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1 Introduction

Finding the set of solutions of certain PDEs is closely related to the investigation of the critical
points of a certain functional defined on an appropriate Hilbert or Banach space. Mountain
pass theorems, saddle point theorems, linking theorems, mountain cliff theorems give suffi-
cient conditions for the existence of a minimizer for a certain differentiable functional defined
on the whole space or on a bounded region (for example, see [3, 16–19, 21]).

In [13–15] R. Precup studies critical point theorems of Schechter type for C1 functionals on
a closed ball and also on a closed conical shell in a Hilbert space by using Palais–Smale type
compactness conditions and also Leray–Schauder conditions on the boundary. These results
can be used successfully to localize the solutions of PDEs involving the Laplace operator.

In our paper we improve the above mentioned Schechter type results (on a ball) for sub-
level sets in locally uniformly convex Banach spaces and then apply our result for localizing
the solutions for p-Laplace type equations on bounded, and also on unbounded domains.

The paper is structured as follows: Section 2 contains certain preliminaries concerning
duality mappings on Banach spaces and the assumptions for the critical point problem which
we are investigating. Section 3 states the main result of our paper. Section 4 presents two
examples of localizing the solutions for problems containing the p-Laplacian.
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2 Preliminaries

Let X be a real Banach space, X∗ its dual, 〈·, ·〉 denotes the duality between X∗ and X. The
norm on X and on X∗ is denoted by ‖ · ‖.

A continuous function ϕ : R+ → R+ is called a normalization function if it is strictly
increasing, ϕ(0) = 0 and ϕ(r)→ ∞ for r → ∞.

The duality mapping corresponding to the normalization function ϕ is the set valued operator
Jϕ : X → P(X∗) defined by

Jϕx =
{

x∗ ∈ X∗ : 〈x∗, x〉 = ϕ(‖x‖)‖x‖, ‖x∗‖ = ϕ(‖x‖)
}

, x ∈ X.

Assumption (A1): X and X∗ are locally uniformly convex reflexive Banach spaces.

Observe that X∗ is strictly convex, because a locally uniformly convex Banach space
is also strictly convex, see [5, Theorem 3, p. 31]. Then it follows that card(Jϕx) = 1 by
[6, Proposition 1, p. 342]. Hence, Jϕ : X → X∗

〈Jϕx, x〉 = ϕ(‖x‖)‖x‖ and ‖Jϕx‖ = ϕ(‖x‖).

The following result holds.

Theorem 2.1. [6, Theorem 5, p. 345] Let X be a reflexive, locally uniformly convex Banach space and
Jϕ : X → X∗. Then Jϕ is bijective and its inverse J−1

ϕ is bounded, continuous and monotone. Moreover,
it holds J−1

ϕ = χ−1 J∗
ϕ−1 , where χ : X → X∗∗ is the canonical isomorphism between X and X∗∗ and

J∗
ϕ−1 : X∗ → X∗∗ is the duality mapping on X∗ corresponding to the normalization function ϕ−1.

We consider J̄ : X∗ → X defined by J̄ = J−1
ϕ . By Theorem 2.1 it follows that J̄ is bounded,

continuous and monotone. For w ∈ X∗ denote v = J−1
ϕ w and compute

〈w, J̄w〉 = 〈Jϕv, v〉 = ϕ(‖v‖)‖v‖ = ‖Jϕv‖‖v‖ = ‖w‖‖J−1
ϕ w‖

and

‖ J̄w‖ = ‖J−1
ϕ w‖ = ‖χ−1 J∗ϕ−1 w‖ = ‖J∗ϕ−1 w‖X∗∗ = ϕ−1(‖w‖).

We conclude

〈w, J̄w〉 = ϕ−1(‖w‖)‖w‖ and ‖ J̄w‖ = ϕ−1(‖w‖) for each w ∈ X∗. (2.1)

Fix 0 < R.

Assumption (A2): Let H : X → R be of class C1 such that the level set

NR = {u ∈ X : H(u) = R} is non-void and bounded ,

inf
u∈NR
〈H′(u), u〉 > 0,

and the operator H′ maps bounded sets into bounded sets.

We denote
XR = {u ∈ X : H(u) ≤ R}.

Assumption (A3): Let F : XR → R be of class C1 such that F is bounded by below on XR.
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We introduce some auxiliary mappings:

D : NR → X∗, D(u) = F′(u)− 〈F
′(u), u〉

〈H′(u), u〉H′(u),

E : NR → X, E(u) = J̄D(u)− 〈H
′(u), J̄Du〉
〈H′(u), u〉 u.

Lemma 2.2. Assume that (A1) holds, and that F : XR → R and H : X → R are C1 functions. For
all u ∈ NR the following properties hold:

(1) 〈H′(u), E(u)〉 = 0,

(2) 〈F′(u), E(u)〉 = ϕ−1(‖D(u)‖)‖D(u)‖.

