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Abstract. This paper establishes a new regularity criterion for the Navier-Stokes equa-
tions in terms of two velocity components. We show that if the two velocity components
i = (u1,up,0) satisfy

T
| )13y _ds < e

then the solution can be smoothly extended after t = T. This gives an answer to an open
problem in [B. Q. Dong, Z. Zhang, Nonlinear Anal. Real World Appl. 11(2010), 2415-2421].
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1 Introduction

Consider the Navier—Stokes equations for the viscous incompressible fluid flow in the whole

space R3:
O+ (u-V)u—Au+Vp=0, (x,t) e R®x (0,T),
divu =0, (x,t) € R® x (0, T), (1.1)
u(x,0) = up(x), x € R,

where u = u(x,t) is the velocity field, p = p(x,t) is the scalar pressure and ug(x) with
divug = 0 in the sense of distribution is the initial velocity field. For simplicity, we assume
that the external force has a scalar potential and is included in the pressure gradient.

It is well-known that Navier-Stokes equations are an important mathematical model in
fluid dynamics (see [12,22]). The question of global regularity for smooth solutions in the 3D
case remains generally open. Therefore, it is interesting to consider the regularity criterion
for solutions under some additional growth conditions. The research on this direction started

™ Corresponding author. Email: gala.sadek@gmail.com


http://www.math.u-szeged.hu/ejqtde/

2 S. Gala and M. A. Ragusa

from Serrin in the 1960’s and attracted more and more attention over the last few decades (see
e.g. [1,6,10,26,31,32] and the references therein).

Introducing the class L*(0, T; LY(IR%)), it is shown that if we have a Leray—Hopf weak
solution u belonging to L*((0, T); L7(R%)) with the exponents « and g satisfying 2 + % <1,
2 <a < o0,3 < g < oo, then the solution u(x,t) € C*(R3 x (0, T]) [9,11,23-25,29,30], while
the limit case & = 00,q = 3 was covered much later by Iskauriaza, Serégin and Shverak in [8].
One may also refer to the interesting results devoted to finding sufficient conditions to ensure
the smoothness of the solutions; see [13—18] and the references therein.

Another approach is to consider the regularity condition in terms of the two velocity
components i = (uq,uy,0). In [4] (see also [2]), Bae and Choe proved that if

e L*0,T; L1 R3 with 72 + 73 <1 and 3<g <o, (1.2)
> q
& q

then the solution is smooth on (0, T). Later on, Zhang et al. [33] extended the condition (1.2)
into BMO space in the marginal case when g = o, i.e.

i € L*(0, T; BMO(R®)). (1.3)

Here BMO denotes the space of the bounded mean oscillation defined by

1 (p3 1 / 7
f < Lloc(]R )/ SuP’B(x, R)‘ B(x,R) ‘f(y) fB(x,R)‘ dy < o,

x,R

with fB(x/R) is the average of f over B(x,R) = {y € R%: |x — y| < R} (cf. Stein [27]).

Based on the Littlewood-Paley decomposition of equations (1.1), Dong and Zhang [7]
extended the regularity criterion by means of horizontal derivatives of the two velocity com-
ponents Vi = (017,21, 0) in the homogeneous Besov space Bgom :

T
| 19i(5) 3y _ds < co. (1.4

It is still an open question, asked by Dong and Zhang [7, p. 2417], whether (1.4) can be
replaced by the following condition

T
| )13, ds < . (1.5)

The purpose of this paper is to give an answer to this problem posed in [7] and we claim
that we obtain the regularity for weak solutions if the two components are in the sharp critical
space

T
/0 2(s)[3 _ds < oo.
Before giving the main result, we recall the following definition of Leray-Hopf weak solution.

