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Abstract: Rock-dwelling land snails, feeding on algae and lichens that grow on stone 28 

surfaces, may influence the structure and function of these ecosystems. Yet, little is known 29 

about the life history of rock-dwelling snails. We performed a 30-month mark-release-30 

resight study in four populations of Chondrina clienta (Westerlund, 1883) inhabiting 31 

vertical walls of abandoned limestone quarries on the Baltic island of Öland, Sweden, to 32 

assess growth rate and survival of juvenile snails and determine age at maturity. We 33 

marked 800 individuals ranging in shell height from 1.4 to 4.9 mm, released them in their 34 

original habitat, and remeasured their shell height at intervals of 6 months. Shell growth of 35 

juvenile C. clienta was affected by the site (quarry wall) and the size of the individual, 36 

being highest in medium-sized snails. Shell growth occurred both during summer and 37 

winter. Annual apparent survival rates of C. clienta were size-dependent and ranged from 38 

58.6% to 96.3%. Sexual maturity was reached at an age of 5 years, which is later than in 39 

most large-sized snail species. Our study extends current knowledge on life history of land 40 

snails to a rarely studied group dwelling on rock surfaces. 41 

 42 
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Introduction 47 

 Growth is an important life-history process, influencing a range of later fitness-related 48 

traits such as age and size at maturity and total reproductive output (Stearns 1992; 49 

Charnov 2004; English et al. 2014). Growth of individuals can be variable in space and 50 

time, for example as a consequence of variation in food availability, temperature and 51 

precipitation, but also due to variation in genotype and phenotype among individuals. 52 

Individual growth rate varies also between seasons, years and populations (e.g. in snakes; 53 

Forsman 1993). Interindividual variation in growth is a primary determinant of the 54 

material on which natural selection acts. 55 

 Individual differences in growth rate have been observed in a wide range of species 56 

and occur even when animals are housed individually and fed ad libitum, suggesting that 57 

growth is an intrinsic individual attribute (Arendt 1997; Biro et al. 2014). As an intrinsic 58 

trait, individual growth rate is expected to be repeatable across years (i.e. individuals 59 

growing rapidly in the first year will also grow fast in the second year). Studies on 60 

individual growth have been biased towards large-sized species, whose individuals can 61 

easily be tagged and show a high recapture probability in natural populations. Thus, few 62 

empirical data are available on individual growth and other life-history traits in many 63 

small-sized animal species with a cryptic life. This is also true for terrestrial gastropods. In 64 

land snails, knowledge on individual growth, age at maturity and survival in the wild is 65 

limited to species with large shells, e.g. Cepaea nemoralis (L., 1758), Arianta arbustorum 66 

(L., 1758), Rhagada convicta Cox, 1870, and Helicella pappi (Schütt, 1962) (Williamson 67 

1976, Baur and Raboud 1988; Johnson and Black 1991; Lazaridou-Dimitriadou 1995), 68 

despite the fact that the majority of snail species have small shells (< 7 mm in shell height 69 

or breadth). This can be explained by the notorious difficulties to mark tiny individuals 70 

and to recover them in leaf litter or dense vegetation. To circumvent these problems, life-71 

history traits have been examined in snails kept in the laboratory or under semi-natural 72 

conditions (e.g. Oosterhoff 1977; Baur 1989; Sulikowska-Drozd and Maltz 2012). This 73 

approach provides reliable data on egg size and batch size, but less reliable estimates of 74 

individual growth rate, age at maturity, survival and longevity. For example, individuals 75 
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of A. arbustorum from an alpine population needed 186 days from hatching to complete 76 

shell growth and reach sexual maturity under laboratory conditions (Baur 1984), while 77 

individuals in the wild required 4-5 years (Baur and Raboud 1988). With a few 78 

exceptions, empirical data on the life history of small-sized land snail species in their 79 

natural habitat are not available (Heller 2001). 80 

 In the present study, we investigated growth rate, age at maturity and survival in 81 

individuals of the rock-dwelling land snail Chondrina clienta (Westerlund, 1883) in their 82 

natural habitat. Snails of this small sized-species spend their entire life on rocks, where 83 

they graze algae and lichens during periods of optimal temperature and sufficient moisture 84 