Proof. Let u ∈ NR be arbitrary. We compute

〈H′(u), E(u)〉 =
〈

H′(u), J̄D(u)− 〈H
′(u), J̄Du〉
〈H′(u), u〉 u

〉
= 0.

Observe that

〈D(u), u〉 =
〈

F′(u)− 〈F
′(u), u〉

〈H′(u), u〉H′(u), u
〉

= 0. (2.2)

By using the statement (1) of this lemma, by (2.2) and (2.1) we have

〈F′(u), E(u)〉 =
〈

F′(u)− 〈F
′(u), u〉

〈H′(u), u〉H′(u), E(u)
〉

= 〈D(u), E(u)〉

=

〈
D(u), J̄D(u)〉 − 〈H

′(u), J̄Du〉
〈H′(u), u〉 〈D(u), u

〉
= 〈D(u), J̄D(u)〉 = ϕ−1(‖D(u)‖)‖D(u)‖.

3 Main result

Theorem 3.1. Assume that (A1), (A2) and (A3) are satisfied. Then, there exists a sequence (xn)n ⊂
XR such that F(xn)→ inf F(XR) and one of the following statements hold

(a) F′(xn)→ 0 as n→ ∞;

(b) for each n ∈N we have H(xn) = R, 〈H′(xn), J̄F′(xn)〉 ≤ 0 and

F′(xn)−
〈F′(xn), xn〉
〈H′(xn), xn〉

H′(xn)→ 0 as n→ ∞.

If, in addition, there exists a ∈ R+ such that

〈H′(x), J̄F′(x)〉 ≥ −a for each x ∈ NR,

and F satisfies a Palais–Smale type compactness condition (i.e. any sequence satisfying (a) or (b) has a
convergent subsequence) and the following boundary condition holds

F′(x) + µH′(x) 6= 0 for any µ > 0, x ∈ NR, (3.1)

then there exists x ∈ XR such that

F(x) = inf F(XR) and F′(x) = 0.
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Proof. By Ekeland’s variational principle, see [8, Theorem 1, p. 444], applied for XR (we use
here that H is continuous, hence XR is a closed set), the distance d(x, y) = ‖x− y‖, the function
F (which is continuous and bounded by below, see (A3)), ε = 1

n and for u ∈ XR such that

F(u) ≤ inf F(XR) +
1
n

,

it follows that there exists a sequence (xn)n in XR such that

F(xn) ≤ F(u) ≤ inf F(XR) +
1
n

,

and
F(xn) < F(y) +

1
n
‖xn − y‖ for each y ∈ XR \ {xn}. (3.2)

This yields F(xn)→ inf F(XR).
Since (xn)n belongs to XR, we distinguish two cases:

(1) there exists a subsequence of (xn)n, still denoted by (xn)n, such that H(xn) < R for each
n ∈N;

(2) there exists a subsequence of (xn)n, still denoted by (xn)n, such that H(xn) = R for each
n ∈N.

Case (1) Fix n ∈ N. Let t > 0 and z ∈ X such that ‖z‖ = 1. Since H is a continuous function
and H(xn) < R, we have that there exits δ > 0 (small enough) such that H(xn − tz) < R for
each t ∈ (0, δ). Hence xn − tz ∈ XR \ {xn} for each t ∈ (0, δ) and by (3.2) it holds

F(xn)− F(xn − tz) <
t
n

.

By taking t↘ 0 it follows

〈F′(xn), z〉 ≤ 1
n

.

But z ∈ X with ‖z‖ = 1 was arbitrary chosen, hence ‖F′(xn)‖ ≤ 1
n , which yields F′(xn) → 0

as n → ∞. Hence we constructed a sequence (xn)n which satisfies the statement (a) of this
theorem.

Case (2) Fix n ∈ N. We have H(xn) = R. Let z ∈ X such that ‖z‖ = 1. We use the definition
of the Fréchet derivative of H: for each ε > 0 there exists δε > 0 such that for each t ∈ (0, δε)

we have
−εt < H(xn − tz)− H(xn) + 〈H′(xn), tz〉 < εt.

Hence,

R− εt− t〈H′(xn), z〉 < H(xn − tz) < R + εt− t〈H′(xn), z〉 for each t ∈ (0, δε). (3.3)

• If 〈H′(xn), z〉 > 0: by taking ε = 〈H′(xn), z〉 in (3.3) we get

H(xn − tz) < R for each t ∈ (0, δε).

