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THE CLASS NUMBER ONE PROBLEM FOR THE REAL QUADRATIC

FIELDS Q

(

√

(an)2 + 4a
)

ANDRÁS BIRÓ AND KOSTADINKA LAPKOVA

Abstract. We solve unconditionally the class number one problem for the 2-parameter family of
real quadratic fields Q(

√

d) with square-free discriminant d = (an)2 + 4a for a and n – positive odd
integers.

1. Introduction

Let us consider the quadratic fields K = Q(
√
d) with class group Cl(d) and order of the class

group denoted by h(d). In this paper we determine all fields K = Q(
√
d) where d = (an)2 + 4a is

square-free and a and n are positive odd integers such that the class number h(d) is 1. It follows

from Siegel’s theorem that there are only finitely many such fields, but since Siegel’s theorem is

ineffective, it cannot provide the specific fields with class number one. For this sake we apply the

method developed by Biró in [B1] and we use the result of Lapkova [La].

We remark that the class number one problem that we consider was already suggested by Biró in

[B3] as a possible generalization of his works. The discriminants of the form d = (an)2+ka for ±k ∈
{1, 2, 4} are called Richaud-Degert type, so we consider here Richaud-Degert type discriminants with

k = 4. We expect that the same method will work for the other values of k as well.

The class number one problem for special cases of Richaud-Degert type was solved in [B1],[B2],

proving the Yokoi and Chowla Conjectures. The method was subsequently applied e.g in [BY1] and

[L], but in these papers the parameter a is fixed (a = 1). However, already a subset of positive

density of the discriminants of Richaud-Degert type with k = 4 are covered in [La].

Under the assumption of a Generalized Riemann Hypothesis there is a list of principal quadratic

fields of Richaud-Degert type, see [M], and one can check there that the largest number in that list

having the form d = (an)2 + 4a is 1253. Here, however, our main result is unconditional:

Theorem 1.1. If d = (an)2 + 4a is square-free for a and n odd positive integers and d > 1253,

then h(d) > 1.
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2 A. BIRÓ AND K. LAPKOVA

2. Notations and structure of the paper

If χ is a Dirichlet character, then L(s, χ) denotes the usual Dirichlet L-function. If d is a square-

free positive integer and d ≡ 1 (mod 4), we denote by χd the real primitive Dirichlet character with

conductor d, i.e. χd(m) =
(m

d

)

(Jacobi symbol).

OK denotes the ring of integers of the quadratic field K. The norm Na of an integral ideal a in

OK is the index [OK : a]. The Dedekind zeta function is defined as

(2.1) ζK(s) :=
∑

a

1

(Na)s

where the summation is over all integral ideals a in OK . It is well-known (see e.g. Theorems 4.3

and 3.11 of [W]) that

(2.2) ζK(s) = ζ(s)L(s, χd) .

Throughout the paper by (a, b) we denote the greatest common divisor of the integers a and b

and P+(a) denotes the largest prime factor of a. As usual µ(x) means the Möbius function.

If K is a real quadratic field, for β ∈ K we denote its algebraic conjugate by β. The element

β ∈ K is called totally positive, denoted by β ≫ 0, if β > 0 and β̄ > 0.

The structure of the paper is the following: in §3 we state the main result of [BG] on the evalu-

ation of a partial zeta function in a general real quadratic field K, then we apply it for our special

fields in §4, and we derive there our main tool, Lemma 4.3. We simplify some quantities appearing

in Lemma 4.3 in §5. We prove our main theorem in §6.

Computer calculations play an important role in the proof of the main theorem. These are SAGE

(entry [ST] from our bibliography) and C++ computations. The main number theoretic objects,

characters, algebraic numbers and ideals in certain cyclotomic fields, are introduced in SAGE. The

data obtained in SAGE we plug in programs (sieves) in C++ for speeding up the calculations, and

most of the time we return to SAGE to finish our sieving with much less cases to consider and hence

not bothering about the speed. The time for performing all possible computations was about 57

hours, on an old personal laptop under Windows XP, with an AMD 64x2 mobile processor at 1.6 GHz

speed, and 1 GB RAM. All files can be found at http://www.renyi.hu/∼biroand/code/(entry
[HT] from the References of this paper) and more information about the implementation of the code

is provided in the file READ ME.txt there.