Definition 1.1. Let uy € L?(R3) and V - ug = 0. A measurable vector field u(x,t) is called
a Leary-Hopf weak solution to the Navier-Stokes equations (1.1) on (0, T), if u satisfies the
following properties:

G) u € L=(0,T; L>(R%)) N L2(0, T; H'(R3));
(i) ou+ (u-V)u+Vr=Auin D'((0,T) x R3);
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(iii) V-u=0in D'((0,T) x R3);

(iv) u satisfy the energy inequality
t
()%, +2/0 /]RS Vu(x,s)[2 dxds < |Juo]|%, for0<t<T. (1.6)

Next, we recall the definition of the space that we are going to use (see e.g. [3,28]).
Definition 1.2. Let {(p]-}]. .z be the Littlewood-Paley dyadic decomposition of unity that sat-
isfies q/ﬁ S CSO (BZ\B%), (/ﬁ](é) = q/ﬁ (27](?) and

Y §/(@) =1 forany & £0,

jez

where By is the ball in IR® centered at the origin with radius R > 0. The homogeneous Besov
spaces B;,q(]R?’) are defined to be

B (R%) = {f € S'(R®)/P(R?) | f5, < oo}
where :
| i\
(Z HZJs(pj *fHLp> if 1<g<oo,
Ifllgy, = § V2!
sup 2 [|g;« fl|, if g =100,
jEZ

fors € R, 1 < p,q < oo, where S’ is the space of tempered distributions and P is the space of
polynomials.

This definition ensures the following homogeneous property

LF Ay, = A7 £

By

Throughout this paper, C will denote a generic positive constant which can vary from line
to line. Our main result is the following.
Theorem 1.3. Let uy € H3(R3) with divug = 0 in R3. Assume that u(x,t) is a Leray—Hopf weak
solution of (1.1) on (0, T). If u satisfies

T
| )3y ds <,

then the solution can be extended after t = T. In other words, if the solution blows up at t = T, then

T
/0 l(s) 3, _ds = co.

Duality relation (H!)* = BMO and the fact that w.Vw € H! due to [5] play an important
role of our apriori estimate, where H! denotes the Hardy space. For the proof of our result, we
recall the following logarithmic Sobolev inequality in Besov spaces due to Kozono-Ogawa-—
Taniuchi [20, Theorem 2.1].
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Lemma 1.4. Let s > % There exists a constant C such that the estimate

1
1Fllgn, <€ (1+1fllgg,, 102 1+ [ flle) (17)
holds for all f € H® (R3).
In order to prove our main result, we need the following lemma.

Lemma 1.5. Assume that u = (uy, up, us) is a smooth and divergence-free (V.u = 0) vector field, let
u = (u1,u2,0). Then we have, for the generic constant C

/3(u -Vu).Audx
R

< c/ i1 |Vu| |Au| dx.
]RS

Proof. Due to the divergence-free condition V.u = Y3 ;9;u; = 0 and integration by parts,
observe first that

3

3
/]RS(u Vu).Audx = ) /]R3 uiOiu O jdx = — Y

8k(uiaiuj)akujdx
. ii R3
1]k-1 k=1

3
= / Ok1t;0;u;Ox1tid x—1 E / u;0; (Oxujokuj)dx

llk 1 2 ijk=1"R
= / oxu;diujdxujdx = RHS, (1.8)
i,jk=1
where we have used the fact
1 3
—5 ¥ [ udi@dm)dx = / i1t (Dt dy;)dx
i,jk=1 R 1]k 1

3 3
_ _ - 7. 2 _
— 2 - (28%) kzz (Oguj)*dx = 0.

i=1 jk=1
We now estimate RHS. When i = 1,2 or j = 1,2, by integrating by parts,

2 3

RHS = — . Y [ Ounduadux
i,j=1k=1
2 3
:—Z Z/ Ok 1Ok jOujdx — ZZ/ k30U 03u;dx
i=1jk=1"R =1 k=1

22

. 2 3
[ wde@eaupudx+ Y Y- [ uda(0usden;)dx
1/R j=1k=1

|u1\ + |uz|) [Vul| |Au| dx

/ lii| [V | Au dx.
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In the case i = j = 3, by using the fact —d3zuz = d1u1 + du; and integrating by parts, we have

3 3

Z /]R3 ui8iu]-8kkujdx = — E /1R3 ak(uié)iuj)aku]-dx

i,jk=1 i,jk=1
3
= — Z/ ak(u383u3)aku3dx
k=1/R°
3
= Z/ akug,(—ag,ug,)akugdx
k=17R°
3
= Z/ akug,(alul +82u2)8ku3dx
k=17R°
3 3
= — 2/ ulalakugakugdx— Z/ uzakugazakugdx
k=1/R® k=1 /R

<C [ (mn] + ) V] |Au] dx

< c/ 1| [Vu| | Aul dx.
R3

Combining the two inequalities with (1.8) yields

/ (u-Vu).Audx
R3

< c/ 17| [Vu| | Au| dx.
R3

The proof of Lemma 1.5 is complete. O

2 Proof of Theorem 1.3

Now we are in a position to prove our main result.

