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Abstract 

 

ZnO, Li doped and Li,Ni co-doped ZnO powders to be later used as transparent 

conductive oxide (TCO) thin film were prepared by heat treatment of gels obtained from 

alcoholic Zn(CH3COO)2∙2H2O, LiNO3∙nH2O and NiSO4∙6H2O solutions with (CH3CH2OH)3N as 

chelating agent. The properties of the powders and their thermal treatment were studied by 

thermogravimetric and termodifferential anlysis (TG/DTA), differential scanning calorimetry 

(DSC), evolved gas analysis coupled with mass spectroscopy (EGA-MS), Fourier transform 

infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy 

coupled with energy dispersive X-ray (SEM/ EDX). The as-prepared gels consisted of submicron 

platelet-like particles and contained zinc acetate dihydrate and hydrozincite in different amount 

and with different preferred orientations. During annealing the gels, zinc-acetate decomposed 

between 110-350 °C with the release of CH3COOH, acetone and CO2. The N content of the 

chelating agent was responsible for NH3 and NO evolution. The thermal behavior of the doped 
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gels was similar, but there were also differences in the mass losses, amount of released gases. 

Based on TG/DTA data, ZnO powders were obtained from the gels by annealing both at 275 and 

500 °C. After heating at 275 °C, the obtained powders consisted of spherical 1-2 micron grains 

of wurtzite. The inclusion of the dopants was successful according to EDX and cell parameter 

data. Thermal study of the powder annealed at 275 °C confirmed that they still contain some zinc 

acetate. In the case of the doped samples the mass loss was smaller, since the Li and Ni dopants 

catalized the composition of zinc acetate during the previous annealing at 275 °C. After 

annealing the gels at 500 °C, stable un-doped ZnO or doped ZnO particles were obtained. 

 

Keywords: ZnO, doping, gel, TCO, Li, Ni, p-type semiconductor 

 

1. Introduction 

 

Significant research efforts have been made in recent years in developing transparent 

doped and un-doped ZnO thin films, which are one of the strongest candidates in a variety of 

applications. Their main potential application is currently in transparent conductive oxide (TCO) 

coatings, window layers in solar cells, field emitters, ultraviolet laser emission, photodetectors, 

piezoelectricity, thermoelectric materials, bio-sensors, short wavelength light emitting diode and 

information technologies [1-3]. 

ZnO is a very promising material, due to its low toxicity, low cost and outstanding 

properties. It has wurtzite structure, it is an n-type direct wide band gap semiconductor (Eg =3.4 

eV) with large excitation binding energy of 60 meV at room temperature, high Seebeck 

coefficient [4]. Both its optical and electronic characteristics can be controlled by the presence of 

dopants, which are selected depending on the required properties and applications. The typical 

dopants that have been used to improve the n-type ZnO performance are the group III elements 

of the periodic table (B, Al, In, Ga). However, for most optoelectronic devices, it is also 

necessary to have ZnO with p-type conductivity. Growth of p-type ZnO is highly challenging. In 

principle, p-type conductivity can be realized in ZnO by doping either with group IA and IB 

elements [Li, Na, K, Ag, Cu] to replace Zn or by doping with group V elements [N, P, As, Sb] in 

the place of oxygen [5-8]. 
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Synthesis methods such as  metal-organic chemical vapour deposition, atomic layer 

deposition, sol–gel method, spray pyrolysis, sputtering and pulsed laser deposition have been 

reported to prepare un-doped and doped ZnO films as n-type and p-type semiconductors for 

application as TCO [9]. Among them, the sol-gel method provides several advantages, i.e. easy 

control of the final materials, the possibility of deposition on complex-shaped substrates, easy 

control of dopant concentration and structural homogeneity, low temperature of thermal 

treatment of films, as well as the low cost of the used chemicals and equipments [10.11]. 

Our previous studies [12,13] reported Sn and Al doped ZnO thin films obtained by sol-

gel method, which exhibited n-type semiconductor behavior, good optical transmittance and high 

conductivities. For most optoelectronic devices such as solid state light emitting diodes (LED) or 

lasers made of ZnO, it is necessary to have p-type ZnO. Obtaining p-type doping in ZnO has 

proved to be a very difficult task due to various reasons, such as deep acceptor level, low 

solubility of acceptor dopant and native donor defects like zinc interstitial (Zni) and oxygen 

vacancy (Vo). Recently, p-type Li doped ZnO and Li,Ni co-doped ZnO thin films on both glass 

and Si wafer substrates obtained by sol-gel route showing good transmittances (70-90%) from 

visible to near-IR range, and p-type semiconducting behaviour even after 4 months storage has 

been reported by our group [14]. The present work aims to investigate the thermal behaviour of 

the sol-gel precursors and formation of the intermediate compounds in order to establish a proper 

thermal treatment of p-type doped ZnO films. Understanding the decomposition of the 

precursors as well as the role of the dopants and native points defects (i.e. vacancies, interstitials, 

and antisites) is a key towards controlling the optical properties and conductivity of ZnO.  