3. Biró-Granville’s Theorem

In [BG] Biró and Granville give a finite formula for a partial zeta function at 0. They illustrate

its efficiency with successful solving of the class number one problem for some one parameter R-D
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discriminants where a = 1. Here we restate their main theorem.

Let K be a real quadratic field with discriminant d, let χ be a Dirichlet character of conductor q

and let I be an integral ideal of K. Define

ζI(s, χ) :=
∑

a

χ(Na)

(Na)s

where the summation is over all integral ideals a equivalent to I in the ideal class group Cl(d). For

a quadratic form f(x, y) ∈ Z[x, y] introduce the sum

(3.1) G(f, χ) :=
∑

1≤u,v≤q−1

χ (f(u, v))
u

q

v

q
.

According to the theory of cycles of reduced forms corresponding to a given ideal, see e.g. §53 in

[H], the ideal I of K has a Z-basis (ν1, ν2) for which ν1 ≫ 0 and α = ν2/ν1 satisfies 0 < α < 1.

Moreover, the regular continued fraction expansion of α is purely periodic:

α = [0, a1, . . . , aℓ]

for some positive ℓ (which is the least period) and a1, . . . , aℓ. Here aj+ℓ = aj for every j ≥ 1. Further

for n ≥ 1 denote
pn
qn

= [0, a1, . . . , an]

and write αn := pn − qnα with α−1 = 1 and α0 = −α. Define also for j = 1, 2, . . .

Qj(x, y) =
1

NI
(ν1αj−1x+ ν1αjy)

(

ν1αj−1x+ ν1αjy
)

and

fj(x, y) = (−1)jQj(x, y).

It is known that every fj has integer coefficients. Using the usual notation

τ(χ) :=
∑

a(q)

χ(a)e

(

a

q

)

for the Gauss sum, introduce the expression

(3.2) βχ :=
1

π2
χ(−1)τ(χ)2L(2, χ2).

Also recall that a character χ is called odd if χ(−1) = −1.

In [BG] the following main result is proven

Theorem 3.1 (Biró, Granville [BG]). Suppose that χ is an odd primitive character with conductor

q > 1 and (q, 2d) = 1. With the notations as above we have

1

2
ζI(0, χ) =

ℓ
∑

j=1

G(fj, χ) +
1

2
χ(d)

(

d

q

)

βχ

ℓ
∑

j=1

ajχ (fj(1, 0)) .
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4. Application of Theorem 3.1 for Our Special Discriminant

Let d = (an)2 + 4a be square-free with odd positive integers a and n and assume that a > 1.

We use that d ≡ 1 (mod 4), so the ring of integers OK of the field K = Q(
√
d) is of the type

OK = Z

[

1, (
√
d+ 1)/2

]

. Introduce

α =

√
d− an

2
.

We have 0 < α < 1 and we take the ideal I = Z[1, α]. Clearly I = OK and we apply Theorem 3.1

to compute the partial zeta function for the class of principal ideals.

However to apply the upper formula for the function ζI we need the continued fraction expansion

of α. It can be checked by some computations, e.g. using [S] and the rules on page 78 from [B], that

(4.1) α = [0, n, an ].

Using the notation from §3 we have ℓ = 2, since we consider a > 1, and

(4.2)
1

2
ζI(0, χ) =

2
∑

j=1

G(fj , χ) +
1

2
χ(d)

(

d

q

)

βχ

2
∑

j=1

ajχ(fj(1, 0)).

Here p1/q1 = [0;n] = 1/n, p2/q2 = 1/(n + 1/an) = an/(an2 + 1) and α1 = 1 − nα, α2 =

an− (an2 + 1)α.

By the choice of the ideal I = OK we have that NI = 1 and ν1 = 1 and so

(4.3) Qj(x, y) = αj−1αj−1x
2 + (αj−1αj + αjαj−1)xy + αjαjy

2 .