Hence xn − tz ∈ XR \ {xn} for t ∈ (0, δε). By (3.2) it follows that for t ∈ (0, δε)

F(xn)− F(xn − tz) <
t
n

,
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then by t↘ 0 we get

〈F′(xn), z〉 ≤ 1
n

for each z ∈ X with ‖z‖ = 1 and 〈H′(xn), z〉 > 0. (3.4)

• If 〈H′(xn), z〉 = 0: we approximate z by a sequence (zk)k such that ‖zk‖ = 1 and
〈H′(xn), zk〉 > 0 for each k ∈ N, while ‖z − zk‖ → 0 as k → ∞. Since 〈H′(xn), ·〉 is con-
tinuous, we have 〈H′(xn), zk〉 → 〈H′(xn), z〉 = 0 as k→ ∞.

Let k ∈ N be fixed. By considering (3.3) for zk instead of z and ε = 〈H′(xn), zk〉 for
t ∈ (0, δε) we get

H(xn − tzk) < R.

Then, xn − tzk ∈ XR \ {xn} for t ∈ (0, δε). By (3.2) we obtain for t sufficiently small

F(xn)− F(xn − tzk) <
t
n

,

which yields

〈F′(xn), zk〉 ≤
1
n

.

But ‖z− zk‖ → 0 as k→ ∞, hence

〈F′(xn), z〉 ≤ 1
n

.

This inequality and (3.4) imply

〈F′(xn), z〉 ≤ 1
n

for each z ∈ X with ‖z‖ = 1 and 〈H′(xn), z〉 ≥ 0. (3.5)

Further we have two possible cases.

Case (2a) There exists a subsequence of (xn)n, which we still denote by (xn)n, such that
〈H′(xn), J̄F′(xn)〉 > 0: by taking z = 1

‖JF′(xn)‖ J̄F′(xn) in (3.5) we get

〈F′(xn), J̄F′(xn)〉 ≤
1
n
‖JF′(xn)‖.

By the property (2.1) of J̄ it follows that

〈F′(xn), J̄F′(xn)〉 = ϕ−1(‖F′(xn)‖)‖F′(xn)‖ and ‖ J̄F′(xn)‖ = ϕ−1(‖F′(xn)‖)

which yields

‖F′(xn)‖ ≤
1
n

,

hence F′(xn) → 0 as n → ∞ and we obtained a sequence (xn)n which satisfies the statement
(a) of this theorem.

Case (2b) There exists a subsequence of (xn)n, which we still denote by (xn)n, such that
〈H′(xn), J̄F′(xn)〉 ≤ 0: by taking z = 1

‖E(xn)‖E(xn) in (3.5) (if ‖E(xn)‖ = 0, then by Lemma 2.2 (2)
we get ‖D(xn)‖ = 0) and by Lemma 2.2 (2) we get

ϕ−1(‖D(xn)‖)‖D(xn)‖ = 〈F′(xn), E(xn)〉 ≤
1
n
‖E(xn)‖.

Hence,

ϕ−1(‖D(xn)‖)‖D(xn)‖ ≤
1
n
‖E(xn)‖. (3.6)
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Denote the kernel of H′(xn) by Kn = {x ∈ X : 〈H′(xn), x〉 = 0} and the projection mapping

Pn : X → Kn by Pnv = v− 〈H
′(xn), v〉

〈H′(xn), xn〉
xn.

Since v ∈ X 7→ 〈H′(xn), v〉 is linear and continuous, it follows that Pn is also linear and
continuous.

Since (xn)n ⊂ NR and the level set NR is bounded, it follows that (xn)n is a bounded
sequence. By the assumption on H′ it follows that (H′(xn))n is also bounded and there exists

0 < βR := inf
u∈NR
〈H′(u), u〉 ≤ 〈H′(xn), xn〉 for each n ∈N.

We write

‖Pnv‖ ≤ ‖v‖+ ‖H′(xn)‖‖v‖
infn∈N〈H′(xn), xn〉

‖xn‖ ≤
(

1 +
‖H′(xn)‖‖xn‖

βR

)
‖v‖ for each v ∈ X.

Hence there exists αR > 0 (independent of n) such that

‖Pnv‖ ≤ αR‖v‖ for each v ∈ X.

We take v = J̄D(xn) to get Pn J̄D(xn) = E(xn) and

‖E(xn)‖ ≤ αR‖ J̄D(xn)‖ = αR ϕ−1(‖D(xn)‖) for each n ∈N.

Then by (3.6) we have

ϕ−1(‖D(xn)‖)‖D(xn)‖ ≤
αR

n
ϕ−1(‖D(xn)‖) for each n ∈N.

This yields D(xn) → 0 as n → ∞. Hence we constructed a sequence (xn)n which satisfies
statement (b) of this theorem.

If, in addition, F satisfies the (PS) type compactness condition.

