Once again on the components of pairwise beta diversity

Running title: On components of pairwise beta diversity
Word count: ca. 5400

Authors:

János Podani

Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, L. Eötvös University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary and

Ecology Research Group of the Hungarian Academy of Sciences, Budapest, Hungary Corresponding author. Email: podani@ludens.elte.hu and

Dénes Schmera

MTA Centre for Ecological Research, Tihany, Hungary and

Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland

Abstract

Presence-absence based beta diversity defined for pairs of sites may be partitioned into components following two different ways of thinking. Within the framework of Baselga (abbreviated hereafter as BAS), nestedness is crucial and dissimilarity is partitioned into replacement (turnover) and nestedness-resultant fractions. The method proposed by Podani and Schmera (POD), however, places emphasis on the mathematical additivity of components and divides dissimilarity into replacement and richness difference components. A recent comparison by Baselga and Leprieur (2015), on the example of the Jaccard family of indices, emphasizes the independence of replacement component from absolute richness difference and concludes that the replacement function of the BAS framework is the only true measure of species replacement. As a response to this study, we show here that 1) the sacrifice one must make for independence is that the components themselves are scaled differently and are not always comparable ecologically, 2) absolute (raw) replacement and richness difference are not independent, so that independence from the latter cannot be a fundamental criterion that a replacement measure should satisfy, 3) relativization applied in the POD framework is ecologically interpretable, leading to a meaningful conceptualization of species replacement, 4) the BAS and POD methods are linked through a generalized replacement function, 5) both the BAS and POD approaches may produce high correlations with environmental variables, whereas 6) the POD approach offers in many respects more illuminating demonstrations of the underlying changes of pattern than the graphs of Baselga and Leprieur for both artificial and actual fish distribution data.

Keywords: Data structure; Diversity partitioning; Nestedness; Richness difference; Species replacement; Turnover

1. Introduction

Describing species distribution patterns and underlying mechanisms is at the heart of current biodiversity research. Beta diversity, summarising a wide variety of conceptual and methodological approaches, is a key term for assessing community variation in space and time. Baselga (2010) suggested that beta diversity can be partitioned into spatial turnover (also termed replacement) and nestedness resultant dissimilarity components. This partitioning framework (hereafter abbreviated as BAS, following Legendre 2014) has been considered as a major contribution to this field because the components may reflect the existence of different underlying mechanisms driving beta diversity and thus the methodological framework can efficiently be used for understanding central geographic, ecological and conservation issues.

Thanks to its novelty and soundness, this scheme triggered critical comments (Schmera \& Podani 2011, Almeida-Neto et al. 2012), an intensive dispute (Baselga 2012, Carvalho et al. 2013, Chen 2015) and the development of competing approaches (Podani \& Schmera 2011, Carvalho et al. 2012, Cardoso et al. 2014) as well. For instance, according to a recent proposal, beta diversity can be partitioned into replacement and richness difference components (hereafter abbreviated as POD, following Legendre 2014, see also Podani \& Schmera 2011, Carvalho et al. 2012, Carvalho et al. 2013). A review by Legendre (2014) compared these frameworks and found that they represent alternative approaches with different conceptual and mathematical backgrounds.

Most recently, Baselga \& Leprieur (2015) revisited the issue by evaluating the performance of the BAS and POD frameworks under different conditions. They emphasized that (1) the replacement components of the two approaches formalize different concepts, and (2) only the replacement component of the BAS framework is
independent of richness difference. Based on their simulations and analyses of actual data, BAS proved to be the winner, leading to the conclusion that (3) only its replacement component is able to express "true" replacement. We disagree with the final conclusion by questioning the basic assumption that the replacement component should be independent of richness difference and by arguing that the relevant component of the POD framework expresses replacement at least as faithfully as the BAS framework. Regarding independence, we refer to Chao et al. (2012) who clarified the multiple meaning of this term. Here, we mean that knowing one diversity component one has no information about the value of another, and vice versa. Our disagreement is also due to the fact that in many instances Baselga \& Leprieur (2015) still misunderstood, confused or neglected some basic aspects of the POD approach. To avoid the undesirable situation that potential users of either method are misguided, this rebuttal attempts to clarify the most important points.

