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t

We show that for a random graph Lovasz’ § function is of order V;l_

In investigating certain properties of graphs, the behaviour of random graphs
can serve as a guide. This motivates the study of the & function for random graphs;
one might hope to obtain a good estimate for the Shannon capacity. Unfortunately,
this is not the case; the 8 function is typically very large (of order Vn), while the Shan-
non capacity is likely to be of order log n for a random graph.

Before stating our result we recall a theorem on the eigenvalues of random
matrices.

Theorem 1. (Fiiredi, Komlds [1]) Let A=(a;;) be an nXn random symmetric
matrix, in which the entries a;; for i>j are independent identically distributed bounded
random variables with distribution function H, and a;=0. Denote the moments of H

by
I :/de(x) and o? zfxde(x)-—uz.

If lLa=A=...=), are the eigenvalues of A, then
1

(i) in case pu=0 L, =un+0O(1) in measure, max |4 =20Vn+O0@* log n) in pro-
bability,
1
(ii) in case pu=0 Jnax |4| =20 Vrn+O@®® log n) in probability. j
A similar theorem holds for non-symmetric matrices, see [2].

Now we state our theorem on the 3 function.

Theorem 2. Let {1, ..., n} be the vertex-set of a random graph G, and denote the edge-
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set by E. The measure is P((i,j)€E)=p, g=1—p. Then, with probability 1 —o(1),
! i1
—%I/ %Vﬁﬁ—O(ns logn) =9%(G) =2 /jz—;]/ﬁ-i—O(n" log n).
Proof. Define the sets U and B of symmetric matrices as follows:
W ={4=(a;): a;=1 if (i,j)¢E, arbitrary real otherwise}
B={B=(b): b;=0 if (i,j)CE, arbitrary real otherwise}.
It is proved in [3] that

56 = mig a0 = e (1)

where 4,(-) and 4,(-) stand for the largest and smallest eigenvalues.
Now for the upper bound in the theorem we define, for the random graph G,

the matrix ‘

Lt (L)EE
A=@)=1_9 i @ j)E
p
It is clear that A4 is a random matrix satisfying the conditions of Theorem 1,

i
and p=0, a——:l/ %. Thus, with probability 1—o(1),

9(G) =1, (A) =20 Vn +0(n® logn) = 21/% Vn40(n® log n).

For proving the lower bound of our theorem, set

= o [0 if (i,j)€E
B—(b"f)—{l if (i, /)¢ E.

We get a random matrix with pu=g, 6=Vpq. Hence, with probability 1—o(l),

AW(B) _  pmn+O() gn+0(1)

(B) ~ L o b
26Vn+ O(n*logn) 2V pq Vn+0(n® log n)

1 q i~ z
=5 l/ > Vn+O(r® log n).

Remark. One can easily extend Theorem 2 to the case g=c¢n~'**. One obtains

9G) = 1—

$=0(n%).
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