Case (a) F′(xn) → 0 as n → ∞ and there exist x ∈ XR and a subsequence (xnk)k such that
‖xnk − x‖ → 0 as k→ ∞. Since F is a C1 function, we get F′(x) = 0 and by the construction of
(xn)n we have F(xn)→ inf F(XR), hence F(x) = inf F(XR).

Case (b) We have D(xn) → 0 as n → ∞, H(xn) = R and 〈H′(xn), J̄F′(xn)〉 ≤ 0 for all n ∈ N

and there exist x ∈ XR (XR is a closed set, since H is continuous) and a subsequence (xnk)k
such that ‖xnk − x‖ → 0 as k → ∞. Hence F(x) = limk→∞ F(xnk) = inf F(XR), F′(x) =

limk→∞ F′(xnk) and x ∈ NR, i.e. H(x) = R. But D(xnk)→ 0 as k→ ∞, which implies

F′(x)− 〈F
′(x), x〉

〈H′(x), x〉H′(x) = 0. (3.7)

Applying the operator J̄ we get

J̄F′(x)− 〈F
′(x), x〉

〈H′(x), x〉 J̄H′(x) = 0,

which yields

〈H′(x), J̄F′(x)〉 − 〈F
′(x), x〉

〈H′(x), x〉 〈H
′(x), J̄H′(x)〉 = 0,
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〈H′(x), J̄F′(x)〉 − 〈F
′(x), x〉

〈H′(x), x〉 ϕ−1(‖H′(x)‖)‖H′(x)‖ = 0. (3.8)

Since we are investigating Case (b), it follows that (〈H′(xn), J̄F′(xn)〉)n is a bounded sequence
in R, hence there exist b ∈ R, b ≤ 0, and a subsequence, denoted again by (xnk)k, such that

〈H′(xnk), J̄F′(xnk)〉 → b.

But ‖xnk − x‖ → 0 as k→ ∞, hence

〈H′(x), J̄F′(x)〉 = b ≤ 0.

Using (3.8) it follows
〈F′(x), x〉
〈H′(x), x〉 ϕ−1(‖H′(x)‖)‖H′(x)‖ = b ≤ 0.

Since 〈H′(x), x〉 > 0 (assumption on H′ and the fact that x ∈ NR as the limit of (xnk)k), we
obtain

〈F′(x), x〉 ≤ 0.

• If 〈F′(x), x〉 = 0, then (3.7) implies F′(x) = 0.
• If 〈F′(x), x〉 < 0, then (3.7) implies

F′(x) + µH′(x) = 0 where µ = − 〈F
′(x), x〉

〈H′(x), x〉 > 0 and x ∈ NR,

which contradicts the assumption (3.1) from the statement of this theorem.

4 Applications

4.1 Example 1

Consider the Sobolev space W1,p
0 (Ω), where Ω is a bounded domain in Rk with Lipschitz

continuous boundary and 1 < p < ∞, equipped with the norm

‖u‖1,p =

(∫
Ω
|∇u(x)|pdx

) 1
p

,

where

∇u =

(
∂u
∂x1

, . . . ,
∂u
∂xk

)
, |∇u| =

(
k

∑
i=1

(
∂u
∂xi

)2
) 1

2

.

The Banach space (W1,p
0 (Ω), ‖ · ‖1,p) is uniformly convex, see [1, Theorem 3.6]. Moreover, it

is also uniformly smooth (which is proved by using Clarkson’s inequalities [1, 2.38 Theorem,
p. 44] and [4, Definition 2.4., p. 13]). The dual space (W1,p

0 (Ω))∗ will be denoted by W−1,p′(Ω),
where 1

p +
1
p′ = 1, and by [4, Theorem 2.10] it follows that it is uniformly convex.

The Rellich–Kondrachov Theorem states that the embedding W1,p
0 (Ω) ↪→ Lq(Ω) is compact

for q ∈ (1, p∗) (where p∗ = kp
k−p if p < k and p∗ = ∞, if p ≥ k) and there exists Cq > 0 such

that
‖u‖Lq(Ω) ≤ Cq‖u‖1,p for each u ∈W1,p

0 (Ω). (4.1)
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In the context of our paper we choose (X, ‖ · ‖) = (W1,p
0 (Ω), ‖ · ‖1,p), J̄ = J−1

ϕ , where

ϕ(t) = tp−1 for t ∈ R+ and let H : W1,p
0 (Ω)→ R be given by H(u) = 1

p‖u‖
p
1,p.

We consider the p-Laplacian operator −∆p : W1,p
0 (Ω)→W−1,p′(Ω) defined by

〈−∆p(u), v〉 =
∫

Ω
|∇u(x)|p−2∇u(x)∇v(x)dx for all u, v ∈W1,p

0 (Ω).

