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Abstract. Our aim in this paper is to find decay mild solutions of the nonlocal Cauchy
problem for a class of second order evolution equations with memory. By constructing
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1 Introduction

Let X be a Hilbert space, A an unbounded, selfadjoint, positive definite operator in X and let
β ∈ L1(R+) be locally absolutely continuous in (0, ∞), nonnegative, nonincreasing and such
that

∫ ∞
0 β(t)dt < 1.

In this paper we consider the following nonlocal Cauchy problem:

u′′(t) + Au(t)−
∫ t

0
β(t− s)Au(s)ds = f (t, u(t)), t > 0, (1.1)

u(0) + g(u) = x0, u′(0) + h(u) = y0, (1.2)

where f : R+ × X → X, g, h : C(R+, X)→ X, and x0, y0 ∈ X are given data.
The above abstract model arises in several applied fields. For example, in viscolasticity,

the operator A = −∆, X = L2(Ω), Eq. (1.1) is a nonlinear wave equation with memory. When
the problem is linear ( f , g, h ≡ 0), Eq. (1.1) can be rewritten as an integral equation. In this
case, the theory developed by Prüss in [8] provides a general framework for the existence and
uniqueness of solutions. In [9] Prüss considers the following problems:{

u′′(t) + Au(t)−
∫ t

0 β(t− s)Au(s)ds = f (t), t > 0,

u(0) = x0, u′(0) = y0,
(1.3)
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and {
u′′(t) + Au(t)−

∫ t
0 β(t− s)Au(s)ds = f (u(t), u′(t)), t > 0,

u(0) = x0, u′(0) = y0,
(1.4)

where f : D(
√

A)× X → X is Lipschitz in a neighborhood of 0, with f (0) = 0 and a suffi-
ciently small constant. With these problems, Prüss obtained stable properties of the solutions
of (1.3) and (1.4), decay of polynomial or exponential type in particular.

Recently the Cauchy problem for Eq. (1.1) also has been studied in [2, 4] with the replace-
ment of f (t, u(t)) by ∇F(u(t)) or ∇F(u(t)) + g(t) and ∇F is Lipschitz in a neighborhood of 0.
Motivated by the above work of [2, 4], this paper also deals with problem (1.1)–(1.2). Here,
the nonlinear f is more general than the one in [2, 4] and the initial conditions are nonlocal.
The concept of nonlocal initial conditions is introduced to extend the classical theory of initial
value problems. This notion is more appropriate than the classical one in describing natural
phenomena because it allows us to consider additional information (see, e.g., [5, 7, 11] and
their references).

In this work, we will prove the existence of decay mild solutions for problem (1.1)–(1.2),
basing on the fixed point theorem for condensing map for measure of noncompactness (MNC)
in [6].

The rest of the paper is organized as follows. Section 2 introduces some useful preliminar-
ies. In addition, we construct a regular MNC on BC(R+; X) and give a fixed point principle.
In Section 3, we prove the existence of mild solutions on [0, T], T > 0, for problem (1.1)–(1.2).
Section 4 is devoted to show the decay mild solutions. In the last section, we give an example
to illustrate the abtract results obtained in the paper.

2 Preliminaries

In this section, we introduce preliminary facts which are used throughout this paper. First,
we consider the problem

u′′(t) + Au(t)−
∫ t

0
β(t− s)Au(s)ds = F(t), t > 0, (2.1)

u(0) + g(u) = x0, u′(0) + h(u) = y0,

where F : R+ → X is continuous, and g, h, x0, y0 are given.

Definition 2.1 ([8]). A family {S(t)}t≥0 ⊂ B(X) of bounded linear operators in X is called a
resolvent for (2.1) if the following conditions are satisfied.

(S1) S(t) is strongly continuous on R+ and S(0) = I;

(S2) S(t) commutes with A, which means that S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for
all x ∈ D(A) and t ≥ 0;

(S3) the resolvent equation holds

S(t)x = x +
∫ t

0
a(t− s)AS(s)xds, for all x ∈ D(A), t ≥ 0.

Integrating (2.1) twice we obtain the equivalent problem

u(t) + (a ∗ Au)(t) = [x0 − g(u)] + t[y0 − h(u)] + (t ∗ F)(t), t ≥ 0,
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where

a(t) = t− t ∗ β(t) = (1− b0)t + (1 ∗ b)(t), b(t) =
∫ ∞

t
β(s)ds, t ≥ 0, b0 = b(0),

and the star indicates the convolution. By a similar argument as in [8, p. 160], we get the mild
solution given by the formula

u(t) = S(t)[x0 − g(u)] + R(t)[y0 − h(u)] + (R ∗ F)(t), t ≥ 0, (2.2)

where S(t) is the resolvent of (2.1) and R(t) =
∫ t

0 S(s)ds is its integral. Moreover, since β(t) is
real and A is selfadjoint, we obtain S(t) and R(t) are selfadjoint as well (cf. [8, Corollary 2.1]).