2. The BAS and POD frameworks

For the benefit of the reader, we give a brief summary of the two frameworks following the Legendre's (2014) system of symbols. Decomposition of beta diversity for a pair of sites, expressed by the Sorensen dissimilarity index (D_{S}) was first suggested by Baselga (2010):
$\mathrm{D}_{\mathrm{S}}=\frac{b+c}{2 a+b+c}=\operatorname{Repl}_{\mathrm{BS}}+\operatorname{Nes}_{\mathrm{BS}}=\frac{\min (b, c)}{a+\min (b, c)}+\frac{a}{a+\min (b, c)} * \frac{|b-c|}{2 a+b+c}$
in which a refers to the number of species present in both sites, while b and c correspond to the number of species present only in the first and the second, respectively, such that $n=a+b+c$. The above equation implies that Simpson dissimilarity $\left(\right.$ Repl $\left._{\mathrm{BS}}\right)$, expressing spatial turnover is subtracted from Sorensen
dissimilarity to obtain the so-called nestedness resultant dissimilarity ($\mathrm{Nes}_{\mathrm{BS}}$). It has been suggested that Simpson dissimilarity reflects the amount of species replacement, whereas the remainder is "due to nestedness". Later, the Jaccard dissimilarity index was decomposed in an analogous way (Baselga 2012):

$$
\begin{equation*}
\mathrm{D}_{\mathrm{J}}=\frac{b+c}{a+b+c}=\operatorname{Repl}_{\mathrm{BJ}}+\mathrm{Nes}_{\mathrm{BJ}}=\frac{2 \min (b, c)}{a+2 \min (b, c)}+\frac{a}{a+2 \min (b, c)} * \frac{|b-c|}{a+b+c} \tag{2}
\end{equation*}
$$

The POD framework consists of an absolute (or raw) and a relativized decomposition of beta diversity (Podani and Schmera 2011). In the absolute decomposition, Weiher Boylen beta diversity (β_{WB}, see also Koleff et al 2003) is divided into (raw) replacement and (raw) richness difference components:
$\beta_{\mathrm{WB}}=b+c=$ replacement + richness difference $=2 \min (b, c)+|b-c|$

The basis of the relativized POD framework (Podani and Schmera 2011) is the decomposition of pairwise beta expressed by the Jaccard dissimilarity $\left(D_{J}\right)$ into two additive fractions according to

$$
\begin{equation*}
\mathrm{D}_{\mathrm{J}}=\frac{b+c}{a+b+c}=\operatorname{Repl}_{\mathrm{J}}+\operatorname{Rich}_{\mathrm{J}}=\frac{2 \min (b, c)}{a+b+c}+\frac{|b-c|}{a+b+c} . \tag{3}
\end{equation*}
$$

The first part was termed the relativized species replacement ($\operatorname{Repl}_{\mathrm{J}}$), while the second was relativized richness difference $\left(\right.$ Rich $\left._{\mathrm{J}}\right)$. It is important to point out that we never considered these components as stand-alone dissimilarity functions, only fractions of dissimilarity! According to our proposal, these two fractions, together with the
complement of D_{J}, i.e., Jaccard similarity $\left(\mathrm{S}_{\mathrm{J}}\right)$ may be used as scores to specify the position of the site pair in a 2D simplex diagram. If the same operation is done for all pairs of sites in a region, then we have a tool for visualizing structure of the entire presence/absence matrix (Podani and Schmera 2011). Sorensen index may also be decomposed in similar manner (Carvalho et al. 2012, Legendre 2014), which is not detailed here because 1) the only difference from Eq. 3 is that $2 a$ replaces a in the denominators and 2) this paper is concerned only with the Jaccard family of indices, in response to Baselga \& Leprieur (2015) whose study is restricted to this group.

