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Nocturnal rodents should be assessed at an appropriate time of day, which leads to a challenge in identifying an 
adequate environmental light which allows animal visualisation without perturbing physiological homeostasis. 
Thus, we analysed the influence of high wavelength and low intensity light during dark period on physical exercise 
and biochemical and haematological parameters of nocturnal rats. We submitted 80 animals to an exhaustive exercise 
at individualised intensity under two different illuminations during dark period. Red light (> 600 nm; < 15lux) was 
applied constantly during dark period (EI; for experimental illumination groups) or only for handling and assessments 
(SI; for standard illumination groups). EI led to worse haematological and biochemical conditions, demonstrating 
that EI alone can influence physiological parameters and jeopardise result interpretation. SI promotes normal 
physiological conditions and greater aerobic tolerance than EI, showing the importance of a correct illumination 
pattern for all researchers that employ nocturnal rats for health/disease or sports performance experiments.
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Many authors have postulated the existence of circadian rhythms for physical exercise 
performance (12, 32), however, some of them do not entirely agree (10, 41). Despite lack of 
consensus, a common point raised over the years is the presence of confounding effects that 
disturb experimental control in human model investigations involving exercise chronobiology 
(12, 17, 32, 41). In summary, confounding effects comprise social, nutritional, motivational 
and time-awake variations, masking the real chronobiological phenomena. In order to optimise 
such methodological control the animal model certainly becomes an interesting way.

Rat circadian rhythms are well characterised by high core body temperature (25, 36), 
spontaneous activity (21), food intake, heart rate and locomotion (25) during dark period, 
representing 62% of total sleep time in the daylight period (38). Circadian modulations 
of these parameters are mainly synchronised by environmental light for these mammals 
(8, 20, 26). During the wakefulness period these nocturnal laboratory animals are usually 
kept under total darkness, promoting an optimum environment for the rat but adverse 
conditions for visualisation-based assessments. This condition encourages researchers to 
apply procedures under indiscriminate environmental light and time of day.
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Observing this context, we have recently studied the influence of circadian rhythms on 
haematological parameters and physical exercise performance in rats. We found significant 
time of day influence, especially on white blood cells, also finding a higher time to exhaustion 
(at individually prescribed maximal aerobic capacity intensity) during wakefulness period 
when compared to sleep period for swimming rats (6). In this study, a special red light source 
was switched on only during assessments during wakefulness period. In order to assess these 
animals during dark period without promoting additional stress, some researchers have 
employed lights in the red spectrum believing that rats could not capture this wavelength 
(16). However, recent studies have found that even albino rats possessing rod-based vision 
(23) are sensible to different colours, including red (35). Moreover, if rats are submitted to a 
luminosity spectrum above 600 nm of very low intensity (15  W, 170 µW/cm2 of irradiance), 
low influence of circadian rhythm is found on melatonin secretion when compared to the 
same wavelength of high intensity (100 W; 1040 µW/cm2) or white light (36). 

Despite the importance of wavelength and intensity of light source, duration must also 
be considered, as short periods of bright light significantly influence rat circadian rhythms. 
One-minute pulse duration (150 lux) can reduce 30 % of N-acetyltransferase activity of the 
pineal gland when the light is applied during dark period (22), without major changes during 
light period (28).

Knowing the appropriate time of day to apply swimming tests for rats, the next step is 
to identify if environmental light significantly influences performance scores. So, this study 
aimed to verify the influence of a high wavelength and low intensity light source during dark 
period on physical exercise parameters of swimming rats. In addition, we investigated 
through physical exercise and biochemical and haematological parameters if it is more 
appropriate to switch this light on only during experimental procedures (in order to minimise 
the exposure) or all night in order to adapt to the light source. We hypothesised that constant 
red light during wakefulness period leads to worse performance and biochemical and 
haematological parameters when compared to red light switched on for assessments only. 

Materials and Methods

Animals and housing
Eighty male albino Wistar rats (45 days old) were obtained from São Paulo State University 
and immediately kept under controlled environmental conditions (22 ± 1 ºC, 45–55% relative 
humidity, noise <80 decibels, and 4 or 5 animals per polypropylene cage). Water and rodent 
chow (70% carbohydrate, 23.5% protein, 6.5% fat, Purina 5008, St. Louis, MO) were 
continuously available. We conducted the experiment under the principles of laboratory 
animal care of the National College for Animal Experimentation and the American Physiology 
Society (2) recommendations; the project was approved by the institutional review board 
(018/2010).