The following results are direct consequences of [9, Proposition 2.1 and Theorem 3.1].

Proposition 2.2. Let A be a selfadjoint, positive definite operator in the Hilbert X, and let β ∈ L1(R+)

a locally absolutely continuous, nonnegative, nonincreasing map such that b0 =
∫ ∞

0 β(t)dt < 1. Then
the resolvent S(t) and its integral R(t), satisfy

(i) ‖S(t)‖ ≤ 1, ‖A1/2R(t)‖ ≤ 1√
1+b0

, t ≥ 0,

(ii) S(t), A1/2R(t) are strongly integrable, and converge strongly to 0 as t→ ∞.

A typical example of kernel considered in [9] is as follows:

β(t) = k0
tα−1

Γ(α)
e−γt, t > 0,

where γ > 0, α ∈ (0, 1) and 0 < k0 < γα.
Next, we recall the knowledge of the measure of noncompactness in Banach spaces.

Among them the Hausdorff measure of noncompactness is important. Next, we mention
the condensing map and the fixed point principle for condensing maps. We denote the col-
lection of all nonempty bounded subsets in X by BX, and the norm of space C([0, T]; X) by
‖ · ‖C, with ‖u‖C = supt∈[0,T] ‖u(t)‖X.

Definition 2.3. A function Φ : BX −→ [0,+∞) is called a measure of noncompactness (MNC)
in X if

Φ(co Ω) = Φ(Ω), ∀Ω ∈ BX,

where co Ω is the closure of the convex hull of Ω. An MNC Φ in X is called

(i) monotone if for ∀Ω1, Ω2 ∈ BX, Ω1 ⊂ Ω2 implies Φ(Ω1) ≤ Φ(Ω2);

(ii) nonsingular if Φ
(
{x} ∪Ω

)
= Φ(Ω) for ∀ x ∈ X, ∀Ω ∈ BX;

(iii) invariant with respect to union with compact set if Φ(K∪Ω) = Φ(Ω) for every relatively
compact K ⊂ X and Ω ∈ BX;

(iv) algebraically semi-additive if Φ(Ω1 + Ω2) ≤ Φ(Ω1) + Φ(Ω2) for any Ω1, Ω2 ∈ BX;

(v) regular if Φ(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC is the Hausdorff MNC χ(·) which is defined as follows

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net} (2.3)

for ∀ Ω ∈ BX.
For T > 0, let χT be the Hausdorff MNC in C([0, T]; X). We recall the following facts (see

[6]): for each bounded D ⊂ C([0, T]; X), we have
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• χ(D(t)) ≤ χT(D) for all t ∈ [0, T], where D(t) = {x(t) : x ∈ D}.

• If D is an equicontinuous set on [0, T], then

χT(D) = sup
t∈[0,T]

χ(D(t)).

Consider the space BC(R+; X) of bounded continuous functions on R+ taking values on
X. Denote by πT the restriction operator on [0, T], πT(u) is the restriction of u on [0, T]. Then

χ∞(D) = sup
T>0

χT
(
πT(D)

)
, D ⊂ BC(R+; X), (2.4)

is an MNC. We give some measures of noncompactness as follows

dT(D) = sup
u∈D

sup
t≥T
‖u(t)‖X, (2.5)

d∞(D) = lim
T→∞

dT(D), (2.6)

χ∗(D) = χ∞(D) + d∞(D). (2.7)

The regularity of MNC χ∗ is proved in [3, Lemma 2.6].
In the sequel, we need some basic MNC estimates. Recall that one can define the sequential

MNC χ0 as follows:
χ0(Ω) = sup{χ(D) : D ∈ ∆(Ω)},

where ∆(Ω) is the collection of all at-most-countable subsets of Ω (see [1]). We know that

1
2

χ(Ω) ≤ χ0(Ω) ≤ χ(Ω),

for all bounded set Ω ⊂ X. Then the following property is evident.

Proposition 2.4. Let χ be the Hausdorff MNC on Banach space X, Ω ∈ BX. Then there exists a
sequence {xn}∞

n=1 ⊂ Ω such that

χ(Ω) ≤ 2χ
(
{xn}∞

n=1
)
+ ε, ∀ε > 0. (2.8)

We have the following estimate whose proof can be found in [6].