The relativized replacement component in $P O D$

Before we discuss the relative merits and disadvantages of the two frameworks, a terminological clarification is in order. This is important because Baselga and Leprieur erroneously equate our relativized species replacement function (Repl ${ }_{\mathrm{J}}$, in Eq. 3) with Williams' replacement index (see β_{-3} in their Table 1). The formula proposed by Williams (1996) reads:
$\beta_{-3}=1-\frac{a+\min (b, c)+|b-c|}{a+b+c}=\frac{\min (b, c)}{a+b+c}$,
that is, $2 \beta_{-3}=$ Repl $_{\mathrm{J}}$, a fact that cannot be neglected when our objective is decomposition into additive fractions. Multiplication by 2 was first suggested by Cardoso et al. (2009) to ensure that the index changes between 0 and 1 . Zero obtains in the situation when there are no unique species for either site or both so that there is no replacement. The maximum value results if the species set of one site is completely replaced by the species of the other, which is possible only if $b=c>0$ and $a=0$.

Cardoso et al. (2009) used the same abbreviation $\left(\beta_{-3}\right)$ for the multiplied index, whereas Podani \& Schmera (2011) suggested $\frac{2 \min (b, c)}{a+b+c}$ as a relativized replacement index without referring to the suggestions of Cardoso et al. (2009). Thus, it is partly our fault that the multiplied version and the original Williams index are still confused. However, since multiplication modifies the range of the measure, β_{-3} and Repl l_{J} should be treated as different functions. This is in agreement with Koleff et al. (2003) who list several examples of beta diversity measures which differ only in a multiplying factor of 2 .

3. Commensurability

Decomposition of absolute or raw beta diversity has been rarely used in practice, because the results from different surveys are hardly commensurable. Relativization (or standardization) of raw values is a general strategy, as with dissimilarity coefficients whose values range between 0 and 1 . When dissimilarities themselves are partitioned, however, another aspect of commensurability enters the scene. If we examine the suggested components of D_{J} in Eq. 2 we find that they disagree in the manner they are standardized, as demonstrated by the following example with $a=3$, $b=5$ and $c=1 . \mathrm{D}_{\mathrm{J}}(=6 / 9)$ is the ratio of the number of unique species and the total number of species in the two sites being compared, and $\operatorname{Repl}_{\mathrm{BJ}}(=2 / 5)$ may be conceived as the ratio of the number of replaced species and the total number of species if both sites were equally poor (i.e. with $b=c=1$). The third one, Nes $_{\text {BJ }}$ $(=12 / 45)$ lacks any ecologically meaningful interpretation in terms of species numbers or raw data values. Apparently, due to different relativization and weighting operations applied to the component terms, there is no "common currency" for the three terms involved. This is not so with the POD framework: D_{J} and both of its fractions in Eq. 3 are interpretable as ratios, since $\operatorname{Repl}_{J}=2 / 9$ and Rich $_{J}=4 / 9$. These
are expressed on the same scale as D_{J} itself. We think this is important even though the dissimilarities themselves are dimensionless quantities. A conclusion is that whereas the BAS approach is inconsistent, the POD framework is consistent in the way component terms are measured. This holds true for the partitioning of Sorensen index as well (see Schmera \& Podani 2011). A natural question arises: what are then the advantages of using inconsistent relativization in the BAS decomposition? We look for the answer in the next section.

4. Replacement and its independence from richness difference

Baselga and Leprieur (2015) emphasize the main result of their analyses as follows: the replacement component in the BAS framework is independent of richness difference, whereas the analogous component in the POD approach is not. To prove this, they apply a huge arsenal of statistical tools (comparison of parallel components, random parameter method, the evaluation of joint probabilities etc., see their Figure 2). The above conclusion is straightforward and no detailed tests are required, however, if we consider how $\operatorname{Repl}_{\mathrm{BJ}}\left(\operatorname{and} \mathrm{Repl}_{\mathrm{BS}}\right.$) are formulated. The denominator of $\operatorname{Repl}_{\mathrm{BJ}}, a+2 \min (b, c)$, contains information on the number of species in the poorer site whereas the number of species in the richer site $(a+\max (b, c))$ does not appear in the formula at all. Therefore, the result is, by definition, unaffected by the richer site and in turn richness difference either (see also Appendix 1). Obviously, Simpson dissimilarity $\left(\right.$ Repl $\left._{\text {BS }}\right)$ and Baselga's Repl ${ }_{\text {BJ }}$ were constructed on purpose to satisfy this external requirement. Richness difference as such is not part of their decomposition procedure.