Observe that α is the positive root of the equation x2 + (an)x− a = 0. Then α + ᾱ = −an and

αᾱ = −a. We use these to compute

Q1(x, y) = α0ᾱ0x
2 + (α0ᾱ1 + α1ᾱ0)xy + α1ᾱ1y

2

= αᾱx2 + (−α(1− nᾱ)− ᾱ(1− nα))xy + (1− nα)(1 − nᾱ)y2

= −ax2 − anxy + y2.

Similarly

Q2(x, y) = α1ᾱ1x
2 + (α1ᾱ2 + α2ᾱ1)xy + α2ᾱ2y

2

= (1− nα)(1− nᾱ)x2

+
{

(1− nα)
(

an− (an2 + 1)ᾱ
)

+ (1 − nᾱ)
(

an− (an2 + 1)α
)}

xy

+
(

an− (an2 + 1)α
) (

an− (an2 + 1)ᾱ
)

y2

= x2 + anxy − ay2.

So

(4.4) f1(x, y) = ax2 + anxy − y2
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and

(4.5) f2(x, y) = x2 + anxy − ay2 .

We see that f1(1, 0) = a and f2(1, 0) = 1. Introduce

(4.6) ca := a+ χ(a) .

When we substitute in (4.2) we get

(4.7)
1

2
ζI(0, χ) = G(f1, χ) +G(f2, χ) +

n

2
χ(d)

(

d

q

)

βχca .

Now assume that we are in a field K where h(d) = 1. Then all integral ideals are principal. So

(4.8) ζI(s, χ) =
∑

a⊳OK

χ(Na)

(Na)s
=: ζK(s, χ) .

It follows easily from (2.2) that

(4.9) ζK(s, χ) = L(s, χ)L(s, χχd) .

Recall (see e.g. Theorem 4.2 of [W]) the following equation for an odd primitive character χ:

(4.10) L(0, χ) = −
∑

1≤a≤q

χ(a)
a

q
.

Let us further denote

(4.11) mχ :=
∑

1≤a<q

aχ(a) = −qL(0, χ) .

Then from (4.8) and (4.9) we have

qζI(0, χ) = qL(0, χ)L(0, χχd) = −mχL(0, χχd) .

Combining the latter equality with (4.7) we get

(4.12) − 1

2
mχL(0, χχd) = q

(

G(f1, χ) +G(f2, χ) +
n

2
χ(d)

(

d

q

)

βχca)

)

.

Introduce the notation

(4.13) Cχ(a, n) := q

(

G(f1, χ) +G(f2, χ)

)

.

Then (4.12) transforms into

Lemma 4.1. With the upper notations, if h(d) = 1, we have

−mχL(0, χχd) = 2Cχ(a, n) + nqχ(d)

(

d

q

)

βχca .

Let Lχ be the field formed by adjoining to Q all the values of the character χ and OLχ
be its ring

of integers. Note that d ≡ 1 (mod 4), so

(−1

d

)

= (−1)(d−1)/2 = 1 and χd is an even character.

Then we can state

Claim 4.2. For the odd character χ with conductor q and d ≡ 1 (mod 4) such that (q, d) = 1 the

quantity L(0, χχd) is an algebraic integer in the number field Lχ.
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This can be shown in the same way as the corresponding statement above Fact A of [B1], using

formula (4.10) for the odd primitive character χχd and the fact that q and d are coprime.

Take a prime ideal R in OLχ
such that mχ ∈ R. By Claim 4.2 we have L(0, χχd) ∈ OLχ

so

−mχL(0, χχd) ≡ 0 (mod R). Then by Lemma 4.1 we get the main result of this section:

Lemma 4.3. Let d = (an)2 + 4a be square-free with odd positive integers a and n and assume

that a > 1 and h(d) = 1. Suppose that χ is an odd primitive character with conductor q > 1 and

(q, 2d) = 1. Take a prime ideal R in OLχ
such that mχ ∈ R. Then we have

(4.14) 0 ≡ 2Cχ(a, n) + nχ(d)

(

d

q

)

qβχca (mod R) .

with the notations (3.1), (4.4), (4.5), (4.13), (3.2), (4.6).