Hence, ZnO, Li doped and Li,Ni co-doped ZnO powders were prepared by heat treatment 

of gels obtained from alcoholic Zn(CH3COO)2∙2H2O, LiNO3∙nH2O and NiSO4∙6H2O solutions 

with (CH3CH2OH)3N as chelating agent. The properties of the powders and their thermal 

treatment were studied by TG/DTA, DSC, EGA-MS, FTIR, XRD and SEM-EDX methods. 

 

2. Materials and methods 

 

The starting materials (all reagent grade) for preparing alcoholic solutions were zinc 

acetate dihydrate - Zn(CH3COO)2∙2H2O (Merck), lithium nitrate - LiNO3∙nH2O (Merck), nickel 
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(II) sulfate hexahydrate - NiSO4∙6H2O (Merck). Triethanolamine (CH3CH2OH)3N (BAKER 

ANALYZED) was used as chelating agent. Absolute ethanol (Merck) was used as solvent except 

to prepare the Ni solution, where methanol was used as solvent. The method of the alcoholic 

precursor solution preparation was presented previously [15]. The following precursor solutions  

have been obtained: 0.2 M of Zn
2+

 (SZ); 0.2 M of 99 % at. Zn
2+

 and 1 %  at. Li
+
 (SZL); 0.2 M of 

99 % at. Zn
2+

 with 0.05 % at. Li
+
 and 0.05 % at. Ni

2+
 (SZLN). By solvent evaporation in air at 

room temperature un-doped ZnO (ZAD), Li doped ZnO (ZAD-Li) and Li, Ni co-doped ZnO 

(ZAD-Li,Ni) gels were obtained from the solutions SZ, SZL and SZLN, respectively. Based on 

TG/DTA results, the as-prepared gels were thermally treated under isothermal conditions for one 

hour at 275 °C and 500 °C.  

The thermal evolution of the gels and powders were studied by TG/DTA and DSC with a Mettler 

Toledo TGA/SDTA 851
e 
equipment and a Mettler Toledo 823

e
 DSC instrument using 5 °C min

-1
 

heating rate. The evolved gas analytical measurements were studied by an STD 2960 

Simultaneous DTA/TGA (TA Instruments Inc.) thermal analyzer using a heating rate of 5 °C 

min
-1

 and Pt crucibles. The furnace was purged with air atmosphere (130 ml min
-1

). Evolved gas 

analytical (EGA) curves were recorded by a Thermostar GSD 200 (Balzers Instruments) 

quadrupole mass spectrometer (MS). A mass range between m/z = 1-64 was monitored through 

64 channels in Multiple Ion Detection Mode (MID) with a measuring time of 0.5 s channel
-1

. 

Further details of the TG/DTA-MS setup are described in other studies [15,16]. 

FT-IR spectra for gels and powders were recorded with a Nicolet 6700 apparatus in 400-

4000 cm
-1

 domain. The spectra were recorded in transmittance mode and the powders were 

imobilised in KBr pellets.  The sensitivity of measurements was of 4 cm
-1

. 

X-ray diffraction measurements were performed using a Rigaku Ultima IV difractometer 

in parallel beam geometry equipped with CuKα radiation (wavelength 1.5406 Å). The XRD 

patterns were collected in 2Θ range between 10 to 70 with a speed of 5º min
-1

 and a step size of 

0.02º. PDXL software from Rigaku, connected to ICDD database was used for phase 

identification and lattice parameters calculation. The lattice parameters were refined by whole-

powder pattern fitting method (WPPF) using the split pseudo-Voigt profile function and B-spline 

background model. The crystallite size was determined using Williamson-Hall method. 
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Sample morphology was characterized by scanning electron microscopy (SEM) using a high-

resolution microscope, FEI Quanta3 DFEG model, at an accelerating voltage of 5kV, in high 

vacuum mode with Everhart–Thornley secondary electron (SE) detector coupled with energy 

dispersive X-ray (EDX) analysis (standardless).  Samples preparation was minimal and consisted 

in immobilizing the material on a double-sided carbon tape, without coating. 