Baselga and Leprieur (2015) argued that the use of the term replacement for the two respective components originating from different frameworks might be misleading and suggested that the term replacement should be reserved to indices that are
independent of richness difference. While we agree that terminological clarity is essential, we disagree with the suggestion itself. Here we show that independence from absolute richness difference cannot be a criterion of a replacement measure. In fact, replacement "implies the replacement of some species by others" (p. 135, Baselga 2010) and we emphasized several times (see e.g., p. 155 in Schmera and Podani 2011) that species replacement originally refers to an absolute measure, i.e., to the number of species that are replaced between two sites $(2 \min (b, c))$. This is not independent mathematically from raw richness difference $(|b-c|)$ as proved in Appendix 1 and graphically demonstrated also by two simulations in the Supplementary Material using random parameter approaches similar to those in Baselga and Leprieur's randomization experiments with relativized measures. For actual ecological data, these two components may indeed be uncorrelated, yet large richness differences rarely associate with large replacement due to the constraining effect of the maximum number of species (see Supplementary Material). Therefore, if the above suggestion were accepted, then even raw replacement could not be called "replacement" - which is conflicting with any intuitive views on species turnover. A potential source of this contradiction is that decomposition of absolute (raw) beta diversity is not included originally in the BAS framework. In sum, independence cannot be a fundamental criterion that a replacement measure should satisfy and thus the replacement component of the BAS framework cannot be regarded as the sole candidate for the use of the term replacement.

5. How to relativize?

Coefficients Repl ${ }_{\text {BS }}$ and $\operatorname{Repl}_{\text {BJ }}$ are asymmetric in handling b and c, as shown by the following example with $a=1, b=49$ and $c=1$. Now, $\operatorname{Repl}_{\text {BJ }}=2 / 3$ suggesting high level of turnover, which is fine with respect to the poorer site. It has only two species,
and the loss of one species and the gain of another is indeed a significant change. As Carvalho et al. (2013) pointed out, however, "we do not see any reason why only the poorer site should establish the theoretical upper limit of species replacement." Thus, from the "viewpoint" of the richer site, the same change is practically nothing if we consider that it has as much as 50 species in total. One alternative is therefore a new replacement function in the Jaccard index-family, which considers the richer site for relativization (Eq. A1, in Appendix 2). This function takes the value of 0.02 - which appears a more reasonable score than $2 / 3$.

In these functions, one of the sites plays little or no role in determining the index value - an undesirable property for a dissimilarity function. The relativized replacement index Repl $_{\mathrm{J}}$ does provide a balanced result with respect to the total species richness of the two sites. For the small example above, the value of $2 / 51 \sim$ 0.04 indicates fairly well that only a negligible minority of potential species participated in the replacement process.

Relativization by $a+b+c$ has the obvious consequence that $\mathrm{Repl}_{\mathrm{J}}$ will not be independent of richness difference (Appendix 1). It is implicit in the denominator (i.e., $n=a+2 \min (b, c)+|b-c|)$ therefore, if n increases because $|b-c|$ increases then the value of the index will decrease. If $|b-c|$ increases such that n remains constant, then $\min (b, c)$ must decrease after a reached zero (and may decrease even before), so that the value of the index also decreases. In the POD approach this is fundamental: S_{J} and the two components of D_{J} mutually constrain one another (their sum is always 1), these three are expressed on the same scale to provide a meaningful 2D display in form of a simplex plot, and the inclusion of all site pairs in the same simplex plot would be impossible without relativization. Notably, such kind of relativization is commonplace in numerical ecology - often leading to loss of independence. For
example, if raw data are standardized by species totals, the scores, which were originally independent, will now be dependent: each new value will be affected by all the other scores for the given species. Appendix 2 shows that the two asymmetric replacement functions represent extreme cases of a general replacement formula in which Repl l_{J} takes an intermediate position.

6. Correlations with environmental variables

Although we disagree with the view implicit in Baselga and Leprieur (2015) suggesting that the higher the correlation between an index value and an environmental variable, the better the index, we planned to repeat their study of actual data (North American fish dataset) with more measures involved, including raw replacement and richness difference. This would clarify the question whether it is worth switching from raw measures to relativized ones. However, the supplementary material did not include the geographical distances in terms of the number of drainage basin divides between river basins Baselga and Leprieur (2015) were using. Furthermore, glacial history was presented as an ordinal variable to which, according to our view (Podani 2005), correlation measures cannot be applied (but see Ricotta and Feoli 2013, for alternative views on the usefulness of ordinal data). Thus, we computed correlations between the matrices of eight components in the BAS and POD approaches and only four environmental variables, two of them being PCA summaries of 17 climatic variables (Table 1).