5. Further Remarks on Lemma 4.3

First we find a more simple finite form for βχ. Let

(5.1) γχ :=

q−1
∑

n=1

χ2(n)
n2

q2

and consider the Jacobi sum

Jχ :=
∑

a,b (mod q)
a+b≡1 (mod q)

χ(a)χ(b) .

The following claim shows that βχ is actually not only an algebraic number but also computable

in finitely many steps which is not at all evident from definition (3.2). The claim is stated in the

Introduction of [BG] and it is proven in §6 of that paper.

Lemma 5.1. Let χ be a primitive character of order greater than 2. For the unique way to write

χ = χ+χ− where χ+, χ− are primitive characters of coprime conductors q+, q− respectively, such

that χ− has order 2, and χ2
+ is also primitive, we have

βχ = χ+(−1)Jχ+
γχµ(q−)

∏

p|q
−

p2χ2
+(p)− 1

pχ2
+(p)− 1

.

The following statement is proved in §9 of [BG]. As the exposition in [BG] is somewhat sketchy

we give here a detailed proof.

Lemma 5.2. For odd complex character χ with conductor q > 2 such that (q, 2d) = 1 we have

G(f1, χ) = G(f2, χ) .
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Proof. In (3.1) we change the summation by u → v , v → q − u. Then for the new variables again

1 ≤ v, q − u ≤ q − 1. Now

G(f1, χ) =
∑

1≤u,v≤q−1

χ(av2 + anv(q − u)− u2)
v

q

q − u

q

=
∑

1≤u,v≤q−1

χ(av2 − anvu− u2)
v

q

−u

q
+

∑

1≤u,v≤q−1

χ(av2 − anvu− u2)
v

q

=
∑

1≤u,v≤q−1

χ(−1)χ(−av2 + anvu+ u2)
v

q

−u

q
−

∑

1≤u,v≤q−1

χ(f2(u, v))
v

q

=
∑

1≤u,v≤q−1

χ(f2(u, v))
u

q

v

q
−

∑

1≤u,v≤q−1

χ(f2(u, v))
v

q
.

We use the notation

(5.2) g(χ, f, h) :=
∑

1≤m,n≤q−1

χ(f(m,n))h

(

n

q

)

for the quadratic form f(x, y) = Ax2 + Bxy + Cy2 with square-free discriminant ∆ = B2 − 4AC

and h(x) ∈ Z[x].

Therefore we have

G(f1, χ) = G(f2, χ)− g(χ, f2, t) .

We will prove that

(5.3) g(χ, f2, t) = 0 .

We will make it by showing that g(χ, f2, 1) = 0 and g(χ, f2, t− 1/2) = 0.

First notice that there is a δ with (δ, q) = 1 such that χ(δ) 6= 0, 1 and one can find r, s for which

δ ≡ r2 − ∆s2 (mod q). The argument that follows is for square-free q and the one for general q

follows easily. The existence of such r and s follows from the theory of norm residues modulo q in

Q(
√
∆) for (q,∆) = 1, see Theorem 138 and Lemma from §47 in [H]. Basically we use that the

group of norm residues modulo q is big, take element δ1 from it and then choose δ to be δ1 or 4δ1

depending on the residue of the discriminant of the field modulo 4. In this case r2 − ∆s2 is the

norm, or four times the norm, of an algebraic integer in Q(
√
∆).

Now if we choose M and N satisfying

(2AM +BN) +
√
∆N =

(

(2Am+Bn) +
√
∆n

)

(r +
√
∆s)

we get
(

(2AM +BN) +
√
∆N

)(

(2AM +BN)−
√
∆N

)

= 4Af(M,N) = 4Af(m,n)(r2 −∆s2) .
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¿From definition (4.5) the coefficient A of f2 equals 1, i.e. (A, q) = 1, so we get f2(M,N) ≡
f2(m,n)δ (mod q). One checks that

(

M
N

)

=

(

r −Bs −2Cs
2As r +Bs

)(

m
n

)

with determinant of the upper matrix, denoted by T, equal to r2 −∆s2 6= 0. Since T is invertible

and m and n are linear forms of M and N , if some of the latter do not take each residue modulo q

exactly q times, then some of the residues m or n will not either. Therefore when 0 ≤ m,n ≤ q − 1

also 0 ≤ M,N (mod q) ≤ q − 1. Notice as well that

g(χ, f, 1) =
∑

0≤m,n≤q−1

χ(f(m,n))

because χ is not a real character and
∑

0≤m≤q−1

χ(Am2) =
∑

0≤n≤q−1

χ(Cn2) = 0 .