It is known that the functional H is continuously Fréchet differentiable on W1,p
0 (Ω) and

H′ = −∆p. The operator −∆p is in fact the duality mapping Jϕ : W1,p
0 (Ω) → W−1,p′(Ω)

corresponding to the normalization function ϕ(t) = tp−1 for t ∈ R+, i.e. H′ = Jϕ, for details
consult [6, Theorem 7 and Theorem 9]. In our example we have

NR =

{
v ∈W1,p

0 (Ω) :
1
p
‖v‖p

1,p = R
}

and

XR =

{
v ∈W1,p

0 (Ω) :
1
p
‖v‖p

1,p ≤ R
}

.

Assume that f : Ω ×R → R is a Carathéodory function such that f (x, 0) 6= 0 for a.e.
x ∈ Ω and

| f (x, s)| ≤ a(x)|s|q−1 + b(x) for x ∈ Ω, s ∈ R,

where a ∈ L∞(Ω), b ∈ L
q

q−1 (Ω) are positive functions and q ∈ (1, p∗). Define the Nemytskii
operator N f : W1,p

0 (Ω)→W−1,p′(Ω) by

N f (u) (x) = f (x, u(x)).

We have N f (W
1,p
0 (Ω)) ↪→ N f (Lq(Ω)) ⊂ L

q
q−1 (Ω) = (Lq(Ω))∗ ↪→ W−1,p′(Ω) and N f is a

continuous function which maps bounded sets into bounded sets (see [9]).

Consider the following Dirichlet problem involving the p-Laplacian:

− ∆pu = f (x, u) a.e. x ∈ Ω and u
∣∣
∂Ω = 0. (4.2)

We call u ∈W1,p
0 (Ω) a weak solution of (4.2) if for each v ∈W1,p

0 (Ω) it holds∫
Ω
|∇u(x)|p−2∇u(x)∇v(x)dx =

∫
Ω

f (x, u(x))v(x)dx. (4.3)

We introduce F : W1,p
0 (Ω)→ R defined by

F (u) =
1
p
‖u‖p

1,p −
∫

Ω
h (x, u) dx,

where h : Ω×R→ R is h (x, t) =
∫ t

0
f (x, s) ds. We have (see [9, Theorem 7])

F′ (u) = H′ (u)− N f (u) .

The critical points of F are the solutions of (4.3).

(A4) Assumptions for R: denote by C an upper bound for Cq and suppose that one of the
following three assumptions is satisfied.
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(1) If p > q: let R > 0 be a solution of the inequality in R

R
p−1

p > Cq p
q−p

p ‖a‖L∞(Ω)R
q−1

p + Cp
1−p

p ‖b‖
L

q
q−1 (Ω)

.

(2) If p = q: assume 1 > Cp‖a‖L∞(Ω) and let R be such that

R >

Cp
1−p

p ‖b‖
L

p
p−1 (Ω)

1− Cp‖a‖L∞(Ω)


p

p−1

.

(3) If q > p: assume that 1 > Cq p
q−p

p ‖a‖L∞(Ω) + Cp
1−p

p ‖b‖
L

q
q−1 (Ω)

and let R > 0 to be a

solution of the inequality in R

R
p−1

p − Cq p
q−p

p ‖a‖L∞(Ω)R
q−1

p > Cp
1−p

p ‖b‖
L

q
q−1 (Ω)

.

Proposition 4.1. The following relation holds

F′(u) + µH′(u) 6= 0 for any µ > 0, u ∈ NR,

where R satisfies one of the three conditions mentioned in (A4).

Proof. We reason by contradiction: assume that there exist u ∈ NR and µ > 0 such that
F′(u) + µH′(u) = 0, which implies

(1 + µ)〈Jϕ(u), u〉 = 〈N f (u), u〉. (4.4)

By our assumptions

〈N f (u), u〉 =
∫

Ω
f (x, u(x))u(x)dx

≤
∫

Ω
a(x)|u(x)|q + b(x)|u(x)|dx ≤ ‖a‖L∞(Ω)‖u‖

q
Lq(Ω)

+ ‖b‖
L

q
q−1 (Ω)

‖u‖Lq(Ω).

Using (4.1) and (4.4) we get

‖u‖p
1,p ≤ (1 + µ)‖u‖p

1,p ≤ ‖a‖L∞(Ω)‖u‖
q
Lq(Ω)

+ ‖b‖
L

q
q−1 (Ω)

‖u‖Lq(Ω)

≤ Cq‖a‖L∞(Ω)‖u‖
q
1,p + C‖b‖

L
q

q−1 (Ω)
‖u‖1,p.