(Baur 1988; Baur et al. 1994). Attached with their shell opening to the rock surface, the 85 

snails rest during unfavorable conditions and manage to survive extreme fluctuations in 86 

temperature. The lack of vegetation on rock surfaces and the snails' limited dispersal 87 

capacity result in a relatively high recovery rate of marked individuals (Baur and Baur 88 

1995). We traced marked juveniles and periodically recorded their growth on four vertical 89 

limestone quarry walls on the Baltic island of Öland, Sweden. This approach allowed an 90 

assessment of size-specific, seasonal and annual growth rates and survival rates. Age at 91 

maturity was assessed by combining individual growth rates. In a second approach, age at 92 

maturity was quantified by analyzing the shell height frequency distribution of a 93 

population. 94 

 In particular, we addressed the following questions: (1) Do snails from the four rock 95 

walls differ in individual growth rate? (2) Do snails also grow during winter, and if so, do 96 

individual growth rates differ between summer and winter months? (3) Is the individual 97 

growth rate of juvenile C. clienta repeatable across years? (4) Does survival of juvenile C. 98 

clienta depend on individual snail size and differ between seasons? (5) How many years 99 

do newly hatched snails need to complete shell growth and achieve sexual maturity? 100 

 101 

Materials and methods 102 

The species 103 

 Chondrina clienta occurs in open limestone areas of Central and South-eastern Europe 104 
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and in three isolated areas of Sweden, namely on the Baltic islands of Öland and Gotland 105 

and in one small area on the mainland (Kerney and Cameron 1979; Waldén 1984; Baur 106 

1987). The snail has determinate growth. Its cylindro-conical shell is dextral and in adults 107 

is 5.5–7 mm high (Baur 1988). Sexual maturity is attained after the completion of shell 108 

growth, which is indicated by the building of a reflected lip around the shell aperture and 109 

six short folds (teeth) within the aperture. Chondrina clienta is ovoviviparous; the shell 110 

height of hatchlings is c. 0.8 mm. The animals are well adapted to rocky habitats; they are 111 

resistant to drought with activity confined to periods of high air humidity, and their 112 

specialized radula enable them to graze algae and epi- and endolithic lichens from rock 113 

faces (Schmid 1929; Breure and Gittenberger 1982; Fröberg et al. 1993; Baur et al. 2000). 114 

Among other lichen feeding snail species in calcicolous habitats on Öland, C. clienta is by 115 

far the most abundant species on both horizontal (i.e. limestone pavements, the snails' 116 

original habitat) and vertical (e.g. quarry walls) rock surfaces (Fröberg et al. 2011). In a 117 

controlled laboratory experiment, juvenile growth rate, time to complete growth, adult 118 

shell size and survival were affected by intraspecific competition (Baur and Baur 1990). 119 

At the study sites (see below), the land snail Helicigona lapicida (L., 1758) lives on 120 

adjacent piles of stone. On rainy days, individuals of H. lapicida have been observed to 121 

graze lichens on vertical quarry walls (Baur and Baur 2006). However, the quarry walls 122 

investigated may not differ in density of this potentially competiting species. 123 

 Dispersal of marked adult C. clienta averaged 96 cm yr-1 on vertical rock walls (Baur 124 

and Baur 1995). 125 

 126 

Study sites and general methods 127 

 To assess shell growth and survival of juvenile C. clienta we performed a 30-month 128 

mark-release-resight study from March 1992 to October 1994 at four sites in the Great 129 

Alvar in the southern part of the Baltic island of Öland, Sweden (56o33’N, 16o36’E). The 130 

area is a calcareous grassland grazed by sheep and cattle with several abandoned limestone 131 

quarries of small size (50–500 m2; supplementary Figs. S1–S3). The study sites were 132 

vertical quarry walls located within an area of 0.5 km2, 1.5 km SSW of Vickleby (for site 133 
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description see Table 1). The Great Alvar is a UNESCO World Heritage Site since 2000. 134 

Vegetation, climate and geomorphology of the Great Alvar have been described by 135 

Krahulec et al. (1986). 136 

 We searched the quarry walls systematically for juvenile C. clienta with a shell height 137 

<4.9 mm. To avoid the marking of empty shells, the snails were activated by keeping them 138 

in plastic boxes lined with moist paper toweling. We individually marked 200 juveniles 139 

from each site by writing tiny numbers (1–200) on their shells with a waterproof ink pen 140 

on a minute spot of correction fluid (Tipp-Ex). At the same time we measured the shell 141 

height of each individual to the nearest 1/12 mm (shell height: mean = 2.7 mm, range 1.4–142 