That is why we can substitute m and n with M and N in the sum g(χ, f2, 1). We get g(χ, f2, 1) =

χ(δ)g(χ, f2, 1). Hence

(5.4) g(χ, f2, 1) =
∑

1≤m,n≤q−1

χ(f(m,n)) = 0 .

Further, consider the Bernoulli polynomial B1(x) := x − 1

2
. We notice that B1(1 − x) =

1

2
− x =

−B1(x). Therefore χ(f(m,n))B1

(

n

q

)

= −χ (f(q −m, q − n))B1

(

q − n

q

)

and

g(χ, f,B1) =
∑

1≤m,n≤q−1

χ(f(m,n))B1(
n

q
) = −

∑

1≤m,n≤q−1

χ(f(q −m, q − n))B1(
q − n

q
)

= −g(χ, f,B1) .

We got that g(χ, f,B1) = 0. This and (5.4) yield (5.3) and therefore we complete the proof. �

Further we state

Lemma 5.3. For any odd character χ with conductor q > 2 we have

Cχ(a, q − n) = −Cχ(a, n) .

Proof. To show this we substitute n → q − n in the definition of G(f1, χ):

G(f1, χ)q−n =
∑

1≤x,y≤q−1

χ(ax2 + a(q − n)xy − y2)
x

q

y

q

=
∑

1≤x,y≤q−1

χ(ax2 − anxy − y2)
x

q

y

q

=
∑

1≤x,y≤q−1

χ(−1)χ(−ax2 + anxy + y2)
x

q

y

q

= −G(f2, χ)n .
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Thus we have that

1

q
Cχ(a, q − n) = G(f1, χ)q−n +G(f2, χ)q−n = −G(f2, χ)n −G(f1, χ)n = −1

q
Cχ(a, n) .

�

As an immediate corollary we also get

Lemma 5.4. For any odd character χ with conductor q > 2 and for any integer a we have

Cχ(a, 0) = 0 .

Indeed, Cχ(a, 0) = Cχ(a, q− 0) = −Cχ(a, 0) and therefore the claim. This also means that under

the conditions of Lemma 5.2 for any n divisible by q we have Cχ(a, n) = 0 and therefore G(f1, χ) = 0

as well.

6. Proof of Theorem 1.1

Let d be as in Theorem 1.1. We assume in the sequel that a > 1, since the case a = 1 follows

from Yokoi’s conjecture proved in [B1].

Suppose now that χ is an odd primitive character modulo q > 1 and (q, 2d) = 1. Assume, in

addition, that χ is a complex character, i.e. χ2 6= 1.

In this case below we will use Lemma 4.3, Lemma 5.2 and Lemma 5.1. By (4.13) and (4.14) we

get

4q2





∏

p|q−

(

pχ2
+(p)− 1

)



G (f1, χ) +

+nχ(d)

(

d

q

)

caq
2Jχ+

γχµ(q−)χ+(−1)





∏

p|q−

(

p2χ2
+(p)− 1

)



 ≡ 0 (mod R) ,(6.1)

where the prime ideal R of Lχ lies above the rational prime r, we suppose mχ ∈ R and (r, q) = 1.

Then it is clear, using (3.1), the definition of f1 and ca in (4.4) and (4.6), that the truth of (6.1)

depends only on the residues of a and n modulo qr.

Let us now define a directed graph in a similar but slightly different way than in [B1]. Let us

denote by an arrow

q → r

that the following conditions are true: q > 1 is an odd integer, there is an odd primitive character

χ modulo q such that χ2 6= 1, and there is a prime ideal R of Lχ such that R lies above the odd

rational prime r, which satisfies (r, q) = 1 and mχ ∈ R. The latter condition can arise for example

for an odd character if r | h−q , where h−q is the relative class number of the cyclotomic field Q(ζq)
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for ζq = e (1/q) (Theorem 4.17 [W]).