Table 1. Pearson product moment matrix correlations between various coefficients and components of beta diversity and four variables reflecting inter-site distances in terms of climate (PCA1 and PCA2) plus altitude and area for the North American fish distribution data.

Measure	PCA1	PCA2	Altitude	Area
$\|b-c\|$	0.155	-0.039	-0.042	0.475
$2 \min (b, c)$	-0.082	-0.041	0.038	0.138
D_{J}	0.372	0.258	0.191	0.018
Rich $_{\mathrm{J}}$	0.246	0.020	-0.018	0.102
$\operatorname{Repl}_{\mathrm{J}}$	-0.061	0.119	0.123	-0.099
$\operatorname{Repl}_{\text {BJ }}$	0.367	0.284	0.216	-0.126
Nes $_{\text {BJ }}$	-0.248	-0.213	-0.167	0.191
New function (A1)	0.344	0.235	0.172	0.293

It is seen from the table that the BAS framework does not have the privilege to produce relatively high correlations. The largest value (0.475) was obtained between absolute richness difference and area difference - which agrees well with basic biogeographical "rules". The effect of area was less conspicuous for other components, with the new turnover function (Eq. A1) as an exception (r=0.293). Regarding the BAS and POD frameworks, Baselga's replacement function produced higher correlations with climate than POD. For example, with the first climatic component both the absolute and relativized turnover $\left(\mathrm{Repl}_{\mathrm{J}}\right)$ were slightly negatively correlated, while Repl ${ }_{B J}$ and function A 1 , as well as D_{J} itself had positive correlations larger than 0.3 . Note the extremely high negative correlations - not shown in the table - between components within the BAS approach (it is -0.873 for $\operatorname{Repl}_{\mathrm{BJ}}$ and $\mathrm{Nes}_{\mathrm{BJ}}$), and the POD framework as well (-0.864 between Rich $_{\mathrm{J}}$ and Repl $_{\mathrm{J}}$). These are empirical indications of interdependence between these components. These results represent only one case study with four variables, and more actual cases should be examined before any far-reaching conclusions can be made about the relationship between diversity components and the environment.

7. Monotonicity

Baselga and Leprieur (2015) examined four different scenarios in which an initial configuration was gradually and systematically modified to see if beta diversity components respond monotonically to these changes. The results were inconclusive: components of the BAS and POD differed in performance. We agree with Baselga and Leprieur (2015) that gradual changes of data pattern need not be reflected by monotonic responses under all circumstances. There is one comment only: monotonicity should be distinguished from strict monotonicity, so the POD components were monotonous, while not always strictly monotonic, over the spatial sequence in cases of the extinction and homogenization scenarios.

8. Advantages of the POD approach

Unfortunately, while focusing on independence and monotonicity issues Baselga and Leprieur (2015) are silent about additional and important features of the POD framework. In this, decomposition of Jaccard dissimilarity is only part of a more general analytical toolkit: S_{J} and the two components of D_{J} are not restricted to express only a single contrast, the one between similarity and beta diversity along a 1D simplex. There are other two possibilities for combining S_{J} with Repl $_{\mathrm{J}}$ or Rich $_{\mathrm{J}}$. The sum of the first two terms gives the relative richness agreement function:

$$
\begin{equation*}
\operatorname{Agr}_{\mathrm{J}}=\mathrm{S}_{\mathrm{J}}+\operatorname{Repl}_{\mathrm{J}}=\frac{a}{a+b+c}+\frac{2 \min (b, c)}{a+b+c} \tag{5}
\end{equation*}
$$