 

3. Results and disscusion 

 

3.1. Reagents used  

 

The reagents used for the sample preparation were characterized by TG/DTA from the 

point of view of their thermal stability. The mass losses and the corresponding thermal effects 

are summarized in Table 1. One may notice a rather good agreement between the calculated and 

experimental results obtained.  

Table 1 

In Figure 1 the XRD patterns of the starting reagents are shown. The diffraction lines 

were indexed according to JCPDS files: 00-033-1464 (Zn(CH3COO)2·2H2O), 00-047-

1811(NiSO4·6H2O), 01-080-0203 (LiNO3) and 00-024-0645 (LiNO3·3H2O).  

Fig. 1.  

In Figure 2 the FTIR spectra for the reagents used for the sample preparation are 

presented. The spectrum of the hydrate nickel sulfate shows two bands at 3440 cm
-1

 and 1640 

cm
-1

 for water; the bands at 1100 cm
-1 

and 672 cm
-1

 for SO4
2-

 groups and the bands at 788 cm
-1

 

and 475 cm
-1

 assigned to vibrations of Ni-O bonds. The spectrum of the hydrate lithium nitrate 

presents a broad band between 3600 and 3100 cm
-1

 and a peak at 1636 cm
-1

 assigned to water, 

while the bands at 1350 cm
-1 

and below 815 cm
-1

 to NO3
- 
groups. In the spectrum of the hydrated 

zinc acetate the following bands are identified: the bands between 3600 and 3200 cm
–1

 

associated with the stretching mode of water; the characteristic bands of asymmetric and 

symmetric stretchings of C=O bond in the acetate group at 1558 cm
-1

 and 1447 cm
-1

; two bands 

at 1020 cm
-1

 and 954 cm
-1 

assigned to asymmetric and symmetric stretchings of C-O bond in the 

acetate group and the characteristic bands of the Zn-O vibrations at 695 and 622 cm
-1

. 
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Fig. 2.  

 

3.2. As-prepared gel and powder samples 

 

Using the reagents and the experimental conditions presented above, gels were obtained 

successfully in the case of all three compositions studied. 

Fig. 3.  

Figure 3 shows the morphology of the ZAD-Li,Ni as-prepared gel. The largest portion of 

the gel is agglomerated, but some platelet-like particles were also noticed.  

Figure 4 shows the XRD patterns of the as-prepared samples. In the as prepared samples 

the phases revealed by XRD were mainly composed of hydrozincite (JCPDS 00-072-1100) and 

zinc acetate dihydrate (JCPDS 00-033-1464). The doping changed significantly the ratio of these 

phases in the gels. The main constituent of the ZnO gel was zinc acetate dihydrate with small 

amount of hydrozincite, while the ratio of the two phases was just the opposite in the case of the 

ZAD-Li and ZAD-Li,Ni gels. In additon, there was difference in the preferred orientation of the 

Li and Li,Ni co-doped samples.  

Fig. 4.  

 

In Figure 5 the FT-IR spectra of as-obtained ZAD, ZAD-Li and ZAD-Li,Ni gel samples 

are presented. The bands identified in the FT-IR spectra of as-prepared samples in the 3600-2500 

cm
-1

 region correspond to vibration of N-H, O-H and C-H bonds [17-20], which showed 

considerable differences between the samples. In the 1300-1581 cm
-1

 region two bands are 

assigned to symmetric and asymmetric stretching of C=O bond in the acetate group. In the 1010-

1145 cm
-1

 region the observed bands are explained as the symmetric and asymmetric stretching 

modes of C-O bond in the acetate group. Below 686 cm
-1

 the bands are due to Zn-O vibration 

[17-22]. In the spectra of the doped samples the intensity of the Zn-OH band at 623cm
-1

 

increased, and the bands at 502 and 420 cm
-1

 became more intense. 

Fig. 5.  

 

The thermal decomposition of zinc acetate dihydrate was investigated in detail previously 

[23-28]. It was found that the zinc acetate dihydrate decomposed in two steps, below 100 °C the 
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adsorbed water evolved, then between 150-300 °C the anhydrous zinc acetate decomposed, 

resulting in ZnO. During the decomposition CH3COOH, acetone and CO2 evolution was reported 

[26-28]. 