Proposition 2.5 ([6]). Let χ be the Hausdorff MNC on Banach space X, sequence {un}∞
n=1 ⊂

L1(0, T; X) such that ‖un(t)‖X ≤ v(t), for every n ∈ N∗ and a.e. t ∈ [0, T], for some v ∈ L1(0, T).
Then we have

χ

({∫ t

0
un(s)dx

})
≤ 2

∫ t

0
χ
(
{un(t)}

)
ds, (2.9)

for t ∈ [0, T].

To end this section, we recall a fixed point principle for condensing maps that will be used
in the next sections.

Definition 2.6. Let X be a Banach space, χ is an MNC on X, and ∅ 6= D ⊂ X. A continuous
map Φ : D −→ X is said to be condensing with respect to χ (χ-condensing) if for all Ω ∈ BD,
the relation

χ(Ω) ≤ χ
(
Φ(Ω)

)
implies the relative compactness of Ω.
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Theorem 2.7 ([6]). Let X be a Banach space, χ is an MNC on X, D is a bounded convex closed subset
of X and let Φ : D −→ D be a χ-condensing map. Then the fixed point set of Φ

Fix(Φ) = {x ∈ D : x = Φ(x)}

is a nonempty compact set.

3 Existence result

It should be noted that X 1
2
= D(

√
A) is a Hilbert space equipped with the scalar product

(x, y) 1
2
=
(√

Ax,
√

Ay
)
, x, y ∈ X 1

2
, where (·, ·) is a inner product in X. Denote ‖ · ‖1/2 :=

‖ · ‖X 1
2
, ‖x‖C := supt∈[0,T] ‖x(t)‖1/2, x ∈ C([0, T]; X 1

2
). Let χ and χT be Hausdorff MNC on X 1

2

and C([0, T], X 1
2
), respectively.

In formulation of problem (1.1)–(1.2), we assume that

(G) The function g : C
(
[0, T]; X 1

2

)
−→ X 1

2
obeys the following conditions:

(i) g is continuous and

‖g(u)‖1/2 ≤ θg(‖u‖C), (3.1)

for all u ∈ C([0, T]; X 1
2
), where θg : R+ → R+ is nondecreasing.

(ii) There exist non-negative constants ηg such that

χ
(

g(Ω)
)
≤ ηgχT(Ω), (3.2)

for all bounded set Ω ⊂ C([0, T]; X 1
2
).

(H) The function h : C([0, T]; X 1
2
) −→ X satisfies the following conditions:

(i) h is continuous and

‖h(u)‖X ≤ θh(‖u‖C), (3.3)

for all u ∈ C([0, T]; X 1
2
) where θh : R+ → R+ is continuous and nondecreasing

function.

(ii) There exists a function ηh ∈ L1(0, T) such that for all bounded set Ω ⊂ C([0, T]; X 1
2
),

χ
(

R(t)h(Ω)
)
≤ ηh(t)χT(Ω), (3.4)

for a.e. t ∈ [0, T].

(F) The nonlinear function f : R+ × X 1
2
−→ X satisfies:

(i) f
(
·, u(·)

)
is measurable for each u(·) ∈ X 1

2
, f (t, ·) is continuous for a.e. t ∈ [0, T],

and
‖ f
(
t, v
)
‖X ≤ m(t)θ f (‖v‖1/2), (3.5)

for all v ∈ X 1
2

where m ∈ L1(0, T), θ f : R+ → R+ is continuous and nondecreasing
function.
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(ii) There exists η f : R2
+ −→ R+ such that η f (t, ·) ∈ L1(0, T) and for all bounded set

Ω ⊂ X 1
2
,

χ
(

R(t− s) f (s, Ω)
)
≤ η f (t, s)χ(Ω), (3.6)

for a.e. t, s ∈ [0, T], s ≤ t.

Remark 3.1. Let us give some comments on the assumptions (G)(ii), (H)(ii) and (F)(ii).

1. If g, h are Lipschitz, then (3.2) and (3.4) are satisfied. These conditions are also satisfied
with ηg = ηh = 0 if g, h are completely continuous.

2. If f (t, ·) satisfies the Lipschitzian condition respect to the second variable, i.e.,

‖ f
(
t, v1

)
− f

(
t, v2

)
‖ ≤ k f (t)‖v1 − v2‖1/2, v1, v2 ∈ X1/2,

for some k f ∈ L1(0, T), then (3.6) is satisfied. In fact, we have

‖R(t− s)( f (s, v1)− f (s, v2))‖1/2 = ‖A1/2R(t− s)( f (s, v1)− f (s, v2))‖

≤
k f (s)√
1 + b0

‖v1 − v2‖1/2.

