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Abstract. Macrozooplankton and microzooplankton effects on the phytoplankton were measured in
situ in a eutrophic lake. Indigenous phytoplankton were incubated for 5 days in 301 mesocosms with
either the macro- and microzooplankton (complete), microzooplankton only (micro) or no zooplank-
ton (none). Changes in phytoplankton biovolume were investigated. Rotifer densities became signifi-
cantly higher in the 'micro' treatment than in the 'complete' and 'none' treatments. Total algal
biovolume changed little in the 'complete' and 'none' treatments, but increased significantly in the
'micro' treatment. The results suggest that macrozooplankton (Daphnia magna) suppressed it and
microzooplankton (Keratella cochlearis) enhanced it. They had opposite net effects on the phyto-
plankton. Suppression of microzooplankton by Daphnia probably had an indirect negative effect on
the phytoplankton.

Introduction

Zooplankton affect phytoplankton directly by consuming cells and, indirectly, by
recycling nutrients. Direct effects were quantified by Havens (1993). Direct
effects also depend on zooplankton composition because the nature of food selec-
tion varies among herbivore taxa (Burns, 1968; Bogdan and Gilbert, 1984), as do
filtering rates (Bogdan etal., 1980; Havens, 1991). Nutrient recycling by zooplank-
ton can stimulate the growth of both grazed and ungrazed phytoplankton
(Lehman, 1980). As with direct effects, rates of nutrient recycling are dependent
upon the taxonomic composition of the plankton (Peters and Downing, 1984;
Hamilton and Taylor, 1987).

A common approach is to establish a gradient of zooplankton densities in in
situ enclosures, and determine phytoplankton growth rates during a short days
incubation. In different experiments, phytoplankton biomass has been depressed,
little affected, or enhanced by increased grazing (Lynch and Shapiro, 1981;
Schoenberg, 1990). Non-linear relationships between phytoplankton growth and
zooplankton biomass were found (Lehman and Sandgren, 1985; Bergquist and
Carpenter, 1986; Elser et al., 1987). Despite extensive research on zooplankton
effects, only a few studies (Henry, 1985; Havens, 1993) determined the relative
importance of microzooplankton (i.e. rotifers, nauplii, ciliates) and macrozoo-
plankton (cladocerans and copepodids) in regulating the phytoplankton. It is
known that both large and small zooplankton are important grazers (Bogdan and
Gilbert, 1982; Gulati et al., 1982; Lampert et al., 1986; Gliwicz, 1990b; Havens,
1991) and nutrient remineralizers (Henry, 1985). However, their respective net
effects on phytoplankton biomass quality have not been known.

Our main aim was to quantify the net effects of microzooplankton and macro-
zooplankton on phytoplankton biovolume in a temperate eutrophic oxbow. The
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approach was to measure phytoplankton responses to in situ incubations with
either the complete zooplankton, microzooplankton only, or a zooplankton-free
environment.

Method

The investigations were made at Aranyosi-Holt-Koros, Koros area, B6kes
county, SE Hungary (latitude 46°54'24.75", longitude 20°36'5.33"), a small (Ao =
10 ha, dmax = 4 m) eutrophic oxbow. Filamentous cyanobacteria (especially
Anabaena spiroides), cryptomonads (Rhodomonas minuta var. nannoplankton-
ica and Cryptomonas erosa) and colonial chlorophytes (Oocystis lacustris) domin-
ate the phytoplankton. The occurrence of >10 Dinophyta species was known
from this region of Hungary, Koros area (Grigorszky et al., 1997a,b, 1998), but in
this lake no Dinophyta species have been registered for 10 years. Ciliates and
other protozoans are usually highly abundant in eutrophic environments (Sherr
and Sherr, 1987; Beaver and Crismann, 1989). In spite of this fact, their biomass
was <0.05 ng I"1 and did not change significantly during the investigation period.
The dominant zooplankton were Daphnia magna and Keratella cochlearis.

The experiment was performed with a duration of 5 days. During the experi-
ment, the treatments were established in triplicates (nine enclosures in total). At
8 h on 22 June 1995, transparent plastic bags were filled by gently pouring 301 of
water column water using a plastic bucket. Replicates were either filled with unfil-
tered water (hereafter the 'complete' treatment), with water passed through a
180 yixa net (the 'micro' treatment) or with water passed through a 45 (xm net (the
'none' treatment).

The objective was to establish treatments containing either the complete plank-
ton, the phytoplankton and microzooplankton only, or the phytoplankton only.
Preliminary fractionations showed that the 180 (jum net removed 100% of clado-
cerans, copepod adults and copepodids from whole lake water, but allowed nearly
all rotifers and nauplii to pass. The 45 p.m net retained nearly all zooplankton and
did not significantly reduce the biovolume of phytoplankton (r-test, P > 0.05).