But u ∈ NR implies ‖u‖1,p = (pR)
1
p , and we obtain

pR ≤ Cq‖a‖L∞(Ω)(pR)
q
p + C‖b‖

L
q

q−1 (Ω)
(pR)

1
p ,

which yields

R
p−1

p ≤ Cq p
q−p

p ‖a‖L∞(Ω)R
q−1

p + Cp
1−p

p ‖b‖
L

q
q−1 (Ω)

. (4.5)

The assumptions in (A4) imply that (4.5) cannot be satisfied.
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Proposition 4.2. Suppose that R satisfies one of the three conditions mentioned in (A4). Then F
satisfies the following Palais–Smale type compactness condition: if (un)n is a sequence from XR such
that one of the following statements hold

(a) F′(un)→ 0 as n→ ∞;

(b) for each n ∈N we have H(un) = R, 〈H′(un), J̄F′(un)〉 ≤ 0 and

F′(un)−
〈F′(un), un〉
〈H′(un), un〉

H′(un)→ 0 as n→ ∞,

then (un)n admits a convergent subsequence.

Proof. Since the sequence (un)n is bounded in W1,p
0 (Ω) (it belongs to XR) and since the embed-

ding W1,p
0 (Ω) ↪→ Lq(Ω) is compact for q ∈ (1, p∗), there exist u ∈W1,p

0 (Ω) and a subsequence
of (un)n, which we denote again by (un)n, which converges weakly in W1,p

0 (Ω) to u and
strongly in Lq(Ω) to u. Then by Hölder’s inequality we have

〈N f (un), un − u〉 ≤ ‖ f (·, un)‖
L

q
q−1 (Ω)

‖un − u‖Lq(Ω) → 0. (4.6)

Case (a): F′(un)→ 0 as n→ ∞. Then,

〈H′(un), un − u〉 = 〈F′(un), un − u〉+ 〈N f (un), un − u〉 → 0.

The (S+) property of H′ = Jϕ (see [6, Theorem 10]) implies (un)n converges strongly to u.

Case (b): For each n ∈N we have H(un) = R, 〈H′(un), J̄F′(un)〉 ≤ 0 and

F′(un)−
〈F′(un), un〉
〈H′(un), un〉

H′(un)→ 0 as n→ ∞.

We denote

µ = lim
n→∞

〈F′(un), un〉
〈H′(un), un〉

∈ R.

Therefore,
F′(un)− µH′(un)→ 0 as n→ ∞. (4.7)

If µ = 0, the above convergence implies

F′(un)→ 0 as n→ ∞.

As in Case (a) it follows that there exist u ∈W1,p
0 (Ω) and a subsequence of (un)n, which we

denote again by (un)n, which converges strongly in W1,p
0 (Ω) to u. Since F′ is continuous, we

have F′(u) = 0, which implies 〈H′(u), u〉 = 〈N f (u), u〉. But u ∈ NR (since (un)n belongs to the
closed set NR), which yields

pR = 〈N f (u), u〉 ≤ Cq‖a‖L∞(Ω)(pR)
q
p + C‖b‖

L
q

q−1 (Ω)
(pR)

1
p .

This contradicts the assumption on R from (A4). Hence, the case µ = 0 is not possible.
For µ 6= 0 we have by (4.7)

〈F′(un)− µH′(un), un − u〉 → 0 as n→ ∞.
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(1− µ)〈H′(un), un − u〉+ 〈N f (un), un − u〉 → 0 as n→ ∞.

If µ 6= 1 we get by (4.6)

(1− µ)〈H′(un), un − u〉 → 0 as n→ ∞.

The (S+) property of H′ = Jϕ implies (un)n converges strongly to u. The convergence (4.7)
and the strong convergence un → u implies F′(u)− µH′(u) = 0.

〈F′(u), J̄F′(u)〉 = µ〈H′(u), J̄F′(u)〉.

But 〈H′(u), J̄F′(u)〉 ≤ 0 and 〈F′(u), J̄F′(u)〉 ≥ 0, therefore µ < 0 and the relation F′(u) −
µH′(u) = 0 contradicts the statement of Proposition 4.1. Hence, the case µ 6= 1 is not possible.

For µ = 1: by (4.7) it follows that

〈F′(un), J̄F′(un)〉 − 〈H′(un), J̄F′(un)〉 → 0 as n→ ∞.

Using (2.1) we have

〈F′(un), J̄F′(un)〉 = ϕ−1(‖F′(un)‖)‖F′(un)‖ ≥ 0

and by the assumptions of Case (b) we have

−〈H′(un), J̄F′(un)〉 ≥ 0

Then F′(un) → 0 as n → ∞. As in Case (a) it follows that there exist u ∈W1,p
0 (Ω) and a

subsequence of (un)n, which we denote again by (un)n, which converges strongly in W1,p
0 (Ω)

to u. This yields u ∈ NR, because (un)n belongs to the closed set NR. Since F′ and H′ are
continuous, we have by the convergence (4.7) that F′(u)− H′(u) = 0,

〈F′(u), J̄F′(u)〉 = 〈H′(u), J̄F′(u)〉.