It implies that for all bounded set Ω ⊂ X 1
2
,

χ
(

R(t− s) f (s, Ω)
)
≤

k f (s)√
1 + b0

χ(Ω),

for a.e. t, s ∈ [0, T], s ≤ t.
Furthermore, if f (t, ·) is completely continuous (for each fixed t), then (3.6) is obviously
fulfilled with η f = 0.

Let x0 ∈ X 1
2
, y0 ∈ X. Motivated by (2.2), we say that a function u ∈ C(R+, D(

√
A)) is a

mild solution of problem (1.1)–(1.2) on [0, T], T > 0, if it satisfies the integral equation

u(t) = S(t)[x0 − g(u)] + R(t)[y0 − h(u)] +
∫ t

0
R(t− τ) f (τ, u(τ))dτ, ∀t ∈ [0, T]. (3.7)

Here S(t) is the resolvent for the linear equation

u′′(t) + Au(t)−
∫ t

0
β(t− s)Au(s)ds = 0, t > 0,

and R(t) =
∫ t

0 S(τ)dτ its integral.
We denote

M =
{

u ∈ C
(
[0, T]; X 1

2

)
: ‖u‖C ≤ R

}
,

where R > 0 given. We conclude that M is a bounded convex closed subset of C([0, T]; X 1
2
).

For each u ∈ M, we define the solution operator Φ : M→ C([0, T]; X 1
2
) as follows:

Φ(u)(t) = S(t)[x0 − g(u)] + R(t)[y0 − h(u)] +
∫ t

0
R(t− τ) f (τ, u(τ))dτ. (3.8)

Then u is a mild solution of problem (1.1)–(1.2) if it is a fixed point of solution operator Φ.
Thanks to the assumptions imposed of g, h, f , then Φ is continuous onM.
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Lemma 3.2. Let the assumptions of Proposition 2.2 and the hypothesis (F)(i) be satisfied, then

Qu(t) =
∫ t

0
R(t− τ) f (τ, u(τ))dτ, u ∈ M,

is equicontinuous on [0, T].

Proof. For u ∈ M, 0 ≤ t ≤ s ≤ T, we have

‖Qu(t)−Qu(s)‖ 1
2
=

∥∥∥∥∫ t

0
A1/2R(t− τ) f (τ, u(τ))dτ −

∫ s

0
A1/2R(s− τ) f (τ, u(τ))dτ

∥∥∥∥
≤
∥∥∥∥∫ t

0
A1/2(R(t− τ)− R(s− τ)) f (τ, u(τ))dτ

∥∥∥∥
+

∥∥∥∥∫ s

t
A1/2R(s− τ) f (τ, u(τ))dτ

∥∥∥∥
≤ θ(R)

∫ t

0

∥∥∥A1/2(R(t− τ)− R(s− τ))
∥∥∥m(τ)dτ

+ θ(R)/
√

1 + b0

∫ s

t
m(τ)dτ

→ 0 as |t− s| → 0,

by the strong continuity of A1/2R(t), t ≥ 0 and m ∈ L1(0, T). Therefore, {Qu : u ∈ M} is
equicontinuous on [0, T].

Lemma 3.3. Let the assumptions of Proposition 2.2 and the hypothesis (G)(i), (H)(i), (F)(i) be satisfied.
Then there exists R > 0 such that Φ(M) ⊂M, provided that

lim
n→∞

1
n
[
θg(n) +

1√
1 + b0

(θh(n) + ‖m‖θ f (n))
]
< 1. (3.9)

Proof. Assuming to the contrary that for each n ∈ N, there exists a sequence {un}∞
n=1 ⊂ M

with ‖un‖C ≤ n and ‖Φ(un)‖C > n. From the formulation of Φ, we have

‖Φ(un)(t)‖1/2 ≤ ‖A1/2S(t)[x0 − g(un)]‖+ ‖A1/2R(t)[y0 − h(un)]‖

+

∥∥∥∥A1/2
∫ t

0
R(t− τ) f (τ, un(τ))dτ

∥∥∥∥
≤ ‖x0‖1/2 + θg(n) +

‖y0‖√
1 + b0

+
θh(n)√
1 + b0

+
‖m‖θ f (n)√

1 + b0
, ∀t ∈ [0, T].