We will use the following claim which was proved as Claim 5.1 of [La] as a generalization of Fact

B of [B1].

Claim 6.1. If h(d) = 1 for the square-free discriminant d = (an)2 + 4a, then a and an2 + 4 are

primes, and for any prime p 6= a such that 2 < p < an/2 we have
(

d

p

)

= −1 .

Also we recall the statement of Theorem 1.1 of [La].

Theorem 6.2. If d = (an)2+4a is square-free for odd positive integers a and n such that 43·181·353 |
n, then h(d) > 1.

Let q → r hold. Then by the considerations above and by Claim 6.1 we get that if h(d) = 1 for

the square-free discriminant d = (an)2 + 4a satisfying P+(qr) < an/2, and a is different from any

prime factor of qr, then

(6.2)

(

(an)2 + 4a

p

)

= −1

for every prime divisor p of qr, and (6.1) also holds. We see that (6.2), similarly to (6.1), depends

only on the residues of a and n modulo qr.

Lemma 6.3. If d = (an)2 + 4a is square-free for odd positive integers a and n with an > 2 · 127,

(6.3) a 6= 1, 3, 5, 7, 13, 17, 19, 37, 73, 127

and h(d) = 1, then we have

n ≡ 0 (mod 3 · 5 · 7 · 13 · 19 · 37) .

Proof. We apply the arrows

5× 19 → 13,

7× 19 → 13, 37, 73,

13× 19 → 3, 7, 73, 127,

3× 5× 19 → 37, 73,

7× 13 → 37,

3× 73 → 17,

3× 37 → 19,

5× 37 → 13,

3× 7× 13 → 19, 37,

7× 17 → 5,
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127 → 5, 13,

3× 127 → 37.

It is easy to check that the maximal prime factor of any q is at most 127 and the maximal value of

r is 127, so our conditions guarantee that P+(qr) < an/2, and a is different from any prime factor

of qr in every case. One can check by concrete computations (finding a suitable character and a

suitable prime ideal in every case) that these are indeed arrows.

Let P := 3 · 5 · 7 · 13 · 19 · 37, and let us denote by A the set of those arrows from the above list

where qr consists only of primes dividing P . Let us denote by B the set of those arrows from the

above list which are not in A, i.e. where qr is divisible by 17, 73 or 127.

In the first part of the proof we apply only the arrows from A. We fix the residue a0 of a and n0

of n modulo P , and then the residues of a and n modulo qr are determined for every arrow from A.

For every fixed pair 0 ≤ a0, n0 < P we check (6.1) and (6.2) for every such arrow. We find that for

most pairs (a0, n0) the implied conditions yield n0 = 0. In the second part of the proof it is enough

to deal with the exceptional (a0, n0) pairs, i.e with those pairs for which n0 > 0 and (6.1) and (6.2)

are true for this pair and for every arrow from A.

In the second part of the proof we increase the modulus to P · 17 · 73 · 127. We fix the residues A0

of a and N0 of n modulo P ·17 ·73 ·127, but we consider only such pairs 0 ≤ A0, N0 < P ·17 ·73 ·127
for which there is an exceptional pair (a0, n0) in the above sense such that A0 ≡ a0 (mod P ) and

N0 ≡ n0 (mod P ). For every such pair (A0, N0) and for every arrow from B we check (6.1) and

(6.2). This eventually leads only to cases N0 = 0, which implies n0 = 0. This proves the lemma.

We explained in this way the theoretical part of the proof, but the computer calculations are also

very important. To save space we do not present them here, but one can find them at the address

[HT].

�

In the sequel we will use such cases when q → r holds, h(d) = 1 for the square-free discriminant

d = (an)2 + 4a satisfying P+(qr) < an/2, a is different from any prime factor of qr (just as above),

and in addition, either r divides n, or q divides n. Note that in the first case we have that n ∈ R

(since R lies above r), so (6.1) reduces to

4q2





∏

p|q−

(

pχ2
+(p)− 1

)



G (f1, χ) ≡ 0 (mod R) ,(6.4)

so in this case (6.2) and (6.4) are valid.

