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We show that for a random graph Lovász' 9 function is of order y'i.

In investigating certain properties of graphs, the behaviour of random graphs
can serve as a guide. This motivates the study of the ,9 function for random graphs;
one might hope to obtain a good estimate for the Shannon capacity. Unfortunately,
this is not the case; the ,9 function is typically very large (of order llil,white the Shan-
non capacity is likely to be of order log n for a random graph.

Before stating our result we recall a theorem on the eigenvalues of random
matrices.

Theorem 1. (Füredi, Komlós [l])' Let Á:(a,) be an nXn random symmetric
matrix, in which the entries a;i for i>-j are independent identically distributed bounded
random uariables wilh distríbution function H, and aii=O' Denote the moments of H

p : 
.[ , dH(x) and o, : 

"f 
*, dH(x)- p2.

If Ar>1r>...?1, are the eigenualues of A, then

(i) in case 11>Q )r:pn+O(t) in measure, #?Z V"il:2o{i+O(nullogn; in pro-

bability, 
,

(ii) in case p:o m?4" ltr,l:2o{i+o(ní logn) in probabitity. I
A similar theorem holds for non-symmetric matrices, see [2].

Now we state our theorem on the I function.

Theorem 2. Let {1, ..., n} be the uertex-set of a randont graph G, and denote the edge-

by
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Set by E. The n1easure is P((i,j)€E):P,4:1_p' Then, with probability l_o(l),

+tE fi+ o ('Irog rr) < e(c) ='lE / n+ o ('*rog n)'

Proof. Define the sets ![ and E of symmetric matrices as follows:

A: {A: (aii): o,,: 1 if (i, j)qE, arbitrary real otherwise}

a : íB : (bi;): b,i:0 if (i, j)e E, arbitrary real otherwise}.

It is proved in [3] that

s(G): T!Il'Qq): T3ö U_ffi)
where trt(.) and /."(.) stand for the largest and smallest eigenvalues.

Now for the upper bound in the theorem we define, for the random graph G,
the matrix

- Í 1 if (i,j){E
A : (aii) : |_!_ it (i, j)€E.Ip

It is clear that Á is a random matrix satisfying the conditions of Theorem l,

and pr-o, ":1['i. Thus, with probability t-o(t),

,9(G) = )',(Á) = 
zo {i +o(rI1og n) : rlE {i+o1nIlog'x).

For proving the lower bound of our theorem, set

B : (6,' : {: ii Í',,',]Í',

We get a random matrix with p:q,o:{pq. Hence, with probability 1-o(1),

s(G)>t-1,!2- pft+o(,|) - qn+o(Il :"\"/ - ' )''(B) 
2ofr+o(,,*!togu) 2v rq6+olitogn)

t'tG ,- ::;V jVn+o(n" logn)'

Remark. One can easily extend Theorem 2 to the czsa q:sn-|*a. One obtains
1g:O lnz).
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