The zinc acetate dihydrate component of the samples decomposed, as it was expected 

(Fig. 6). The first step occured below 100 °C, as water evolved in an endothermic process 

causing a 2.28 % mass change. In the second step (110-350 °C) the anhydrous zinc acetate 

decomposed in an endothermic reaction (295 °C), above 300 °C there were exothermic peaks 

(302, 316 °C) due to the combustion of the organic components. From the zinc acetate, first 

CH3COOH evolved, then above 260 °C acetone and CO2 were released from the decomposition 

of the acetate ion [26-28]. The H2O evolution during this step could be explained by the burning 

of the organic contents of the zinc acetate and other components. The N content of the sample 

decomposed as-well in this step, resulting in NH3 and NO evolution. In the third step (370-490 

°C) the mass loss was 11,8 % accompanied by an exothermic reaction, and probably the other 

residual organic components decomposed and combusted, since during this step only H2O, CO2 

and NO evolved. 

Fig. 6.  

 

The thermal decompositions of the as-obtained ZAD, ZAD-Li and ZAD-Li,Ni gel 

samples show similar behaviour, but some differences were noticed (Fig. 7). 

The TG and MS curves showed, that the ZAD-Li,Ni sample contained the largest amount 

of water (10.71 %), and the ZAD-Li sample also contained more water (5.42 %), than the ZAD 

sample (2.38 %). The rate of decomposition was also somewhat different during the second 

decomposition step. The presence of doping agents may catalyzed the decomposition, since 

between 150-250 °C the doped samples (ZAD-Li, ZAD-Li,Ni) exhibited larger mass loss, than 

the un-doped sample (ZAD). In the case of the ZAD-Li,Ni sample the main mass loss occurred 

around 280 °C, with 20 °C lower, than in the case of the other two samples. For ZAD-Li and 

ZAD-Li,Ni samples NH3 and acetone evolved besides the gases, which were observed during the 

decomposition of the ZAD sample at this temperature range. Some of the evolved NH3 has 

combusted into NO. Also, during this decomposition step the amount of the evolved CH3COOH 

was greater in the case of the ZAD-Li and ZAD-Li,Ni samples. During the third step (370-490 
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°C), from the ZAD-Li sample a small amount of NH3 evolved, and most of the evolved NH3 

combusted into NO, while from the other two samples only a small amount of NO evolved. At 

the end of the measurement the mass of the doped samples was greater (ZAD-Li: 32.84 %, ZAD-

Li,Ni: 33.10 %), than the un-doped sample (28.60 %). 

Fig. 7.  

 

3.3. Samples annealed at 275 °C 

 

Based on the TG/DTA curves of the as-prepared samples, they were thermally treated at 

two different tempartures in order to establish the mechanism of their thermal decomposition. 

After thermal treatment at 275 
o
C all obtained powders presented gray color and spherical grains.  

In Figure 8 the SEM image and EDX spectrum (inset of Fig.8) of the ZAD-Li, Ni 

precursor powder thermally treated at 275 °C for 1 h is presented. According to SEM, spherical 

grains were obtained. EDX analysis revealed the presence of Ni used as co dopant. Li could not 

be observed, because EDX is not capable to detect it.  

Fig. 8.  

 

Figure 9 shows the XRD pattern of the ZAD-Li,Ni powder thermally treated at 275 °C. 

At this temperature a partially crystallised sample was obtained, in which  ZnO crystals with 

wurtzite (hexagonal) structure (according to JCPDS card 00-036-1451) formed, accompanied 

with a smaller portion of an amorphous phase. The amorphous phase was confirmed by the 

characteristic broad halo at around 2θ≈25° in the diffraction pattern. No preferential orientations 

and secondary diffraction peaks were observed.  

Fig. 9.  

In the FT-IR spectrum of the ZAD precursor, thermally treated at 275 °C the broad 

absorption band between 3060-3600 cm
-1

 is due to the presence of O-H stretching mode of the 

hydroxyl group as shown in Figure 10. The bands appearing at 2928 and 2872 cm
-1

 are 

characteristic to CH2 stretching mode. The acetate bands appear at 1589 cm
-1 

and 1400
 
cm

-1
 for 

C=O bonds and at 1114 cm
-1

 and 1022 cm
-1

 for C-O bonds. The translation vibrations of Zn-OH 

are observed at 674 and 621 cm
-1

 [18-20]. The absorption band around 444 cm
-1

 is due to Zn-O 
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vibration mode [20-22]. The FT-IR spectra of ZAD-Li and ZAD-Li,Ni samples, thermally 

treated at 257 
o
C, show similar behavior with undoped sample, as can be seen in the Figure 10.   

Fig. 10.  

