:10.1017/S0004972715001136

[6] C. Hooley, On the representation of a number as the sum of a square and a
product, Math. Z. 69 (1958), 211–227

[7] C. Hooley, On the number of divisors of quadratic polynomials, Acta Math. 110
(1963), 97–114

[8] K. Lapkova, http://www.renyi.hu/∼lapkova/papers/explicit bound SAGE.txt

[9] J. McKee, On the average number of divisors of quadratic polynomials, Math.
Proc. Camb. Philos. Soc. 117 (1995), 389–392

[10] J. McKee, A note on the number of divisors of quadratic polynomials, Sieve
methods, exponential sums, and their applications in number theory (Cardiff,
1995), 275–281, London Math. Soc. Lecture Note Ser. 237, Cambridge Univ.
Press, Cambridge, 1997
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