General procedures and experimental design
From 45- to 75-day-old, animals were maintained under the previously described conditions 
in order to promote the environmental adaptation. We established an artificial daily 
photoperiod of 12 hours of bright light (06:00–18:00 h) and 12 hours of total darkness, with 
all maintenance procedures (cage cleaning and change, handling, adaptation procedures and 



114

Physiology International (Acta Physiologica Hungarica) 103, 2016

Beck W and Gobatto C114

physical exercise testing) conducted at 20:00 h to handle animals during their wakefulness 
period (36). This time of day was set based on time-course data of core body temperature and 
levels of spontaneous activity and sleep in rats investigated elsewhere (21, 36).

During light period we used a white lamp (Phillips®, soft White, 2700 K, 565–590 nm, 
< 60 lux). For dark period the same light source was employed, surrounded by a special red 
filter (Rosco®, Stamford, CT, USA, mod.#FIRE19), solely eliciting spectral energy above 
600 nm and intensity of <15 lux measured by an environment meter (Instrutherm®, São 
Paulo, SP, Brazil, mod.THDL 400). We placed the lamps carefully to permit the same light 
intensity for all cages.

The animals were divided into two groups: standard illumination (SI; n = 40) and 
experimental illumination (EI; n = 40). While the EI group was kept under constant red light 
during dark period (from 18:00 to 06:00 h), the SI group was only submitted to red light 
during handling or testing and for the shortest time as possible. 

After water and physical exercise adaptation (from 76 to 89 days  old) we submitted all 
animals to a lactate minimum test (LMT; 90 days  old) according to Beck et al. (5) in order to 
individually determine the maximal aerobic capacity (40). Having accomplished that, we 
subdivided the rats into four groups: SI control (SIc); SI exercised (SIe); EI control (EIc) and 
EI exercised (EIe). Exercised groups were submitted to an exhaustive swimming trial at 
lactate minimum intensity (TE) 48 hours after LMT, while the control groups remained at 
rest (Fig. 1).

Figure 1. Schematic diagram of the experimental design. SI: standard illumination;  
EI: environmental illumination; D: days-old; EA: environmental adaptation; AA: aquatic adaptation;  

LMT: lactate minimum test; c: control; e: exercised.

Swimming tests
Aquatic and exercise adaptation consisted of progressive exposure to water (13 days; 10 to 
20 min; 31 ± 1ºC) and progressive depth (15, 50 and 120 cm). This adaptation aimed at 
minimising thermal and handling stress beyond promoting continuous swimming behaviour.

The lactate minimum test (LMT) consisted of three steps: a) hyperlactataemia induction 
phase: two bouts of high intensity exercise (13% body weight) separated by 30  s, the first of 
30  s duration and the second until exhaustion; b) recovery phase of nine minutes, aimed 
releasing the lactate produced from muscle to bloodstream; and c) incremental phase comprising 
progressive loads (4, 4.5, 5, 5.5, 6 and 7 %bw) in five minutes stages with 30  s intervals to 
collect blood samples for lactate determination. Through blood lactate and exercise intensity 
we employed a second order polynomial function in order to determine the lactate minimum 
intensity (LMi; function’s nadir interpolated to X axis), lactataemia for the lactate minimum 
test (LLM; nadir interpolation to Y axis) and determination coefficient (R2). We considered 
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success for LMT determination when the rat achieved at least three completed stages of the 
incremental phase, the first term of the polynomial function was positive and the R2 was >0.80, 
thereby determining the LMT success percentage (%S) as described elsewhere (11).

We determined the physical exercise performance parameter (time to exhaustion; TE) as 
the time at which the animal maintained swimming at lactate minimum intensity. The 
exhaustion criterion was accepted by two experienced researchers, registered when the rat 
remained submerged for at least for 10  s while trying vigorously but unsuccessfully to emerge 
(27). Attenuation of the rat´s righting reflex (9) concomitantly confirmed the exhaustion 
criterion. Blood samples were collected to determine lactate concentration before ([lac]pre) 
and after ([lac]post) TE. Once we aimed at analysing the endurance performance, we excluded 
the rats that swam for less than 20 minutes or showed discontinuous swimming behaviour 
from data analysis (2) as explained in the Results section.

Biological material and biochemistry and haematological analysis
We collected 25 μL of blood samples from the distal tail of rats for determination of 
lactate concentration. The samples were immediately transferred to plastic tubes containing 
400 μL of trichloroacetic acid (4%), prepared and measured at 340 nm against the calibration 
curve (14).