The above inequality leads to

n < ‖Φ(un)‖C ≤ ‖x0‖1/2 + θg(n) +
‖y0‖√
1 + b0

+
θh(n)√
1 + b0

+
‖m‖θ f (n)√

1 + b0
.

Therefore,

1 <
1
n

[
|x0‖1/2 + θg(n) +

‖y0‖√
1 + b0

+
θh(n)√
1 + b0

+
‖m‖θ f (n)√

1 + b0

]
.

Passing to the limit as n→ ∞, we get a contradiction to (3.9).

In order to apply the fixed point theory for condensing maps, we will establish the so-
called MNC-estimate for the solution operator Φ.
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Lemma 3.4. Let the assumptions of Proposition 2.2 and the hypothesis (G)(ii), (H)(ii), (F)(ii) be
satisfied, then

χT
(
Φ(D)

)
≤
[
ηg + supt∈[0,T](ηh(t) + 4‖η f (t, ·)‖)

]
χT(D), (3.10)

for all bounded sets D ⊂M, here ‖η f ‖ = ‖η f ‖L1(0,T).

Proof. Setting

Φ1(u)(t) = S(t)[x0 − g(u)],

Φ2(u)(t) = R(t)[y0 − h(u)],

Φ3(u)(t) =
∫ t

0
R(t− τ) f (τ, u(τ))dτ.

We have
χT
(
Φ(D)

)
≤ χT

(
Φ1(D)

)
+ χT

(
Φ2(D)

)
+ χT

(
Φ3(D)

)
. (3.11)

1. For every z1, z2 ∈ Φ1(D), there exist u1, u2 ∈ D such that for t ∈ [0, T],

zi(t) = Φ1(ui)(t), (i = 1, 2).

We have

‖z1(t)− z2(t)‖1/2 ≤‖S(t)‖‖A1/2(g(u1)− g(u2))‖ ≤ ‖g(u1)− g(u2)‖1/2.

It implies that
‖z1 − z2‖C ≤ ‖g(u2)− g(u1)‖1/2.

Hence,
χT
(
Φ1(D)

)
≤ χ

(
g(D)

)
≤ ηgχT(D). (3.12)

2. By similar arguments as above, we get

χT
(
Φ2(D)

)
≤ sup

t∈[0,T]
ηh(t)χT(D). (3.13)

3. Applying Proposition 2.4, there exists {un}∞
n=1 ⊂ D such that for every ε > 0, we obtain

χT
(
Φ3(D)

)
≤ 2χT

(
{Φ3(un)}∞

n=1
)
+ ε. (3.14)

We invoke Proposition 2.5 to deduce that

χT
(
{Φ3(un)}

)
= sup

t∈[0,T]
χ
(
{Φ3(un(t))}

)
≤ 2 sup

t∈[0,T]

∫ t

0
χ (R(t− τ) f (τ, un(τ))) dτ

≤ 2 sup
t∈[0,T]

∫ t

0
η f (t, τ)χ(un(τ)) dτ.

It is inferred that

χT
(
{Φ3(un)}

)
≤ 2 sup

t∈[0,T]
‖η(t, ·)‖χT(un) (3.15)
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From (3.14) and (3.15), we obtain

χT
(
Φ3(D)

)
≤ 4 sup

t∈[0,T]
‖η(t, ·)‖χT(D). (3.16)

Combining (3.11), (3.12) and (3.16) yields

χT
(
Φ(D)

)
≤
[
ηg + supt∈[0,T](ηh(t) + 4‖η f (t, .)‖)

]
χT(D). (3.17)

The proof is completed.

Theorem 3.5. Let the assumptions of Proposition 2.2 and the hypothesis (G), (H), (F) be satisfied.
Then problem (1.1)–(1.2) has at least one mild solution on [0, T], provided that

lim
n→∞

1
n

[
θg(n) +

1√
1 + b0

(θh(n) + ‖m‖θ f (n))
]
< 1, (3.18)

l := ηg + sup
t∈[0,T]

(ηh(t) + 4‖η f (t, ·)‖) < 1. (3.19)

Proof. By the inequality (3.19), the solution operator Φ is χT-condensing. Indeed, if D ⊂M is
a bounded set such that χT(D) ≤ χT

(
Φ(D)

)
, applying Lemma 3.4, we obtain

χT(D) ≤ χT
(
Φ(D)

)
≤ lχT(D).