But 〈H′(u), J̄F′(u)〉 ≤ 0 (by the assumption of Case (b) and by the strong convergence un → u)
and 〈F′(u), J̄F′(u)〉 ≥ 0, hence F′(u) = 0, which implies H′(u) = 0 and then u = 0. But
0 /∈ NR, contradicts u ∈ NR. Hence the case µ = 1 is not possible.

We apply Theorem 3.1 in order to localize the solution of (4.3).

Theorem 4.3. Suppose that R satisfies one of the three conditions mentioned in (A4). Then, equation
(4.3) admits a weak solution u ∈ XR, which minimizes F on XR.

In what follows we discuss situations when the best Sobolev constant Cq admits an upper
estimate which can be computed:

Denote the first eigenvalue of the p-Laplace operator by

λp(Ω) = min
v∈W1,p

0 (Ω)\{0}

∫
Ω |∇v(x)|pdx∫

Ω |v(x)|pdx
.

Then,

‖u‖p
Lp(Ω)

≤ 1
λp(Ω)

‖u‖p
1,p for all u ∈W1,p

0 (Ω).

Hence the best embedding constant of W1,p
0 (Ω) ↪→ Lp(Ω) is Cp =

( 1
λp(Ω)

)1/p, while for
q < p the best embedding constant of W1,p

0 (Ω) ↪→ Lq(Ω) verifies (via Hölder’s inequality)
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Cq ≤ |Ω|
p−q
pq
( 1

λp(Ω)

)1/p (here |Ω| denotes the Lebesgue measure, i.e. the k-dimensional vol-
ume, of the set Ω). In order to obtain upper bounds for Cq (q ≤ p) we need lower bounds for
λp(Ω).

By using the Faber–Krahn inequality [2, Theorem 1] it holds

λp(Ω) ≥ λp(Ω∗),

where Ω∗ is the k-dimensional ball centered at the origin having the same volume as Ω. So it
has the radius r = 1√

π

(
|Ω|Γ( k

2 + 1)
)1/k.

By [10] we have for the ball Ω∗ = Br ⊂ Rk of radius r the inequality

λp(Br) ≥
(

k
rp

)p

.

Then the best Sobolev constant has the following upper estimate, which can be computed:

Cp ≤
p

k
√

π

(
|Ω|Γ

(
k
2
+ 1
)) 1

k

,

and for 1 < q < p

Cq ≤
p

k
√

π

(
|Ω|

k(p−q)
pq +1Γ

(
k
2
+ 1
)) 1

k

.

For k = 1 and Ω = (0, T) ⊂ R the value of the first eigenvalue is known (see [7])

λp(Ω) = (p− 1)

(
2π

Tp sin(π
p )

)p

,

hence

Cp =
Tp sin(π

p )

2π(p− 1)
1
p

.

For the case k = 1 and Ω = (0, T) the sharp Poincaré inequality is known (see [20], p. 357):
for each p > 1, q > 1 and u ∈W1,p

0 (0, T) it holds

‖u‖Lq(Ω) ≤ Cq‖u‖1,p,

where the embedding constant is given by

Cq =
T

1
q+

1
p′

2B( 1
q , 1

p′ )

(
p′
) 1

q q
1
p′
(

p′ + q
) 1

p−
1
q ,

p′ = p
p−1 and B is the Beta function.

4.2 Example 2

For 1 < p < ∞ we define the following subspace of radially symmetric functions of W1,p(Rk)

W1,p
r (Rk) =

{
u ∈W1,p(Rk) : u(x) = u(x′) ∀ x, x′ ∈ Rk, |x| = |x′|

}
,
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endowed with the norm induced from W1,p(Rk)

‖u‖p =
∫

Rk

|∇u(z)|p + |u(z)|pdz.

The space W1,p(Rk) is a separable, reflexive and uniformly convex Banach space [1, 3.6 The-
orem, p. 61]; moreover, it is also uniformly smooth (which is proved by using Clarkson’s
inequalities [1, 2.38 Theorem, p. 44] and [4, Definition 2.4., p. 13]).

In the context of Section 2 and Section 3 we consider X = W1,p
r (Rk) endowed with the

above norm ‖ · ‖, X is a closed subspace of W1,p(Rk). Hence it is also uniformly smooth and
by [4, Theorem 2.10] it follows that its dual X∗ is uniformly convex.

Let Jϕ : X → X∗ be the duality mapping corresponding to the weight function ϕ(t) = tp−1,
t ∈ R+ where p ∈ (1,+∞) (see [3, Proposition 2.2.4]). It is well known that the duality
mapping Jϕ satisfies the following conditions:

‖Jϕu‖ = ϕ(‖u‖) and 〈Jϕu, u〉 = ‖Jϕu‖‖u‖ for all u ∈ X.