4.9 mm; n = 800). Very small individuals (shell height 0.8–1.3 mm) could not be 143 

individually marked. Marking and measuring were carried out using a binocular 144 

microscope with a stage micrometer. The animals showed no visible reaction to the 145 

marking and measuring procedure. We released marked C. clienta at their sites of origin 146 

within 1–2 days after sampling. To minimize overcrowding at the release point, which 147 

may result in increased dispersal, we released the snails in groups of 50 at four points 148 

(situated in line with a distance of 50 cm between release points) on each rock wall. All 149 

field sampling was done under dry conditions when the snails were at rest attached to the 150 

rock surface. 151 

 To determine shell growth and survival of C. clienta, we searched the entire rock wall 152 

at the four sites for marked snails after 6, 12, 18, 24 and 30 months. On each sampling, we 153 

measured the shell height of the recovered snails as described above. The resampled snails 154 

were released within 2 days at their site of origin following the procedure described above. 155 

Very few illegible marks were found. These snails were not considered in the data 156 

analyses. 157 

 Local population density of C. clienta at the four sites A–D was estimated by counting 158 

the number of juvenile and adult snails found on the vertical rock surface and in fissures 159 

within 3 min. searching time by one of us (B.B.). Density estimates were conducted 160 

exclusively under conditions of dry weather, when the snails are at rest (Baur and Baur 161 

1991), because this method reveals reliable density estimates for rock-dwelling land snails 162 
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(Armbruster et al. 2007). On each rock wall, density estimates were based on three 163 

replicate searches. 164 

 Analysing size distributions is the most frequently used approach to estimate growth 165 

rates and age at maturity in gastropods. We aimed to compare direct measurements of 166 

juvenile growth obtained from individually marked snails (see above) with indirect 167 

estimates obtained from a size distribution. We used a representative subset of a 168 

population of C. clienta to assess the time required to complete shell growth and thus to 169 

reach sexual maturity. We sampled all snails found within an area of 6 m2 on a rock wall 170 

located 50 m from sites A–D on 23 October 1990. The sampling area of 6 m2 171 

corresponded to the area of the rock walls at site B and C. Using a magnifying glass we 172 

could also find tiny individuals in small fissures. The shell height of each snail was 173 

measured as described above. 174 

 Data on temperature and precipitation were obtained from the Meteorological Station 175 

in Kalmar, 15 km NW of the study sites. The annual mean temperature in Kalmar is 7.5 
o
C 176 

(July mean: 17.5 
o
C; January mean: –0.9 

o
C) and the annual mean precipitation is 543 mm 177 

(mean values from 1978–2013; SMHI 2014). The mean temperature in the first 12 months 178 

of our study was 0.7 
o
C higher than the annual mean temperature, while the amount of 179 

precipitation was 21% less than the annual mean precipitation. The following 12 months 180 

were 0.3 
o
C colder than the annual mean temperature and the amount of precipitation 181 

exceeded the annual mean precipitation by 10%. 182 

 183 

Data analyses 184 

 Preliminary analysis showed that individual shell growth differs among snails of different 185 

size. We therefore assigned individuals of C. clienta to ten size classes for the analyses on 186 

size-dependent growth rate and survival. Size class 1 consisted of individuals with shell height 187 

≤ 2.0 mm, size class 2 of individuals with shell height 2.1–2.5 mm, size class 3 of individuals 188 

with shell height 2.6–3.0 mm, and so on. Size class 10 consisted of individuals with a shell 189 

height > 6 mm. 190 

 Individual shell growth was assessed in two ways. Absolute growth was expressed as shell 191 
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height increase of an individual between t0 and t1. The relative shell growth of an individual in 192 

percent was calculated as 100 x (ht1–  ht0)/ht0 where ht0 is the shell height of an individual at t0 193 

and ht1 its shell height at t1. Absolute and relative shell growth was determined over 6 months 194 

(growth during winter and summer, respectively) and over 1 year (annual growth). To quantify 195 

individual shell growth within a year, we only considered individuals belonging to the size 196 

classes 1 to 5 at the beginning of the experiment and which were recovered both after 12 and 197 