Therefore χT(D) = 0, and D is relatively compact.
By assumption (3.18), applying Lemma 3.3, we have Φ(M) ⊂M. Using Theorem 2.7, the

χT-condensing map Φ defined by (3.8) has a nonempty and compact fixed point set Fix(Φ) ⊂
M. It implies that the problem (1.1)–(1.2) has at least a mild solution u(t), t ∈ [0, T] described
by (3.7).

4 Existence of decay mild solutions

In this section, we consider solution operator Φ on the following space:

BC(R+; X 1
2
) =

{
u ∈ C

(
R+; X 1

2

)
: supt∈R+ ‖u(t)‖X 1

2
< ∞

}
,

with the supremum norm
‖u‖BC = sup

t∈R+

‖u(t)‖X 1
2

and its closed subspace

M∞ =
{

u ∈ BC
(

R+; X 1
2

)
: u(t)→ 0 as t→ +∞

}
⊂ C0

(
R+; X 1

2

)
.

We are going to prove Φ(M∞) ⊂ M∞ and using the MNC χ∗ defined by (2.7) to prove that
Φ is a χ∗-condensing map onM∞. In the hypothesis (G), (H), (F), we consider the conditions
of g, h, f for any T > 0. The norm ‖ · ‖C is replaced by the norm ‖ · ‖BC. The conditions
m, η f ∈ L1(0, T) are replaced by the m, η f ∈ L1(R+).

We recall from [9, Lemma 6.1] the following result.
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Lemma 4.1. Let X, Y be Banach spaces, and let {U(t)}t≥0 ⊂ B(X, Y) be a strongly continuous
operator family which is such that U(·) as well as its adjoint operator U∗(·) are strongly integrable.
Then the convolution T defined by

(T f )(t) :=
∫ t

0
U(t− τ) f (τ)dτ, t ≥ 0,

is well-defined and bounded from Lp(R+; X) into Lp(R+; Y), for each p ∈ [1, ∞). T is also bounded
from C0(R+; X) into C0(R+; Y), provided U(t)→ 0 strongly as t→ ∞.

We also definite the map Φ :M∞ → C0(R+, X1/2) by

Φ(u)(t) = S(t)[x0 − g(u)] + R(t)[y0 − h(u)] +
∫ t

0
R(t− τ) f (τ, u(τ))dτ, t ≥ 0, u ∈ M∞.

Since R(t) is selfadjoint in X, by Proposition 2.2 and Lemma 4.1, Φ is well-defined.

Lemma 4.2. Let A be a selfadjoint, positive definite operator in the Hilbert space X and let β ∈ L1(R+)

be a locally absolutely continuous, nonnegative, nonincreasing map such that b0 =
∫ ∞

0 β(t)dt < 1.
Furthermore, the hypotheses (G), (H), (F) are satisfied. Then we have Φ(M∞) ⊂M∞.

Proof. Let u ∈ M∞ with ‖u‖∞ = R < ∞. For every ε > 0, there exists T > 0 such that for any
t > T, we get

‖u(t)‖ < ε, ‖S(t)‖ < ε, ‖A1/2R(t)‖ < ε,
∥∥∥∥∫ t

0
A1/2R(t− τ) f (τ, u(τ))dτ

∥∥∥∥ < ε.

We find that for every t ∈ R+

‖Φ(u)(t)‖1/2 ≤ ‖A1/2S(t)[x0 − g(u)]‖+ ‖A1/2R(t)[y0 − h(u)]‖

+

∥∥∥∥∫ t

0
A1/2R(t− τ) f (τ, u(τ))dτ

∥∥∥∥
=: P + Q + K. (4.1)

Then for any t > T, we have

P < ε
(
‖x0‖1/2 + θg(R)

)
, Q < ε

(
‖y0‖+ θh(R)

)
, K < ε. (4.2)

From (4.1), (4.2), we obtain Φ(u)(t)→ 0 as t→ ∞. The proof is completed.

Lemma 4.3. Let the assumptions of Lemma 4.2 be satisfied. Then we have

χ∗
(
Φ(D)

)
≤
[
ηg + supt∈R+

(ηh(t) + 4‖η f (t, .)‖)
]
χ∗(D), (4.3)

for all bounded sets D ⊂ M∞.