The thermal decomposition of the un-doped ZnO precursor thermally treated at 275 °C 

(Fig. 11) showed that small amount of adsorbed water was released until 150 °C. The sample 

still contained some zinc acetate; thus, between 110-350 °C CH3COOH evolved, and some of the 

evolved CH3COOH decomposed into acetone and CO2. At this temperature range NH3 evolved 

as-well from the organic matrix of the sample. Some of the evolved gases combusted, resulting 

in H2O, CO2 and NO. Between 440-500 °C the organic matrix decomposed (NH3) and 

combusted (H2O, CO2, NO). At this temperature range no CH3COOH nor acetone evolution 

could be detected. The thermal decomposition of this sample was very similar to the untreated 

sample, the only difference was the greater mass % values after each step, since some of the zinc 

acetate already decomposed into ZnO due to the thermal treatment. 

Fig. 11.  

The thermal decompositions of the treated samples were very similar (Fig. 12). One of 

the differences was that the final mass of the doped samples was greater (ZAD-Li: 61.33 %, 

ZAD-Li,Ni: 64.82 %), than the mass of the un-doped sample (52.17 %). This behaviour could be 

explained by the fact that during the thermal treatment at 275 °C the doped samples decomposed 

in larger quantities into ZnO, since the Li and Ni doping may have catalyzed this reaction. The 

doping agents could also catalyzed the decomposition of CH3COOH, since in case of the ZAD-

Li and ZAD-Li,Ni samples only traces of CH3COOH could be detected, most of the CH3COOH 

being decomposed into acetone. 

Fig. 12.  

This study brings important information on the structure and morphology of the samples 

thermally treated at 275 °C.  This is very important to obtain films with p-type semiconductivity 

on the substrate that can not be thermally treated over 300 °C, as for example the Au substrate.  

 

3.4. Samples annealed at 500 °C 
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By thermal treartment at 500 
o
C white powders were obtained. The SEM image of the ZAD-Li, 

Ni powder is shown in Figure 13. The size of the particles decreased, compared to the powders 

obtained at 275 
o
C, and the grains were composed of smaller particles. EDX (inset of Fig. 13) 

clearly confirmed the presence of the dopant Ni, while Li was again theoretically not able to be 

detected by EDX. In our previous study [14] the  presence of  Ni in the composition of the Li,Ni 

co-doped ZnO thin film thermally treated at 500 °C, has been confirmed by XPS characterization 

and by XRF measurement on the Li,Ni co-doped ZnO powder, thermally treated at the same 

temeparture.  

 

Fig. 13.  

Figure 14 shows the XRD pattern of the ZAD-Li,Ni thermally treated at 500
o
C. The 

lattice parameters and the crystallite size of the ZAD-Li,Ni powders thermally treated at different 

temperature are listed in Table 2. It can be observed that lattice parameters are slightly smaller 

than those of pure ZnO. The change of lattice parameters could be attributed to the small 

incoproration of Li and Ni into ZnO network due to the difference between the ionic radius of 

the elements (rZn
2+

 = 0.74Ǻ, rLi
+
=0.60 Ǻ and  rNi

2+
 = 0.69Ǻ) [29,30].  

Fig. 14.  

Table 2 

In Figure 15 the FT-IR spectra of the samples thermally treated at 500ºC are presented. 

The bands in the low frequency region 429–485 cm
-1

 correspond to the lattice vibration mode of 

Zn-O [18-22] for doped and un-doped samples. The bands are shifted to lower wavenumbers in 

doped samples. Small bands at 1507 cm
-1

 and 1123 cm
-1

 are assigned of organic adsorbed 

species [18-22]. 

Fig. 15.  

The DTA/TGA curves as well as the corresponding EGA results for the ZAD-500, ZAD-

Li-500 and ZAD-Li,Ni-500 did not show any change upon annealing. This result underlyins the 

thermal stablity of the resulted powders. 

Based on the comparative results obtained at 275 °C and 500 °C, the complet thermal 

decomposition of the samples occured only after 500 °C. The behaviour is similar for the un-
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doped and Li and Li, Ni co-doped ZnO, underlying that the dopands do not change esentially the 

thermal behaviour of the studied samples. 

 

Conclusions 

 

In this study, un doped ZnO (ZAD), Li doped (ZAD-Li) and Li,Ni co-doped ZnO (ZAD-

Li,Ni) powders were prepared by heat treatment of gels obtained from alcoholic 

Zn(CH3COO)2∙2H2O, LiNO3∙nH2O and NiSO4∙6H2O solutions with (CH3CH2OH)3N as chelating 

agents. The properties of the powders and their thermal treatment were studied by TG/DTA, 

DSC, EGA-MS, FTIR, XRD and SEM-EDX.  