24 months. We fitted a linear model with the factors site and size class and the interaction of 198 

the two factors and selected the minimal adequate model explaining relative shell growth 199 

using the Akaike Information Criterion (AIC). Data were checked for homoscedasticity prior 200 

to the analyses. 201 

 To examine whether individual growth rate of juvenile C. clienta is repeatable between 202 

years, we calculated the Pearson correlation between the shell height increase in the first year 203 

and that in the second year for all individuals of a size class, using separate analyses for the 204 

size classes 1–5. Juveniles belonging to the size class 6 at the beginning of the study were not 205 

considered because they attained adult size in the second year. 206 

 We applied Cormark-Jolly-Seber (CJS) modeling with the effects time and size class to 207 

estimate survival from mark-release-resight data (Kéry and Schaub 2012). This analysis uses a 208 

Bayesian approach (Kéry 2010) and quantifies the recapture probability (probability of 209 

resighting a marked individual at time t that is alive in the sampling population at t) and the 210 

survival probability (probability that an individual that is alive and in the population at time t 211 

is still alive and in the population at time t+1; Kéry and Schaub 2012). An important 212 

biological issue is that only apparent survival can be estimated with CJS modeling; that is "1–213 

survival" represents both animals that died and animals that left the population or study area 214 

(emigration). In the first analysis, we examined the potential effect of the site on apparent 215 

survival, in the second analysis the effect of size class on apparent survival. For the survival 216 

analyses we used WINBUGS 14 (Lunn et al. 2000) and the package r2WinBUGS (Sturtz et al. 217 

2005) in the R environment (R Core Team 2013). 218 

 The frequency distribution of shell height represents a cross section of a population at a 219 

specific time. We fitted finite mixture distribution models to the data by using a maximum 220 



 

 

9 

likelihood method with a combination of Newton-type algorithms and the expectation-221 

maximization algorithms (Macdonald and Pitcher 1979; Macdonald and Green 1988). This 222 

approach allows estimates of size and age at maturity. The package mixdist (Macdonald and 223 

Du 2012) in the R environment (R Core Team 2013) was used for this analysis. 224 

 225 

Results 226 

Recovery of marked snails 227 

 The percentage of marked snails resighted decreased with time from 61.5 ± 2.1% (mean ± 228 

SE, n = 4 sites) after 6 months to 49.9 ± 2.7% after 12 months, 42.9 ± 3.6% after 18 months, 229 

31.9 ± 1.0 after 24 months, and 4.9 ± 1.0% after 30 months. Due to the steep decline in 230 

recovery rate between 24 and 30 months we considered only data obtained within 24 months 231 

for the growth and survival analyses. Considering snails belonging to different size classes, 232 

recovery rate of marked individuals was slightly higher in larger juveniles than in smaller ones 233 

after 6, 12 and 18 months (supplementary Table S1). After 24 months, the recovery rate of 234 

marked individuals was very similar in all size classes (supplementary Table S1). 235 

 236 

Shell growth 237 

 Individually-marked C. clienta differed considerably in shell growth (supplementary Fig. 238 

S4). In the first year, the relative shell growth was affected by the site (quarry wall) and the 239 

size class to which the individual belonged (Table 2). Snails at site C grew faster (mean 240 

relative shell increase = 48.2%) than individuals at site A (32.8%; linear model, estimate = 241 

0.512, s.e. = 0.122, t = 4.197, P < 0.001). The significant interaction between site and size class 242 

indicates that snails of different size classes showed different relative growth rates on the four 243 

rock walls in that year. In the second year, relative shell growth was again affected by the site 244 

and tended to be influenced by the size class (Table 2). Snails at site D showed the largest 245 

relative growth (mean relative shell increase = 69.0%), while snails at site B showed the 246 

smallest relative growth (mean = 47.7%). 247 

 Snails from the four sites may represent the variation in shell growth of C. clienta inhabiting 248 

limestone quarries. We therefore pooled data of snails from the four sites for further growth 249 
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analyses. Considering different size classes, annual shell increase showed a hump-shaped 250 

pattern (Fig. 1). It was highest in medium-sized individuals (shell height 2.5–4.5 mm) and 251 

relatively low in small and large (but not yet fully-grown) individuals. Relative shell growth 252 