Proof. Let D ⊂ M∞ be a bounded set. We have

χ∗
(
Φ(D)

)
= χ∞

(
Φ(D)

)
+ d∞

(
Φ(D)

)
. (4.4)

1. Thanks to the Lemma 3.4, we obtain the following estimates:

χ∞(Φ(D)) ≤ χ∞(Φ1(D)) + χ∞(Φ2(D)) + χ∞(Φ3(D)), (4.5)

χ∞(Φ1(D)) ≤ ηgχ∞(D), (4.6)

χ∞(Φ2(D)) ≤ sup
t∈R+

ηh(t)χ∞(D), (4.7)
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and

χ∞(Φ3(D)) ≤ 4 sup
t∈R+

‖η f (t, .)‖χ∞(D). (4.8)

From (4.5)–(4.8), we have

χ∞
(
Φ(D)

)
≤
[
ηg + supt∈R+

(ηh(t) + 4‖η f (t, .)‖)
]
χ∞(D) (4.9)

2. Next, we find that

d∞
(
Φ(D)

)
= lim

T→∞
dT
(
Φ(D)

)
, dT
(
Φ(D)

)
= sup

u∈D
sup
t≥T
‖Φ(u)(t)‖1/2.

Applying Lemma 4.2, we obtain

d∞
(
Φ(D)

)
= 0. (4.10)

From (4.4), (4.9) and (4.10), we complete the proof of Lemma 4.3.

Theorem 4.4. Let the assumptions of Lemma 4.2 be satisfied. Then problem (1.1)–(1.2) has at least
one mild solution u ∈ M∞ provided that

l∞ := ηg + sup
t∈R+

(ηh(t) + 4‖η f (t, ·)‖) < 1, (4.11)

lim
n→∞

1
n

[
θg(n) +

1√
1 + b0

(θh(n) + ‖m‖θ f (n))
]
< 1. (4.12)

Proof. By the inequality (4.11), the solution operator Φ is a χ∗-condensing. Indeed, if D ⊂M∞

is a bounded set such that χ∗(D) ≤ χ∗
(
Φ(D)

)
. Applying Lemma 4.3, we obtain

χ∗(D) ≤ χ∗
(
Φ(D)

)
≤ l∞χ∗(D).

Therefore, χ∗(D) = 0, and so D is relatively compact. On the other hand, by condition (4.12)
and the arguments in the proof of Lemma 3.3, one can find R > 0 such that Φ(BR) ⊂ BR

where BR is the ball in M∞ with center at origin and radius R. Applying Theorem 2.7, the
χ∗-condensing map Φ defined by (3.8) has a nonempty and compact fixed point set Fix(Φ) ⊂
M∞. Hence, the problem (1.1)–(1.2) has at least a mild solution u(t), t ∈ R+ described by
(3.7) which satisfies limt→∞ u(t) = 0.

5 An example

Let Ω be a bounded domain in Rn with the boundary ∂Ω is smooth enough. Considering
the operator L given by Lu(x) = ∑n

i,j=1
∂

∂xi

(
aij(x) ∂

∂xj
u(x)

)
, x ∈ Ω, where aij : Ω → R, and

aij = aji ∈ C1(Ω). Moreover, there exists a constant c > 0 such that

n

∑
i,j=1

aij(x)ξiξ j ≥ c|ξ|2, ∀ξ ∈ Rn, x ∈ Ω.



12 V. T. Luong

Let β ∈ L1(R+) be the scalar memory kernel in previous section and let x0 ∈ H1
0(Ω), y0 ∈

L2(Ω). We consider the following problem:

utt(t, x)− Lu(t, x) +
∫ t

0
β(t− s)Lu(s, x)ds = F(t, x, u(t, x)),

u(0, x) +
∫

Ω
k(x, y)u(0, y)dy = x0(x), x ∈ Ω,

ut(0, x) +
p

∑
i=1

ciu(ti, x) = y0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

(5.1)

Here, 0 ≤ t1 < t2 < · · · < tp < +∞, ci are positive constants and the function k : Ω×Ω −→ R

is such that k ∈ L2(Ω×Ω), k(·, y) ∈ X1/2, y ∈ Ω, and

sup
y∈Ω

∫
Ω
|k(x, y)|2 + |∇xk(x, y)|2dx = C < +∞.

Let X = L2(Ω), A = −L with D(A) = H2(Ω)∩H1
0(Ω). It is well known that A is a selfadjoint,

positive definite operator in X. Moreover, the fractional power
√

A of A is well defined and
X1/2 = D(

√
A) = H1

0(Ω). Then problem (5.1) is in the form of the abstract model (1.1)–(1.2)
with

f (t, u(t))(x) = F(t, x, u(t, x)) (will be defined later), and

g(u)(x) =
∫

Ω
k(x, y)u(0, y)dy, h(u)(x) =

p

∑
i=1

ciu(ti, x).

Now we give the description for the functions g, h and f .
(G) g : BC(R+, X1/2)→ X1/2 is continuous.