After filling the bags, initial phytoplankton samples (200 ml) were collected and
fixed with 5 ml of Lugol's solution. The bags were tightly closed with line, attached
to anchors, and suspended in groups of three at 1.5 m depth (mid-epilimnion) from
surface floats. The groups ('complete', 'micro', 'none'—see Table I) contained two
replicates from each treatment. After 5 days incubation, the bags were sampled.
This experimental duration was chosen for two reasons. First, it has been shown that
3-5 days are sufficient time for phytoplankton responses to zooplankton manipu-
lations to become established (Vanni and Temte, 1990). Second, it was a short
enough time period that extensive periphyton growth did not occur on the bag walls.

Phytoplankton were counted by the Utermohl (1958) technique. At least 400
cells were enumerated. For filaments and colonies, individual cells were counted.
Population densities (cells ml"1) were calculated from the counts and converted to
biovolume (p-m3 ml"1). This was done by measuring at least 30 cells of each taxon,
calculating cell volumes (u.m3 cell"1) by approximation of shapes to regular geomet-
ric solids, and then multiplying the population densities by average cell volumes.
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Zooplankton samples were concentrated to 25 ml using a small plastic cup with
a 45-u.m-mesh side window. Aliquots of at least 200 animals were counted. Crust-
acean body lengths were determined by measuring 25 individuals of each taxon.
Mean individual biomasses (|xg dry weight) were then determined using
length-weight relationships given in Culver et al. (1985). Population biomasses
(jig I"1) were determined for each crustacean taxon as density times mean indi-
vidual biomass. For K.cochlearis and Asplanchna sp., dimensions (length, width,
depth) of 25 individuals were measured. Biovolumes were calculated by approxi-
mating shapes to regular solids, fresh weights were calculated from the biovol-
umes assuming unit density, and dry weights were calculated as fresh weight X 0.1
(Pace and Orcutt, 1981).

Results

During our experiment, the lake and the complete treatment zooplankton were
numerically dominated by D.magna, nauplii and K.cochlearis (Table I). Daphnia
magna accounted for >95% of total biomass. In the micro treatment, the abun-
dances of all crustacean zooplankton were significantly lower than in the
complete treatment; however, the abundance of K.cochlearis was significantly
higher. In the none treatment, the abundance of all zooplankton, including
Kxochlearis, was significantly lower than in the other treatments. Total density
and biomass were 10 and 0.3%, respectively, of the complete treatment levels.
Mean individual biomass was 0.1 \x.g.

The phytoplankton biovolumes (Figure 1) were not significantly different in
the treatments on day 0, although there was a slight biovolume reduction in the
none treatment, where screening removed large A.spiroides filaments. This taxon
was abundant in the lake, and its filaments averaged 30 u.m (younger cells) and
65 Jim (adult cells) in length during the experiment. On day 5, biovolume had

Table I
(a) Densities (no. h1) of the

DM

Complete 42
Micro 2
None 0
Lake 43

zooplankton in the treatment and lake during the experiment

KC

64
66
7

67

NA

7
3
1
7

AS

3
1
0
2

Total

116
72
8

119

(b) Biomass (tig I"1) of the zooplankton in the treatment and lake during the experiment. Values are
the means of replicates in each treatment

DM

Complete 202
Micro 11
None 0
Lake 206

KC NA

4 2
5 1
0.3 0.3
5 2

AS

4
1
0
1.5

Total

212
18
0.6

214.5

Individual biomass

1.82
0.25
0.075
1.8

DM, Daphnia magna; NA, nauplii; KC, Keratella cochlearis; AS, Asplanchna sp.; Total, all species.
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increased in the complete treatment. A significant biovolume increase (187%) did
occur in the micro treatment (Figure 1). This was largely due to Aspiroides. In
the none treatment, total biovolume increased only slightly from day 0 to 5
(Figure 1).

Discussion

The succession among different species and size classis of zoo- and phytoplankton
has been suggested to be closely linked (Gliwicz and Siedlar, 1980; Lynch, 1980;
Lynch and Shapiro, 1981; Lampert, 1986; Sommer etal., 1986; Elser et al., 1988;
Gliwicz and Pijanowska, 1989; Sterner, 1989; Gliwicz, 1990a; Vanni and Temte,
1990; Hansson et al., 1998).