Proof. We take L?-inner products on (1.1) with u, integrate by parts and use incompressibility

to obtain
1d

5 3 1u(OIL + Va7 =o.

This identity allows us to get
t
2 2 2
a2+ [ IFu(E) 2 ds < ol

Next, multiplying the first equation in (1.1) by Au, after integration by parts and taking the
divergence free property into account, we have by Lemma 1.5

1d

S V()] + au()}: = —/R3(u Vu).Audx < c/w @] [Vul|du|dx.  @2.1)

We recall the following property of Hardy spaces and BMOs

/]R3 fehdx < [|£8ll3 Pllsmo = [1f11e2 lIgllrz [1Pllmo - (22)
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for any V.f = 0 and V x ¢ = 0. According to above inequality (2.2) and Young’s inequality,
we estimate

[Vl 8] d < (Vw805 1|0
< C[Vulgz 1802 170

1 2 2 a2
< 5 [ Aullf2 + C | Vull72 (|4 3pm0 - (2.3)

Due to a fact that Bgo » C BMO, inserting the above estimates into (2.1), we derive

1d _
5 3 IVuOIL + [18u(®) |72 < Clla(1) 5o [IVu(b) |72
< C+ (), e+ 1A ) Va1
< C+a®)lfy e+ lu® ) IVu@li. @4
Forany Top <t < T, we set
z(t) := sup HA3u(t)HL2. (2.5)
TgSSSf

By the Gronwall inequality on (2.4) for the interval [T, t], one has

t
IVu(®) | < | Vu(To)|2 exp (c | a+ Ha<s>uégm1n<e+z<s>>>ds) .
A ’
Hence, we obtain from the above estimate

IVu(t)||7 < Coexp(Ce(1 +1In(e +=(t))))
< Coexp(2Celn(e +z(1)))
< Cole+z(t))*,

provided that for any small constant € > 0, there exists Tp < T such that
T
| a3, ds <e<1, 26
0 00,00

here Cy means a constant depending on Tj.

Now we do the estimate for z(t) defined by (2.5). Taking the operation A3 = (—A)% on
both sides of (1.1), then multiplying them by A3u, after integrating over R?, we have
1d 3 2 3 2 3 3,d
2 g 12O+ [ ATu)[f2 = = [ AP (- V) Aude 27)
Noting that V - u = 0 and integrating by parts, we write (2.7) as
1d 2 2 '
53 [ APu()|| > + | A°PVu®)| . = — /1123 [A3(u-Vu) —u- A*Vu] APudx =T1 (2.8)

In what follows, we will use the following inequality due to Kenig, Ponce and Vega [19]:

A% (fg) = fA%gll, < C <HA”‘*18HM IV Fllm + AT f Hgllm), (2.9)
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fora >1,and 1 =1L + 1 =14 1 Hence Il can be estimated as
p 1 n P2 q2
3012 B A3 (L (| AL 113
IT < Cl[Vull sl Aullfs < CIIVul| BIA Ul Atull],

< i Asul, + vl R A% 2.10
—6H uHL2+ H uHLZH uHLZI ( )

where we used (2.9) with « = 3,p = 3,p; = q1 = p» = g = 3, and the following Gagliardo-
Nirenberg inequalities

3 1
[Vulls < ClIVu| Ll APull i,
and
3 ' RITUL
[A”ull s < Cl[Vull | A%l

If we use the existing estimate (2.6) for Tp < t < T, (2.10) reduces to
Liva 2 3+8ce
1< EHA ull7, + CoCle +z(t))272¢.
Combining (2.10) and (2.7), we easily get
d 2 3,13
5 | Au(t)||], < CoCle+z(t))2T 2.

Gronwall’s inequality implies the boundedness of H3-norm of u provided that € < 13%, which
can be achieved by the absolute continuous property of integral (1.5). This completes the proof
of Theorem 1.3. O
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