(i) ‖g(u)‖X ≤
√

C‖u(0)‖X ≤
√

C‖u(0)‖X1/2 ≤
√

C‖u‖BC.

(ii) By Theorem 8.83 in [10], g is a compact operator, so χ
(

g(D)
)
= 0, for all bounded sets

D ⊂ BC(R+; X1/2).

Therefore, g fulfills (G) with θg(t) = t
√

C, t ≥ 0, and ηg = 0.
(H) h : BC(R+, X1/2)→ X is continuous.

(i)

‖h(u)‖X =

∥∥∥∥∥ p

∑
i=1

ciu(ti, x)

∥∥∥∥∥
X

≤
p

∑
i=1

ci‖u(ti, x)‖X1/2

≤
p

∑
i=1

ci‖u‖BC, ∀u ∈ BC(R+; X1/2),

(ii) Next, for every u1, u2 ∈ BC(R+, X1/2), we get

‖R(t)(h(u1)− h(u2))‖1/2 =

∥∥∥∥∥ p

∑
i=1

ci A1/2R(t)
[
u1(ti, x)− u2(ti, x)

]∥∥∥∥∥
X

≤ 1√
1 + b0

p

∑
i=1

ci‖u1(ti, x)− u2(ti, x)‖X1/2

≤ 1√
1 + b0

p

∑
i=1

ci‖u1 − u2‖BC.
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Therefore

χ
(

R(t)h(D)
)
≤ 1√

1 + b0

p

∑
i=1

ciχ∞(D),

for every bounded set D ⊂ BC(R+; X1/2).

Hence, h fulfills (H) with θh(t) = t ∑
p
i=1 ci, t ≥ 0 and ηh = 1√

1+b0
∑

p
i=1 ci.

(F) F1 : R+ ×Ω×R −→ R, µ : R+ ×Ω→ R, and F2 : Ω×R→ R such that

(a) F1 is a continuous function such that F1(t, x, 0) = 0 and

|F1(t, x, z1)− F1(t, x, z2)| ≤ m1(t)|z1 − z2|

for all x ∈ Ω, z1, z2 ∈ R, here m1 ∈ L2(R+);

(b) µ ∈ BC(R+, L2(Ω));

(c) F1 is a continuous function and |F2(x, z)| ≤ l(x)|z| for l ∈ L2(Ω);

Let f : R+ × X1/2 → X such that

f (t, v)(x) = f1(t, v)(x) + f2(t, v)(x)

with

f1(t, v)(x) = F1(t, x, v(x)),

f2(t, v)(x) = µ(t, x)
∫

Ω
F2(x, v(x))dx.

Considering f1, we have

‖R(t− s)( f1(s, v1)− f1(s, v2))‖1/2 ≤
m1(s)√
1 + b0

‖v1 − v2‖X ≤
m1(s)√
1 + b0

‖v1 − v2‖X1/2 .

This implies

χ(R(t− s) f1(s, V)) ≤ m1(s)√
1 + b0

χ(V), for all bounded sets V ⊂ X1/2. (5.2)

Regarding f2, using Hölder inequality, we get

‖ f2(t, v)‖2
X ≤ ‖µ(t)‖2

X

(∫
Ω

F2(x, v(x))dx
)2

≤ ‖µ(t)‖2
X

(∫
Ω
|l(x)||v(x)|dx

)2

≤ ‖µ(t)‖2
X‖l‖2

X‖v‖2
1/2.

On the other hand, for any bounded set V ⊂ X1/2, we see that

R(t− s) f2(s, V) ⊂ {λR(t− s)µ(s, ·) : λ ∈ R},

that is, R(t− s) f2(s, V) lies in an one dimensional subspace of X1/2. Hence

χ(R(t− s) f2(s, V)) = 0, (5.3)
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for a.e. t, s ∈ R+, s ≤ t. From (5.2) and (5.3), we obtain

χ(R(t− s) f2(s, V))) ≤ χ(R(t− s) f2(s, V))) + χ(R(t− s) f2(s, V))) ≤ m1(s)χ(V).

Thus f fulfills (F) with m(t) = max{m1(t), ‖µ(t)‖X‖l‖X}, θ f (t) = t and

η f (t, s) =
m1(s)√
1 + b0

, s ≥ 0.

Under the above settings, applying Theorem 4.4, one can state that problem (5.1) has at
least one decay mild solution inM∞, provided that(

p

∑
i=1

ci + 4‖m1‖
)/√

1 + b0 < 1,

√
C +

(
p

∑
i=1

ci + ‖m‖
)/√

1 + b0 < 1.
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