The microzooplankton and macrozooplankton of this eutrophic lake had
markedly different net effects on the phytoplankton. This finding is consistent
with the results from a previous experiment with a somewhat different design
(Bergquist et al., 1985). They exposed phytoplankton of Tuesday Lake (Michi-
gan) to either the indigenous small-bodied zooplankton (small copepods,
Bosmina and rotifers) or to large-bodied zooplankton (Daphnia pulex) taken
from nearby Peter Lake. The two zooplankton assemblages had opposite effects
on the phytoplankton. Small cells were suppressed by large zooplankton and
enhanced by small zooplankton. Conversely, large cells were enhanced by large
zooplankton and suppressed by small zooplankton. Although the experimental
designs are similar, the present study and that of Bergquist et al. (1985) addressed
different questions about algal-zooplankton interaction. Bogdan etal. (1980) and
Bergquist et al. (1985) quantified the effects of introduced small grazers, such as
rotifers, on phytoplankton normally affected by macrozooplankton.

We wanted to quantify phytoplankton regulation by two components of its
natural grazer assemblage. In the micro bags, where macrozooplankton were

LAKE COMPLETE MCRO NONE

TREATMENTS

| DO day • 5thday |

Fig. L The phytoplankton biovolumes at day 0 and the fifth day in the treatment and lake during the
experiments. Vertical bars are ± SE.
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removed by screening, K.cochlearis densities increased, suggesting net negative
impacts of macrozooplankton on this taxon. This suggests that the microzoo-
plankton increases in the micro treatment were due to D.magna removal. For
Kxochlearis, such a response is consistent with the findings of Gilbert and Stem-
berger (1985), who concluded that 'interference competition' was responsible for
the negative impact of Daphnia on Kxochlearis. They observed that rotifers
carried into Daphnia's branchial chamber were rejected by the postabdominal
claw and were often mortally wounded. These findings lend support to the view
that the increases in K.cochlearis observed in the micro treatment were a direct
result of D.magna removal.

Suppression of plankton by D.magna is also consistent with previous results.
Alteration in individuals of D.magna and Kxochlearis feed on bacteria and
picoalgae (Stenson, 1984; Beaver and Crismann, 1989) showed that even the
smallest metazoan herbivores can out-compete ciliates. Hamilton and Taylor
(1987) found that ciliates increased upon removal of crustaceans, and Pace and
Funke (1991) found that ciliates declined when Daphnia was introduced. In the
present experiment, D.magna was of a similar size, but occurred at a much greater
biomass (>320 u.g I"1).

Most interesting were the differential impacts of the two zooplankton groups
on the phytoplankton. Previous studies have shown that the zooplankton have
both grazing and nutrient-recycling effects on the phytoplankton (Lehman, 1980;
Elser et al., 1988; Gliwicz and Lampert, 1990).

The net effects at any given time depend upon the relative magnitude of the
positive and negative impacts, which are a function of both the phytoplankton and
zooplankton composition. During this study, the dominant phytoplankter,
A.spiroides, existed as short (30-65 |xm) filaments. While such filaments can be
grazed by Daphnia (Lynch, 1980), they are too large for consumption by Keratella.
Keratella consumes cryptomonads, chrysomonads, bacteria and a wide range of
detritus (Bogdan et al., 1980; Bogdan and Gilbert, 1984; Hansson et al., 1998), and
it has high efficiencies on small cells, Synechococcus sp., Chlamydomonas rein-
hardtii, Ankistrodesmus sp., Stephanodiscus sp. (Bogdan and Gilbert, 1987).

Our results suggest the following scenario during the experiments. Keratella,
being unable to graze the dominant filamentous cyanobacteria, had a net positive
impact on their growth. They may have served as 'nutrient pumps', consuming
small unicellular phytoplankton species and bacteria, and returning a portion of
previously unavailable nutrients to the water. Thereby, the microzooplankton
may have stimulated growth of the ungrazed cyanobacteria. Previous studies have
shown that microzooplankton rapidly recycle nutrients (Henry, 1985), and proto-
zoans have been shown to play the major role in summer planktonic phosphorus
cycling (Hamilton and Taylor, 1987).

In contrast to the microzooplankton, Daphnia likely grazed phytoplankton,
recycled nutrients, and inhibited the microzooplankton. Overall, Daphnia had a
detrimental impact on the cyanobacteria-dominated phytoplankton and Daphnia
may negatively affect phytoplankton by suppressing microzooplankton.
Although numerous cases of rotifer inhibition by Daphnia have been docu-
mented (Gilbert and Stemberger, 1985; Gilbert, 1988; Schneider, 1990), the
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present study demonstrates the impacts of that inhibition on the phytoplankton
community. Further research is needed to determine the changes with season and
trophic state.
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