ON THE SPECTRUM OF A RANDOM GRAPH

F. JUHÁSZ

The spectrum of a graph is the spectrum of its adjacency matrix.
In the present paper we deal with the asymptotic behaviour of the spectrum of a random graph. We will show that the first eigenvalue is of order n, and then there is a sudden drop: the second largest eigenvalue is $O\left(n^{\frac{1}{2}+\epsilon}\right)$.

Proposition 1. Let A be an $n \times n$ symmetric $(0,1)$ matrix, in which the density of ones is d (i.e. the number of ones is $n^{2} d$). Then the largest eigenvalue λ_{1} of A satisfies the inequality

$$
n d \leqslant \lambda_{1} \leqslant n \sqrt{d}
$$

Proof. Let $e=(1, \ldots, 1)$ be the n-dimensional all-one vector. Then $\lambda_{1} \geqslant \frac{(e, A e)}{(e, e)}=\frac{n^{2} d}{n}$. If λ_{i} are the eigenvalues of the matrix, then $\sum_{i=1}^{n} \lambda_{i}^{2}=n^{2} d$. Hence $\lambda_{1} \leqslant n \sqrt{d}$.
Q.E.D.

Proposition 2. Let $A_{n}=\left(a_{i j}\right)$ be an $n \times n$ symmetric matrix where $a_{i i} \equiv 0, a_{i j}$ for $i>j$ are independent random variables. Suppose that $P\left(a_{i j}=1\right)=p, \quad P\left(a_{i j}=0\right)=q=1-p . \quad$ If $\quad \lambda_{1}=\lambda_{1}(n)$ is the largest eigenvalue of the matrix A_{n}, then $\lim _{n \rightarrow \infty} \frac{\lambda_{1}}{n}=p$ is probability.

Proof. We know that

$$
\min _{1 \leqslant i \leqslant n} \sum_{j=1}^{n} a_{i j} \leqslant \lambda_{1} \leqslant \max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n} a_{i j}
$$

(Perron - Frobenius theorem). Since for a given value of i the probability $P\left(\left|\frac{1}{n} \sum_{j=1}^{n} a_{i j}-p\right|>\delta\right)$ is exponentially small,

$$
\lim _{n \rightarrow \infty} P\left(\max _{1 \leqslant i \leqslant n}\left|\frac{1}{n} \sum_{j=1}^{n} a_{i j}-p\right|>\delta\right)=0
$$

Now we are interested in the behaviour of the other eigenvalues. The Wigner theorem - generalized by Ludwig Arnold - describes the overall behaviour of the eigenvalues.

Theorem (Wigner). Let $A_{n}=\left(a_{i j}\right)$ be an $n \times n$ symmetric matrix, where $a_{i j}$ for $i \geqslant j$ are independent random variables. Suppose that $a_{i i}$ are identically distributed with the distribution function G and $a_{i j}$ for $i>j$ are identically distributed with the distribution function H. Assume that $\int x^{2} d H(x)=\sigma^{2}<\infty$. Denote the empirical distribution function of the eigenvalues of $\frac{1}{\sqrt{n}} A_{n}$ by $F_{n}(x)=\frac{1}{n} \sum_{\lambda_{i}<x \sqrt{n}} 1$ where λ_{i} are the eigenvalues of A_{n}. Then, for arbitrary x we have

$$
\lim _{n \rightarrow \infty} F_{n}(x)=\int_{-\infty}^{x} f(x) d x \quad \text { in probability }
$$

where

$$
f(x)= \begin{cases}\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-x^{2}} & |x|<2 \sigma \\ 0 & \text { otherwise }\end{cases}
$$

For the proof and generalizations see [2], [3] and [4].
This theorem describes only the behaviour of the majority of the eigenvalues, and allows many of them (in fact $o(n)$) to be as large as n. We show now that this is not the case and only the first eigenvalue of a graph is of order n, the rest is near \sqrt{n}. (Actually this happens with any symmetric random matrix if the expectation of the entries is nonzero.)