If q divides n, from Lemma 5.4 we get G(f1, χ) = 0, so (6.1) transforms to

(6.5) nχ(d)

(

d

q

)

caq
2Jχ+

γχµ(q−)χ+(−1)





∏

p|q−

(

p2χ2
+(p)− 1

)



 ≡ 0 (mod R) .
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We remark that most of the factors in this congruence are easily checked to be nonzero modulo R

(this can be computed for any particular parameters q and r), so in practice the only remaining

condition will be

ca ≡ 0 (mod R) ,

but we will check (6.5) itself in every case.

The proofs of the next three lemmas are very similar to each other. They are also similar to the

proof of the previous lemma, but this time we will check (6.2) and (6.4), or (6.2) and (6.5).

Lemma 6.4. If d = (an)2 + 4a is square-free for odd positive integers a and n with an > 2 · 43,

(6.6) a 6= 1, 5, 7, 19, 37, 43 ,

n ≡ 0 (mod 5 · 7 · 19 · 37) and h(d) = 1, then we have

n ≡ 0 (mod 43) .

Proof. We apply the arrows

5× 43 → 7, 19, 37.

One can check again by concrete computations (finding a suitable character and a suitable prime

ideal in every case) that these are indeed arrows. By our considerations above we know that (6.2)

and (6.4) must be valid because for these three arrows r divides n.

We fix the residue a0 of a and n0 of n modulo P := 5 · 7 · 19 · 37 · 43 , but we consider only such

cases when n0 ≡ 0 (mod 5 ·7 ·19 ·37) . For every such fixed pair 0 ≤ a0, n0 < P for which n0 satisfies

the above congruence we check (6.2) and (6.4) for each arrows listed above. We find that if the pair

(a0, n0) is such that n0 > 0 is true, then either (6.2) or (6.4) will be false for at least one arrow. The

necessary computer calculations can be found at [HT]. The lemma is proved.

�

Lemma 6.5. If d = (an)2 + 4a is square-free for odd positive integers a and n with an > 2 · 181,

(6.7) a 6= 1, 3, 5, 13, 19, 37, 181 ,

n ≡ 0 (mod 3 · 5 · 13 · 19 · 37) and h(d) = 1, then we have

n ≡ 0 (mod 181) .

Proof. We apply the arrows

181 → 5, 37,

13× 19 → 181,

3× 5× 19 → 181.

One can check again by concrete computations (finding a suitable character and a suitable prime

ideal in every case) that these are indeed arrows.

We fix the residue a0 of a and n0 of n modulo P := 3 · 5 · 13 · 19 · 37 · 181 , but we consider only

such cases when n0 ≡ 0 (mod 3 · 5 · 13 · 19 · 37) . For every such fixed pair 0 ≤ a0, n0 < P for which
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n0 satisfies the above congruence we check (6.2) and (6.4) for the first two arrows 181 → 5, 37 (here

r divides n). For the remaining pairs with n0 > 0 we check (6.2) and (6.5) (q divides n). We find

that if the pair (a0, n0) is such that n0 > 0 is true, then either (6.2) or (6.5) will be false for at least

one arrow. The necessary computer calculations can be found at [HT]. The lemma is proved.

�

Lemma 6.6. If d = (an)2 + 4a is square-free for odd positive integers a and n with an > 2 · 353,

(6.8) a 6= 1, 3, 5, 13, 17, 353 ,

n ≡ 0 (mod 3 · 5 · 13 · 17) and h(d) = 1, then we have

n ≡ 0 (mod 353) .

Proof. We apply the arrows

3× 5× 17 → 353,

3× 5× 13× 17 → 353.

One can check again by concrete computations (finding a suitable character and a suitable prime

ideal in every case) that these are indeed arrows. By our considerations above we know that (6.2)

and (6.5) must be valid.