which represents a contrast with Rich $_{\mathrm{J}}$ along another 1D simplex. Perhaps more important is the other combination
$\operatorname{NeS}_{\mathrm{J}}=\mathrm{S}_{\mathrm{J}}+\operatorname{Rich}_{\mathrm{J}}=\frac{a}{a+b+c}+\frac{|b-c|}{a+b+c}$ if $a>0$, otherwise $\mathrm{Nes}_{\mathrm{J}}=0$
called the relativized nestedness index (Podani and Schmera 2011, 2012, Schmera and Podani 2011). Baselga and Leprieur (2015, p. 1076 right column, top) refer to the left part (i.e. without the $a>0$ condition) as the "similarity index" counterpart of β_{-3}. The problem is not merely that β_{-3} differs from the Repl function - as already said. Equation 6 is not similarity in the conventional sense: it is a sum of similarity $\left(\mathrm{S}_{\mathrm{J}}\right)$ and a fraction of dissimilarity $\left(\right.$ Rich $\left._{\mathrm{J}}\right)$, both contributing with equal weight to pairwise nestedness. Our nestedness concept is clear from this equation: it is determined by the overlap between the species lists of the two sites and by how deeply the list of the poorer site is "embedded" into the species list of the richer site, provided that they have at least one species in common (Podani and Schmera 2012). In other words, nestedness is neither similarity nor dissimilarity, and there is a condition (positive a) involved in its calculation. The contrast between replacement and nestedness is thus expressed on another 1D simplex, clearly showing that - in addition to the disappearance of shared species - species replacement is the only pattern antagonistic to nestedness.

Now we can examine the behaviour of the four artificial scenarios examined by Baselga and Leprieur (2015) through our entire simplex approach. The ternary plots of Figure 1 utilize the same information as Figure 4 of the above authors, yet these are in many respects more illuminating demonstrations of the underlying changes of pattern than the graphs of Baselga and Leprieur (2015). The "replacement and loss" series starts with complete self similarity (right corner, Fig. 1a) and losses and replacements direct the process into maximum beta diversity with richness difference dominating over species replacement (i.e., the point representing the last step lies on the beta diversity side, closer to the richness difference corner). The "extinction"
scenario involves a relatively short trajectory within the plot: the low initial similarity further decreases down to zero while richness difference increases (Fig. 1b). This sequence also ends up with maximum beta diversity, with richness difference even more dominating than in the previous example. The trajectory is near and parallel to the nestedness side, reflecting that species replacement is low and constant all the way. The "homogenization" scenario starts from a position mostly determined by high species replacement (Fig. 1c). The series involves a steady increase in the number of shared species, and the continuous disappearance of unique species. At the end, the species set of one site becomes completely nested within the other: the point representing this site pair falls onto the nestedness side of the triangle. It is closer to the similarity corner, because the number of shared species (i.e. overlap) is higher than the number of species exclusively occurring in the richer site. The "colonization and extinction" scenario begins with a species rich and an empty site, therefore the first point falls right onto the richness difference corner (Fig. 1d). During the colonization process species migrate to the empty site, half of them eventually disappearing from the first one. This involves increasing similarity and species replacement, so that the two sites converge in species richness. In step 17, they are very close to the richness agreement side of the plot (for a total of 99, rather than 100 species full coincidence would have been possible). After this point, however, the initially rich site suffers further losses by which it becomes increasingly nested within the "daughter" site. The series finishes at the nestedness side of the plot, with similarity and richness difference equally contributing to the perfect nestedness of the last pair.

Fig. 1. Simplex diagrams illustrating the four 25 -step artificial scenarios examined by Baselga and Leprieur (2015). Points labeled by 0 are the initial situations, and then every fifth stage is shown, except for \mathbf{d} to which an extreme position is also added to show that the trajectory does not reach the richness agreement edge. Arrows illustrate direction of the processes. Changes involved in each step are shown in top left of each diagram, the values of a, b and c are shown for steps 0 and 25 only.

For comparison, we also calculated the 2D simplex for the North American fish data as well. Matrix fill in the 171 sites by 549 species data matrix was very low (7.2\%) which is by itself an early indication of high beta diversity. The ternary plot (Fig. 2) confirms this expectation: most of the site pairs are concentrated near the beta diversity edge. Percentage beta diversity is as high as 92.8%, with species replacement contributing with 32.1% and richness difference with 60.7%. Overall similarity is only 7.2%. Therefore, the centroid of the point cloud falls close to the left edge, nearer to the richness difference than the replacement corner. The antinestedness fraction, i.e., the contribution of points which lie exactly on the beta diversity (left) edge is 40.7% showing that a very large number of site pairs have no species in common at all. We feel that these results are important for a deeper understanding of pattern in the North American fish data: while the BAS approach deliberately ignores richness differences, the POD framework clearly shows that richness difference is the major factor governing beta diversity.