showed a similar hump-shaped, size-dependent pattern (not shown). 253 

 The two measurements taken per year allow an assessment of shell growth during the 254 

summer and winter months. Interestingly, the growth rate of individually marked C. clienta did 255 

not differ between summer and winter, whatever the size classes (Fig. 2; paired t test, t = 0.926, 256 

df = 9, P = 0.379). 257 

 Comparing the shell height increase of individual snails in the first and second year revealed 258 

two different patterns (supplementary Fig. S5). The shell height increases of juvenile C. clienta 259 

belonging to the size classes 1 and 2 at the beginning of the study were not correlated between 260 

the two years. In contrast, the shell height increase in the first year was negatively correlated 261 

with that of the second year in snails belonging to the size classes 3–5, indicating a trade-off in 262 

shell growth (supplementary Fig. S5). Individuals growing rapidly in the first year were 263 

growing slowly in the second year and vice versa. 264 

 265 

Survival 266 

 The recapture probability varied with the size of the marked individuals. Recapture 267 

probability was highest in snails belonging to the size classes 2–6 (see methods) ranging from 268 

65.9% to 79.1%, but lower in the smallest snails (size class 1: 46.2%) and the largest ones (size 269 

class 7: 51.0%). Bayesian analysis revealed that apparent survival of C. clienta over 6 months 270 

followed a similar pattern at the four sites, ranging from 74.0% to 80.6% (supplementary Fig. 271 

S6). Considering the different seasons, apparent survival of juveniles was generally lower 272 

during winter (mean 76.9% and 73.2% after 6 and 18 months, respectively) than during 273 

summer (mean 86.9% and 83.1% after 12 and 24 months). Apparent survival over 6 months 274 

was higher at site A than at site B (range of creditable interval -0.666 –  -0.082), but did not 275 

differ among the other sites (supplementary Fig. S6). 276 

 Bayesian analysis revealed annual apparent survival rates of C. clienta individuals ranging 277 

from 58.6% to 96.3%. Annual apparent survival depended on the size of the individuals 278 
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(supplementary Fig. S7). The smallest snails (size class 1) had an annual apparent survival rate 279 

of 92.1% and 90.2% in the two consecutive years. In size class 2, annual apparent survival was 280 

64.8% and 58.6%. In snails belonging to the size classes 3–7, annual apparent survival 281 

increased with the size of the individuals, being highest in the largest snails (96.3% and 95.4% 282 

in the two successive years; supplementary Fig. S7). 283 

 284 

Age at sexual maturity 285 

 The time to complete shell growth and thus the age at sexual maturity can be deduced by 286 

combining data of marked individuals that were recovered on all occasions (Fig. 3). Snails of 287 

size class 1 (shell height > 2 mm) needed 1 year to reach the shell height of size class 2 (2.01–288 

2.50 mm). Snails of size class 2 reached either size class 3 (2.51–3.00 mm), size class 4 (3.01–289 

3.50 mm) or size class 5 (3.51–4.00 mm) within 1 year. Snails of size class 4 needed 1 year to 290 

attain size class 6 (4.05–4.50 mm) and snails of size class 6 required another year to complete 291 

shell growth. Assuming that individuals belonging to size class 1 were already 1-year old, then 292 

based on the average annual shell increase a snail requires 5 years to attain adult size and 293 

sexual maturity (Fig. 3). However, the huge interindividual variation in shell growth may allow 294 

a few individuals to reach adult size within 4 years, while others may need 6 or 7 years. 295 

 296 

Size (shell heigth frequency) distribution 297 

 Individuals of C. clienta sampled on a quarry wall on 23 October 1990 ranged in shell 298 

height from 0.83 to 6.25 mm (n = 375; Fig. 4). The frequency distribution of shell height 299 

shows four peaks among the juveniles and one distinct large peak of fully-grown (adult) snails 300 

indicating that there are four year cohorts of juveniles and – assuming that the first peak 301 

represents 1-year-old snails – that adult size is attained at an age of 5 years. The frequency of 302 

juvenile individuals decreased with increasing shell height, indicating mortality between year 303 

cohorts. Snails with a reflected shell lip measured at least 5 mm, an exception was one 304 

individual with a shell height of 4.83 mm (Fig. 4). The frequency of fully-grown snails in the 305 

size distribution suggests that this size class consists of several year cohorts, and consequently 306 

that adult snails may live for several years. 307 
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 308 