The as-prepared gels consisted of submicron platelet-like particles and contained zinc 

acetate dihydrate and hydrozincite in different amount and with different preferred orientations. 

During annealing the gels, zinc-acetate decomposed between 110-350 °C with the release of 

CH3COOH, acetone and CO2. The N content of the chelating agent was responsible for NH3 and 

NO evolution. The thermal behavior of the doped gels was similar, but there were also 

differences in the mass losses and amount of released gases.  

Based on TG/DTA data, ZnO powders were obtained from the gels by annealing both at 

275 and 500 °C, but at 275 °C the samples still contained some zinc acetate residues. After 

heating at 275 °C, the obtained powders consisted of spherical 1-2 micron grains of wurtzite. In 

the case of the doped samples the mass loss was smaller, since the Li and Ni dopants catalyzed 

the decomposition of zinc acetate during the previous annealing at 275 °C. After annealing the 

gels at 500 °C, stable un-doped or doped ZnO particles were obtained. The inclusion of the 

dopants was successful according to XRD and EDX results. 

Our results suggest that p-tye Li and Li,Ni co-doped ZnO can be prepared by annealing 

precursors gels already at 275 °C. This is convenient if heat sensitive substrates are covered by 

doped zinc based gels using dip coating, spin coating, etc; however, in this case the as-obtained 

doped ZnO TCO films will still contain some residual precursors. To completely remove them 

an annealing at 500 °C is needed. 
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Table 1. Thermal behavior of the starting reagents 

Reagents Thermal effects/ 

°C 

Tempe

rature 

range/ 

°C 

Mass loss/ % 

Exo Endo Exp. Calculated Products 

1 Zn(CH3COO)2∙

2H2O 

 

 

338 

351 

97 

254 

20-400 62.37 62.9 Z

ZnO 

2 LiNO3∙nH2O  

 

629 

252 

603 

20-630 80.19 78.33 L

Li2O 

3 NiSO4∙6H2O 

 

105 

151 

765 

 20-800 72.19 71.58 N

NiO 

 

Table 2. Lattice parameters and crystallite size of the Li, Ni co-doped ZnO powders 

Sample Lattice parameters/ Å c/a Crystallite 

size/ Å 

S Rwp 

a b c 

ZAD-Li-Ni- 275 °C 3.2478 3.2478 5.2098 1.6041 178 1.041 5.72 

ZAD-Li-Ni- 500 °C 3.2490 3.2490 5.2062 1.6024 185 1.063 7.43 

ZnO -JCPDS  

00-036-1451  
3.2498 3.2498 5.2066 

1.6021 - - - 

Where: S-the goodness of fit (between 1-1.5); Rwp- weighted difference between measured and calculated values (ideally should be around 10)
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Caption of figures 

Fig. 1. XRD patterns of the starting reagents 

Fig. 2. FTIR spectra of the starting reagents 

Fig. 3. SEM image of the ZAD-Li,Ni as-prepared sample 

Fig. 4. XRD patterns of the as-prepared samples 

Fig. 5. FT-IR spectra of as-prepared samples 

Fig. 6. TG/DTA and evolved gas analytical MS ion current curves in air of the ZAD sample 

Fig. 7. Comparison of the TG and evolved gas analytical MS ion current curves of the ZAD, 

ZAD-Li and ZAD-Li,Ni samples 

Fig. 8. SEM image and EDX analysis (inset graph) of the ZAD-Li,Ni sample thermally treated at 

275 °C  

Fig. 9. XRD pattern of the ZAD-Li,Ni sample thermally treated at 275 °C 

Fig. 10. FT-IR spectra of powders thermally treated at 275 ºC 

Fig. 11. TG/DTA and evolved gas analytical MS ion current curves in air of the ZAD sample 

thermally treated at 275 °C 

Fig. 12. Comparison of the TG and evolved gas analytical MS ion current curves of the ZAD, 

ZAD-Li and ZAD-Li,Ni samples thermally treated at 275 °C 

Fig. 13. SEM image and EDX analysis (inset graph) of the ZAD-Li,Ni sample thermally treated 

at 500°C for 1 h. 

Fig. 14. XRD pattern of the ZAD-Li,Ni sample thermally treated at 500 °C 

Fig. 15. FT-IR spectra of powders thermally treated at 500 ºC 
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