Fig. 2. Simplex diagram for the North American fish data. A circle indicates the centroid of the point cloud.

Acknowledgements
This research was supported by the Hungarian Scientific Research Fund (OTKA
104279).

References

Almeida-Neto, M., Frensel, D.M.B. \& Ulrich, W. (2012) Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010). Global Ecology and Biogeography, 21, 727-777.

Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.

Baselga, A. (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21, 1223-1232.

Baselga, A. \& Leprieur, F. (2015) Comparing methods to separate components of beta diversity. Methods in Ecology and Evolution, 6, 1069-1079.

Cardoso, P., Borges, P. A. V. and J. A. Veech. (2009). Testing the performance of beta diversity measures based on incidence data: the robustness to undersampling. Diversity and Distributions, 15, 1081-1090.

Cardoso, P., Rigal, F., Carvalho, J.C., Fortelius, M., Borges, P.A.V., Podani, J. and Schmera, D. (2014) Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. Journal of Biogeography, 41, 749-761.

Carvalho, J.P., Cardoso, P. \& Gomes, P. (2012) Determining the relative roles of species replacement and species richness differences in generating betadiversity patterns. Global Ecology and Biogeography, 21, 760-771.

Carvalho, J.C., Cardoso, P., Borges, P.A.V., Schmera, D. \& Podani, J. (2013) Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos, 122, 825-834.

Chao, A., Chiu, C.H. and Hsieh, T.C. (2012) Proposing a resolution to debates on diversity partitioning. Ecology, 93, 2037-51.

Chen, Y. 2015. Independence of total species richness and richness difference are not the same thing. Ecological Informatics, 30, 119-123.

Gaston, K.J. \& Blackburn, T.M. (2000) Pattern and Process in Macroecology. Blackwell,, Oxford.

Koleff, P., Gaston, K.J. \& Lennon, J.J. (2003) Measuring beta diversity for presenceabsence data. Journal of Animal Ecology, 72, 367-382.

Legendre, P. (2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.

Podani, J. (2000) Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.

Podani, J. (2005) Multivariate exploratory analysis of ordinal data in ecology: pitfalls, problems and solutions. Journal of Vegetation Science, 15, 497-510.

Podani, J. \& Schmera, D. (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638.

Podani, J. \& Schmera, D. (2012) A comparative evaluation of pairwise nestedness measures. Ecography, 35, 889-900.

Ricotta, C. and Feoli, E. (2013). Does ordinal cover estimation offer reliable quality data structures in vegetation ecological studies? Folia Geobotanica, 48, 437447.

Schmera, D. \& Podani, J. (2011) Comments on separating components of beta diversity. Community Ecology, 12, 153-160.

Ulrich, W., Almeida-Neto, M. \& Gotelli, N.J. (2008) A consumer's guide to nestedness analysis. Oikos, 118, 3-17.

Williams, P.H. (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society London, B 263, 579-588.

Appendix 1 - Independence between components of beta diversity

We shall set $n=a+b+c$ as in the main text, while - without loss of generality - we assume here that $b \leq c$. Except the first case, all functions come from the Jaccard family of indices; proofs for the Sorensen family follow a similar logic. Here we adopt the fixed parameter approach (Chao et al. 2012, p. 2040) which checks whether one has information about the value of one component provided that the other component is known. Results of the random parameter approach (Chao et al. 2012, p. 2040) and illustrations based on actual data are given in the Supplementary Material.

Raw richness difference and raw species replacement

These two components of Weiher-Boylen beta diversity are not independent. Since c is the sum of b and raw richness difference $\left(D_{r}=c-b\right)$, we have
$D_{r}=n-a-2 b$,
so that for fixed values of n and a, richness difference and replacement mutually constrain each other. To put it differently: raw richness difference can only increase on account of raw species replacement.