Discussion 309 

 The present study showed that individual shell growth rate of juvenile C. clienta 310 

differed among quarry walls and that growth rate depended on the size of the snails. 311 

Similarly, the survival rate was size-dependent in juvenile C. clienta. Most interestingly, 312 

shell growth occurred not only during summer, but also during the winter half year. 313 

 In terrestrial gastropods, climate and weather are an important source of variation in growth 314 

rate because their activity is constrained by humidity and temperature conditions (Oosterhoff 315 

1977; Riddle 1983). Activity of rock-dwelling snails is restricted to periods of optimal 316 

temperature and sufficient moisture (Neuckel 1981). The clausilid Cristataria genezarethana 317 

(Tristram, 1865) is active only during 1.2–3.3% of the time of a year on karstic rocks in Israel 318 

(Heller and Dolev 1994), and Chondrina avenacea (Bruguière, 1792) 11–14% of the time of a 319 

year on limestone cliffs near Basel, Switzerland (Neuckel 1981). During summer heat or 320 

during winter frosts, the snails must cope with extreme temperatures. Chondrina avenacea 321 

enters estivation very rapidly whenever the snails experience drying out of their environment. 322 

The snails rapidly suppress their metabolism and minimize water loss using a discontinuous 323 

gas exchange pattern (Kostal et al. 2013). Hibernating snails rely on a supercooling strategy 324 

which allows them to survive when air temperature drops to as low as –21 
o
C (Kostal et al. 325 

2013). Winter dormancy in C. clienta is, however, not deep. Schlesch (1937) observed 326 

individuals of C. clienta grazing lichens under mild conditions in January on Öland. This may 327 

explain the surprising finding that the shell growth rate during the winter half year did not 328 

differ from that of the summer half year. In the populations studied, C. clienta may become 329 

active throughout the year whenever the environmental conditions are favorable. The yearly 330 

variation in shell growth might be a result of the prevailing weather conditions, in particular of 331 

the amount of precipitation and its temporal distribution within the year. 332 

 Individuals of C. clienta feed on cyanobacteria, algae and various species of lichens (Baur et 333 

al. 1992; Fröberg et al. 1993; Baur et al. 1994). Lichens are protected against herbivores by a 334 

number of mechanisms. The presence of different secondary compounds, the lichens' nutrient 335 

content, surface toughness, type of photobiont, and their growth form (epilithic, endolithic, 336 
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foliose) may account for differential preferences shown by grazing snails (Fröberg et al. 1993; 337 

Hesbacher et al. 1995; 1996; Baur et al. 2000). The small-scale spatial distribution of 338 

cyanobacteria and lichen species varies considerably on rock surfaces, resulting in a spatial 339 

heterogeneous distribution of food resources for the snails (Baur et al. 1995; Baur and Baur 340 

1997; Fröberg et al. 2011). Considering the relatively short periods of time favorable for 341 

grazing and the snails' limited dispersal capacity, individuals may encounter more or less 342 

favorable food patches, which may result in more or less shell growth (Fröberg et al. 343 

2011).Thus, differences in food availability and in microclimate (the aspect of the rock wall 344 

may influence the length of snail activity) in combination with intraspecific competition could 345 

explain the differences in growth rate found among sites. However, the number of replicates (n 346 

= 4 rocks walls) does not allow to test this hypothesis. 347 

 The hump-shaped growth rate distribution of C. clienta belonging to different size classes 348 

indicates that individual growth curves have a sigmoid shape with the fastest shell increase in 349 

juveniles of medium size, a growth pattern found in other land snail species as well (Baur 350 

1984; Kuznik-Kowalska 2006). The slower growth in the final juvenile stage could be 351 

explained by the investment of energy to build the shell armature as has been reported in 352 

clausiliid species (Maltz and Sulikowska-Drozd 2011). Interestingly, we did not find 353 

repeatable individual shell growth between two successive years. On the contrary, individuals 354 

of three size classes growing rapidly in the first year grew slowly in the second year and vice-355 

versa. The underlying cause for this intraindividual trade-off between current and future shell 356 

growth remains to be investigated. 357 

 Our study showed that apparent survival in C. clienta is size-dependent. Larger individuals 358 

had a higher survival rate than smaller ones, an exception being individuals of the smallest size 359 

class. The actual survival rate might even be higher, because in the estimate of apparent 360 

survival snails that died and snails that left the study area were considered the same (see 361 