Proposition 3. Let A_{n} be as in Proposition 2. Then for the second largest eigenvalue $\lambda_{2}=\lambda_{2}(n)$ of A_{n} we have $\lambda_{2}=O\left(n^{\frac{1}{2}+\epsilon}\right)$ in probability.

Proof. Let us consider the matrix $B_{n}=P_{n} A_{n} P_{n}$ where P_{n} is the orthogonal projection parallel to the all-one vector $e_{n}=(1, \ldots, 1)$. By the Courant - Fischer theorem $\lambda_{2} \leqslant\left\|B_{n}\right\|$ where $\|\cdot\|$ denotes the maximal eigenvalue of the matrix. It is easy to see that $B_{n}=\left(b_{i j}\right), b_{i j}=$ $=a_{i j}-d_{i}-d_{j}+d$ where d_{i} and d are the density of ones in the i-th row and in the whole matrix, respectively. We can write $B_{n}=C_{n}+R_{n}$ where $C_{n}=\left(c_{i j}\right), c_{i j}=a_{i j}-p$ and $R_{n}=\left(r_{i j}\right), r_{i j}=d_{i}+d_{j}-d-p$. So $\left\|B_{n}\right\| \leqslant\left\|C_{n}\right\|+\left\|R_{n}\right\| \leqslant\left\|C_{n}\right\|+\left\|R_{n}\right\|_{2}$, where $\left\|R_{n}\right\|_{2}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i j}^{2}$. We have

$$
D^{2}\left(d_{i}+d_{j}-d\right)=\frac{1}{n^{4}} D^{2}\left(\sum_{k=1}^{n} \sum_{l=k+1}^{n} h_{k l} a_{k l}\right) \leqslant \frac{3 p q}{n}
$$

where $D^{2}(\cdot)$ stands for variance. Hence the expectation $E\left\|R_{n}\right\|_{2}^{2} \leqslant$ $\leqslant n^{2} \frac{3 p q}{n}$. The Markov inequality implies that the probability that the maximal eigenvalue of the matrix R_{n} is larger then $K \sqrt{n}$ is $O\left(\frac{1}{K}\right)$. For the estimation of $\left\|C_{n}\right\|$ we use the following statement.

Proposition 4. Let A_{n} be as in Wigner's theorem, and assume that the expectation of the entries is zero: $\int x d H(x)=0$. If also all moments of H are finite, then for any $\epsilon>0$ we have for the maximal eigenvalue $\lambda=\lambda(n)$ of A_{n} the relation $\lim P\left(|\lambda|>n^{\frac{1}{2}+\varepsilon}\right)=0$.

Proof. It can be seen from [5] and [1] that $E \lambda^{2 l} \leqslant E \sum_{i=1}^{n} \lambda_{i}^{2 l}=$ $=O\left(n^{l+1}\right)$. Whence

$$
P\left(|\lambda|>n^{\frac{1}{2}+\epsilon}\right)<n^{-(l+2 l \epsilon)} E \lambda^{2 l}=O\left(n^{-(2 l \epsilon-1)}\right)=o(1)
$$

if l was chosen large enough.
Q.E.D.

We remark that if we do not assume the existence of higher moments in Proposition 4, then the conclusion $\lambda=O(n)$ in probability still holds.

REFERENCES

[1] L. Arnold, On the asymptotic distribution of the eigenvalues of random matrices, J. Math. Analysis Appl., 20 (1967), 262-268.
[2] L. Arnold, On Wigner's semicircle law for the eigenvalues of random matrices, Z. Wahrscheinlichkeitstheorie verw. Geb., 19 (1971), 191-198.
[3] L. Arnold, Deterministic version of Wigner's semicircle law for the distribution of matrix eigenvalues, Linear Algebra and its Appl., 13 (1976), 185-199.
[4] V.L. Girko, Random Matrices, Kiev 1975 (in Russian).
[5] E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math., 62 (1955), 548-564.
F. Juhász

Computer and Automation Institute, Hungarian Academy of Sciences, Budapest I, Uri u. 49., H-1014, Hungary.