BAS replacement function and raw richness difference

The function $\operatorname{Repl}_{B J}=b /(a+b)$ is obviously independent of raw richness difference. For any value of a and b, the same result is obtained no matter what values n and c, and therefore D_{r} take, since these parameters do not appear in the formula.

$P O D$ replacement functions and raw richness difference

The function Repl $_{\mathrm{J}}=2 b / n$ is not independent of raw richness difference. After rewriting we have $\operatorname{Repl}_{\mathrm{J}}=2 b /\left(a+2 b+D_{r}\right)$ so that for a given value $\operatorname{Repl}_{\mathrm{J}}$ and $a, 2 b$ and D_{r} mutually constrain each other. If replacement is expressed in relation to the
richer site, i.e., by $\operatorname{Repl}_{\mathrm{PJ}}=2 b /(a+c)=2 b /\left(a+b+D_{r}\right)$ (see formula A2 in Appendix 2), it is easy to see by the same reasoning that dependence holds true. In fact, for fixed n and a, the remaining b and c mutually constrain each other in any expression incorporating these parameters.

Appendix 2 - Generalized replacement functions

For the Jaccard index family, the new formula for calculating pairwise turnover with respect to the richer site is given by

Repl $_{\text {PJ }}=\frac{2 \min (b, c)}{a+2 \max (b, c)}$

This is an extreme case (with $\alpha=0$) of the following general formula in which the minimum and the maximum of b and c are weighted by a scale factor α with a range of $[0,1]$:
$\operatorname{Repl}_{\alpha J}=\frac{2 \min (b, c)}{a+2[\alpha \min (b, c)+(1-\alpha) \max (b, c)]}$

For $\alpha=1$, we have Baselga's Repl $l_{\text {BJ }}$ coefficient. For $\alpha=0.5$, equation A2 reduces to the relativized replacement index Repl $_{\mathrm{J}}$. Thus, it may be conceived as a function intermediate between two extremes which consider the number of unique species asymmetrically. In order words, Repl $_{\mathrm{J}}$ measures turnover with respect to the total species richness of the two sites. If $\alpha<1$, then both b and c are considered, and therefore the measure is not independent of raw richness difference (see Appendix 1 for proofs, and Supplementary Material for graphical demonstrations).

For the Sorensen family of indices we may also define a general formula with α ranging from 0 to 1 :
$\operatorname{Repl}_{\alpha S}=\frac{\min (b, c)}{a+\alpha \min (b, c)+(1-\alpha) \max (b, c)}$

If $\alpha=0$, we get the analogue of equation A1, known as the Savage index (its complement is called the Braun-Blanquet similarity, see e.g. Háyek 1994, Tulloss 1997). For $\alpha=1$, it is easy to see that the general formula becomes identical to the Simpson dissimilarity function, while $\alpha=0.5$ yields the replacement component of Sorensen dissimilarity in the POD framework
$\operatorname{Repl}_{S}=\frac{\min (b, c)}{a+0.5 b+0.5 c}=\frac{2 \min (b, c)}{2 a+b+c}$
not discussed in this paper. This latter index is therefore a replacement measure with respect to the total number of presences in the two sites.

Note that general formulae similar to A2 and A3 have been known from numerical ecology. For example, we can mention the intermediate coefficient suggested by Faith (1984) as generalized by Podani (2000, p. 108). This represents a continuum from Kendall dissimilarity to the Manhattan metric.

References to appendices

Chao, A., Chiu, C.H. and Hsieh, T.C. (2012) Proposing a resolution to debates on diversity partitioning. Ecology, 93, 2037-51.

Faith, D. P. (1984) Patterns of sensitivity of association measures in numerical taxonomy. Mathematical Biosciences, 69, 199-207.

Hayek, L.-A. C. (1994) Analysis of amphibian biodiversity data. Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians. (eds. W. R. Heyer et al.), pp. 207-269. Smithsonian Institution, Washington, D. C.

Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys, Leiden.

Tulloss, R.E. (1997) Assessment of similarity indices for undesirable properties and a new tripartite similarity index based on cost functions. Mycology in Sustainable Development: Expanding Concepts, Vanishing Borders. (eds. M.E. Palm \& I.H. Chapela), pp. 122-143. Parkway Publ., Boone, NC.