Moreover, the functional H : X → R defined by H(u) = 1
p‖u‖p is convex and Fréchet differ-

entiable with H′ = Jϕ. We take J̄ = J−1
ϕ .

It is known [11, Théorème II. 1] that the embedding W1,p
r (Rn) ↪→ Lq(Rn) is compact for

q ∈ (p, p∗) (where k ≥ 2, p∗ = kp
k−p if p < k and p∗ = ∞, if p ≥ k) there exists Cq > 0 (the best

embedding constant) such that

‖u‖Lq(Rk) ≤ Cq‖u‖ for each u ∈W1,p
r (Rk). (4.8)

Let f : R×Rk → R be a Carathéodory function such that f (x, 0) 6= 0 for a.e. x ∈ R which
satisfies

| f (x, s)| ≤ a(x)|s|q−1 + b(x) for (x, s) ∈ Rk ×R,

where a ∈ L∞(Rk), b ∈ L
q

q−1 (Rk) are positive functions and q ∈ (p, p∗) and f (x, ·) = f (x′, ·)
for all x, x′ ∈ Rn, |x| = |x′| ( f is radially symmetric in the first variable).

Consider the following problem involving the p-Laplacian:

− ∆pu + |u|p−2u = f (x, u) a.e. x ∈ Rk. (4.9)

We call u ∈W1,p(Rk) a weak solution of (4.9) if for each v ∈W1,p(Rk) it holds∫
Ω
|∇u(x)|p−2∇u(x)∇v(x) + |u(x)|p−2u(x)v(x)dx =

∫
Ω

f (x, u(x))v(x)dx. (4.10)

Define the Nemytskii operator N f : X → X∗ by N f (u) (x) = f (x, u(x)) and F : X → R by

F (u) =
1
p
‖u‖p

1,p −
∫

Rn
h (x, u) dx,

where h : Ω×R→ R is h (x, t) =
∫ t

0 f (x, s) ds. We have

F′ (u) = H′ (u)− N f (u) .

Let G = O(Rk) be the set of all rotations on Rk. Observe that the elements of G leave Rk

invariant, i.e. g(Rk) = Rk for all g ∈ G. G induces an isometric linear action over W1,p(Rk) by

(gu)(z) = u(g−1z), g ∈ G, u ∈W1,p(Rk), a.e. z ∈ Rk.
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A function φ defined on W1,p(Rk) is said to be G-invariant if

φ(gu) = φ(u) for all g ∈ G, u ∈W1,p(Rk).

In fact W1,p
r (Rk) is the fixed point set of W1,p(Rk) under G and the norm

‖u‖ =
{∫

Rk
(|∇u(z)|p + |u(z)|p)dz

} 1
p

is G-invariant on W1,p(Rk).
Observe that by the assumption on f and the above remark, the functional F is G-invariant

and then by the principle of symmetric criticality [12] every critical point of F is also a solution
of (4.10).

Consider

XR =

{
v ∈W1,p

r (Rk) :
1
p
‖v‖p ≤ R

}
.

Reasoning as in Section 4.1 one has the following result.

Theorem 4.4. Suppose that R satisfies one of the three conditions mentioned in (A4). Then, F admits
a critical point u ∈ XR, which minimizes F on XR. Moreover, this critical point is also a weak solution
of (4.10).

We discuss situations when the Sobolev constant Cq admits an upper estimate which can
be computed: by [20] we have that for 1 < p < k and p∗ = kp

k−p it holds for all u ∈W1,p(Rk)

‖u‖Lp∗ (Rk) ≤ CR

(∫
Rk
|∇u(x)|pdx

) 1
p

,

where

CR =
1

√
πk

1
p

(
p− 1
k− p

)1− 1
p
(

Γ(1 + k
2 )Γ(k)

Γ( k
p )Γ(1 + k− k

p )

) 1
k

.

Obviously this implies

‖u‖Lp∗ (Rk) ≤ CR‖u‖ for each u ∈W1,p(Rk).

For any q ∈ (p, p∗) there exists θ ∈ (0, 1) such that q = θp + (1 − θ)p∗, then by Hölder’s
inequality

‖u‖q
Lq(Rk)

≤ ‖u‖θp
Lp(Rk)

‖u‖(1−θ)p∗

Lp∗ (Rk)
≤ C

kq
(

1
p−

1
q

)
R ‖u‖q,

for each u ∈ W1,p(Rk). Then the Sobolev constant has the following upper estimate, which
can be computed:

Cq ≤ C
k
(

1
p−

1
q

)
R for q ∈

(
p,

kp
k− p

)
and 1 < p < k.
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