Statistical analyses). On vertical rock walls, the distances moved by juvenile C. clienta 362 

increased with the shell size of the individuals (Baur and Baur 1995). In the present study, a 363 

few individuals might have left the quarry walls, which represented the study areas. However, 364 

the size class-specific recovery rate of marked individuals was not lower in larger juveniles 365 
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than in smaller ones (supplementary Table S1), as expected by the snails' dispersal capacity. 366 

This indicates that not only the apparent survival rate but also the actual survival rate is size-367 

dependent in C. clienta. 368 

 Unfavorable weather is known to act as a density-independent mortality factor in many 369 

invertebrate species (Begon et al. 2006). Winter mortality is assumed to be one of the crucial 370 

factors in the life cycle of land snails (Wolda 1963; Wolda and Kreulen 1973; Cain 1983). 371 

Extreme temperatures (cold and heat) may cause a substantial part of the total mortality in land 372 

snails (Williamson et al. 1977). Land snails overwintering at or near the soil surface in 373 

temperate regions are potentially exposed to low temperatures, being readily killed by ice 374 

formation in the tissue (Ansart et al. 2014). Consequently, behavioral adaptations (e.g., 375 

searching for favorable hibernation positions) and physiological acclimatization, such as the 376 

development of cold-hardiness in autumn and the maintenance of sufficient cold resistance 377 

during winter, may be essential in such species (Riddle and Miller 1988; Kostal et al. 2013; 378 

Ansart et al. 2014). 379 

 Winter mortalities ranging from 2.4% to 19.0% have been reported for Allogona 380 

ptychophora (Brown, 1870), A. profunda (Say, 1821), Mesodon thyroidus (Say, 1816), C. 381 

nemoralis and A. arbustorum (Blinn 1963; Carney 1966; Williamson et al. 1977; Terhivuo 382 

1978; Andreassen 1981). All these species have relatively large shells (shell breadth >15 mm) 383 

and hibernate buried into the soil or under leaf litter. In contrast, winter mortality of C. clienta 384 

inhabiting exposed stone walls on Öland averaged 13.9% in juveniles and 10.5% in adults 385 

during mild winters but increased to 64.3% in juveniles and 67.9% in adults during an 386 

extremely cold winter (Baur and Baur 1991). In all four winters, mortality was not influenced 387 

by the local population density (Baur and Baur 1991). In the present study, the winters were 388 

relatively mild (mean minimum temperatures in January of –2.5 
o
C in 1993 and –2.0 

o
C in 389 

1994), and did not cause any increased snail mortality. 390 

 In life-history theory, age at maturity in animals is defined as age at first reproduction. C. 391 

clienta reproduces for the first time in the autumn after having attained adult size. In our study, 392 

the results of two different approaches (combination of individual shell growth data and the 393 

analysis of the shell size distribution of a population) revealed that most individuals of C. 394 
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clienta completed shell growth at an age of 5 years, even though a few individuals reach adult 395 

size within 4 years, while others need 6 or 7 years, indicating a relatively late maturity in this 396 

small-sized land snail species. The size (shell height frequency) distribution data were obtained 397 

1.5 years before the start of the growth experiment. Considering individual growth rates (5 398 

years to attain adult size), a large proportion of the individually marked snails were already 399 

alive when the sample for the size distribution was collected. It is very unlikely that the time 400 

elapsed between the two studies affects the results. A similar age at maturity was reported in 401 

the small-sized rock-dwelling land snail Cristataria genezarethana (Tristram, 1865) (Heller 402 

and Dolev 1994), whereas most large-sized snail species (e.g., C. nemoralis) reach sexual 403 

maturity at an age of 2–3 years (Oosterhoff 1977; Heller 2001). 404 

 Life-history theory predicts later maturity if there is further growth and if fecundity 405 

increases with size leading to a higher initial fecundity (Stearns 1992). Furthermore, maturity 406 

will be delayed if it improves the instantaneous juvenile survival rate, e.g., by giving birth to 407 

larger offspring. In the majority of land snails, female fecundity (number of eggs or hatchlings 408 

produced) increases with the size of the individual (Baur 1994). With a delayed maturity 409 

individuals of C. clienta attain a larger adult size and thus have a higher fecundity. A further 410 

delay in maturity might be counteracted by the cumulated juvenile mortality. The balancing 411 

selection pressures of attaining a large shell size through delayed maturity versus the 412 

cumulated higher juvenile mortality varies among localities, indicated by a considerable 413 

variation in mean age at maturity among land snail populations within species (Heller 2001). 414 