We fix the residue a0 of a and n0 of n modulo P := 3 · 5 · 13 · 17 · 353 , but we consider only such

cases when n0 ≡ 0 (mod 3 ·5 ·13 ·17) . For every such fixed pair 0 ≤ a0, n0 < P for which n0 satisfies

the above congruence we check (6.2) and (6.5) for each arrows listed above. We find that if the pair

(a0, n0) is such that n0 > 0 is true, then either (6.2) or (6.5) will be false for at least one arrow. The

necessary computer calculations can be found at [HT]. The lemma is proved.

�

We now prove the theorem assuming that an > 2 · 353 and

(6.9) a 6= 3, 5, 7, 13, 17, 19, 37, 43, 73, 127, 181, 353 .

Assume h(d) = 1, then an > 2 · 17 and a 6= 3, 5, 7, 13, 17 follows from above. Similarly like before

for fixed residues a0 of a and n0 of n modulo P := 3 · 5 · 7 · 13 · 17 we check the conditions (6.2) and

(6.4) for the arrows

7× 17 → 3, 5, 13,

13 × 17 → 5.

We find that if the pair (a0, n0) is such that n0 > 0 is true, then either (6.2) or (6.4) will be false

for at least one arrow. The necessary computer calculations can be found at the address [HT]. We

get in this way that 17 divides n.

Let us also apply Lemma 6.3. It follows that the conditions of Lemmas 6.4, 6.5 and 6.6 are

satisfied. Then applying these lemmas it follows that n ≡ 0 (mod 43 · 181 · 353) . This contradicts
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Theorem 6.2. Hence our theorem is proved assuming the above two conditions. Since the finitely

many cases an ≤ 2 · 353 are easily checked (the computations can be found at [HT]), it is enough to

prove the theorem if a equals one of the values

(6.10) 3, 5, 7, 13, 17, 19, 37, 43, 73, 127, 181, 353 .

This means that we almost finished the proof, since we reduced our original two-parameter problem

to finitely many one-parameter problems. To complete the proof we will prove the theorem for these

finitely many values of a.

For most of the exceptional cases we can apply exactly the same arrows as in [B1], for the case

of Yokoi’s Conjecture, i.e. for a = 1. Indeed, for

(6.11) a = 3, 13, 17, 19, 37, 43, 73, 127, 181, 353

we use the arrows

175 → 1861, 61,

61 → 1861,

61 → 41.

We fix the residue n0 of n modulo P := 41 · 61 · 175 · 1861 . For every fixed pair (a, n0), where a

is one of the values given in (6.11) and 0 ≤ n0 < P we check (6.1) and (6.2) for every arrow given

above. We find that for every such pair (a, n0) we get a contradiction for at least one arrow. This

proves the theorem for the values in (6.11) for the case 1861 < an/2. For smaller values of n we can

check the statement directly. The details of the computations can be found again at [HT].

It remains to consider the cases a = 5 and a = 7.

For a = 5 we use the arrows

61 → 1861,

61 → 41,

41 → 11.

We fix the residue n0 of n modulo P := 11 · 41 · 61 · 1861 . For a = 5 and for every fixed 0 ≤ n0 < P

we check (6.1) and (6.2) for every arrow given above. We find that for every such n0 we get a

contradiction for at least one arrow. This proves the theorem for a = 5 for the case 1861 < 5n/2.

For smaller values of n we can check the statement directly. The details of the computations can be

found at [HT].

For a = 7 we use the arrows

61 → 1861,

61 → 41,

41 → 11,

11, 19 → 61,

9 → 11,
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We fix the residue n0 of n modulo P := 9 · 11 · 19 · 41 · 61 · 1861 . For a = 7 and for every

fixed 0 ≤ n0 < P we check (6.1) and (6.2) for every arrow given above. We find that for every

such n0 we get a contradiction for at least one arrow. This proves the theorem for a = 7 for the

case 1861 < 7n/2. For smaller values of n we can check the statement directly. The details of the

computations can be found at [HT].

The theorem is proved.
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[B2] A. Biró, Chowla’s conjecture, Acta Arith. 107 (2003), no. 2, 179–194
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