For examples, age at maturity in A. arbustorum increased along an elevational gradient from 2 415 

years at 1220 m to 5 years at 2600 m in the European Alps (Baur and Raboud 1988). Some of 416 

these interpopulational differences in age at maturity are genetically determined, while others 417 

are environmentally induced (Baur 1984). 418 

 419 

Conclusions 420 

 Previous studies have been concerned mainly with large-sized gastropods. The work 421 

presented here fills a gap in land snail ecology and thus leads to a better understanding of the 422 

population dynamics of small-sized rock-dwelling land snails. Our results show that individual 423 
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growth and juvenile survival are size-dependent in C. clienta, and vary slightly among 424 

populations, most probably due to habitat-related differences in microclimate. The mean age at 425 

maturity of 5 years found in C. clienta is higher than those reported in most large-sized snail 426 

species. Our work also underlines the notion that winter is not a time of constant hibernation 427 

for this rock-dwelling snail species in natural populations in southern Scandinavia, indicated 428 

by shell growth in juveniles during the colder season. 429 
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 586 

 587 

Fig. 1. Distribution of annual shell increase in individually marked C. clienta belonging to 588 

different size classes. Bold horizontal lines indicate median values for each size class. 589 

 590 
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 591 

Fig. 2. Shell increase in individually marked C. clienta belonging to different size classes 592 

during summer (open dots) and winter (full dots). Shell growth is expressed as shell height 593 

increase within 100 days. 594 

 595 



 

 

24 

 596 

Fig. 3. Change in the mean shell height of C. clienta (± SE) over two years. Individually 597 

marked snails were assigned to six size classes at the beginning of the study. Sample size for 598 

each size class is given in parenthesis. 599 

 600 
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 601 

Fig. 4. Frequency distribution of shell height of C. clienta in a population sampled on 23 602 

September 1990. Idealized curves of year cohorts are shown with triangles indicating the mean 603 

shell height of the corresponding cohort. The group of adult snails consists of individuals from 604 

several cohorts. 605 

606 
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Table 1. Size and aspect of the four vertical quarry walls (sites) on which growth and 607 

survival of snails were assessed together with local snail density and shell size. 608 

 609 

___________________________________________________________________________ 610 

Site Wall area Aspect Snail density* Adult shell height (mm)¶ 611 

 (height x breadth, in m)  Mean ± SE Mean ± SE 612 

___________________________________________________________________________ 613 

A 1.15 x 20.0 NE 36.7 ± 3.4 5.6 ± 0.04 614 

B 0.95 x 7.5 NW 33.0 ± 5.7 5.8 ± 0.08 615 

C 0.65 x 7.0 NW 37.0 ± 11.0 5.9 ± 0.06 616 

D 1.40 x 8.0 NE 32.0 ± 6.6 5.9 ± 0.06 617 

__________________________________________________________________________ 618 
 * Number of fully-grown snails collected in 3 minutes (n = 3 replicates).  619 

 ¶ Based on 25 fully-grown individuals from each site. 620 

 621 

622 
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Table 2. Summary of ANOVA table examining the effect of site and snail size class on 623 

the relative growth rate per year in individuals of C. clienta. 624 
 625 

___________________________________________________________________________ 626 

Year Predictor df SS F P 627 

___________________________________________________________________________ 628 
 629 

1991/1992 Site 3 2.404 20.197 < 0.001 630 

 Size class 4 0.687 4.331 0.002 631 

 Site x size class 12 0.907 1.905 0.033 632 

 Residuals 362 14.362   633 

 634 

1992/1993 Site 3 0.795 7.178 < 0.001 635 

 Size class 3 0.269 2.427 0.070 636 

 Residuals 94 3.472   637 

__________________________________________________________________________ 638 
 639 

Analyses were run separately for each year. The minimal adequate model was selected using 640 

the Akaike Information Criterion. Only snails belonging to the size classes 1–5 were 641 

considered in the analyses. 642 