Animals were euthanised immediately after TE (exercised group) or at rest (control 
group) at the same time of day, in a carbonic gas chamber. A blood sample was collected by 
cardiac puncture (after thoracotomy), and the samples were rapidly transferred to polyethylene 
tubes containing K3EDTA (FL Medical, Torreglia, PD, Italy). Red blood cells (RBC) count, 
haemoglobin (Hb), haematocrit (Hct), white blood cells (WBC) count and lymphocyte 
(Lymp) levels were determined by haemochromocytometry on a System XS-1000 automatic 
counter. Liver and skeletal muscle samples (gluteus maximus) were extracted to determine 
glycogen concentrations according to Dubois et al. (13).

Statistical analysis
All data were described as mean ± standard deviation (SD). We analysed normal Gaussian 
distribution using the Kolmogorov–Smirnov test for all dependent variables and Levene’s test 
for groups with different degrees of freedom to check homoscedasticity. These procedures 
conducted us to use parametric statistics, except for TE, which showed lack of normality 
even after 1/x, square root and log transformations. We analysed performance (TE) data by 
Wilcoxon test. LMT variables (LMi, LLM and R2) were compared between the SI and EI 
groups using T-tests for independent samples by groups, as well as for [lac]pre and [lac]post. 
Haematological and biochemical analysis was conducted using two-way ANOVA (luminosity 
and exercise main effects) applying the Newmann–Keuls post-hoc test when statistical 
significance for any main effect or interaction was found. All routines were performed with 
p<0.05.

Results

Success percentage of lactate minimum determination was 85% for SI (n = 34) and 77.5 % 
for those assessed under EI (n = 31). We found no statistical differences between SI and EI 
for lactate minimum intensity (4.83 ± 0.48%bw and 4.97 ± 0.51%bw, respectively; p = 0.214) 
and coefficient of determination (0.96 ± 0.05 and 0.96 ± 0.06, respectively; p = 0.80). 
Nevertheless, we found higher LLM for SI (6.61 ± 1.97 mmol/L) in relation to EI (4.06 ± 
1.03 mmol/L; p < 0.01).
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Regarding TE, we found a significantly greater time for SIe in relation to EIe (n = 15, 
97.94 ± 52.50 min; and n = 14, 46.62 ± 25.16 min, respectively; p = 0.01), as well as higher 
values for initial lactate concentration on SIe (1.92 ± 0.43 mmol/L) in relation to EIe (1.17 ± 
0.23 mmol/L; p < 0.01). No significant differences were observed between groups for the 
final lactate concentration (6.74 ± 1.64 mmol/L and 5.68 ± 1.29 mmol/L, respectively; p = 
0.06).

Results regarding tissue glycogen concentrations and haematological parameters are 
shown in Table I.

Table I. Mean and standard deviation of glycogen concentrations and haematological parameters  
of rats assessed under standard (SI) or experimental illumination (EI) and submitted (exercise)  

or not (control) to acute exercise, with p and F values from ANOVA statistical analysis for these main effects  
and their interaction

SI EI Light effect Exerc. effect Interaction
Control  
(n = 14)

Exercised
(n = 15)

Control
(n = 11)

Exercised
(n = 14)

F p F p F p

Liver
(mg/100  mg)

0.20 ±
0.16

0.05 ±
0.03 α

0.17 ±
0.06 β

0.14 ±
0.02 β

1.25 0.27 14.25 <0.01 6.13 0.01

Muscle 
(mg/100  mg)

0.09 ±
0.05

0.04 ±
0.02 α

0.03 ±
0.01 α

0.03 ±
0.01 α

18.76 <0.01 12.34 <0.01 8.56 <0.01

RBC 
(1012/l)

8.34 ±
0.41

8.55 ± 
0.36

8.60 ±
0.37

9.03 ±
0.38 αβℓ

11.31 <0.01 8.57 <0.01 0.96 0.33

Hb 
(g/dl)

14.82 ±
0.47

15.16 ±
0.46

15.34 ±
0.59

15.64 ±
0.61 α

10.49 <0.01 4.16 0.04 0.02 0.89

Hct 
(%)

47.21 ±
2.08

48.41 ±
1.75

51.65 ±
1.32 αβ

52.97 ±
2.59 αβ

56.57 <0.01 4.40 0.04 0.01 0.04

WBC
(109/l)

6.70 ±
1.67

7.80 ±
1.79

9.05 ± 
2.47

11.53 ± 
4.00αβℓ

13.30 <0.01 4.62 0.04 0.69 0.41

Lymp 
(109/l)

4.44 ±
1.26

4.95 ±
1.14

6.18 ±
1.97

8.32 ±
2.89αβℓ

19.79 <0.01 5.34 0.02 2.01 0.16

α p < 0.05 in relation to SI control.
β p < 0.05 in relation to SI exercised.
ℓ p < 0.05 in relation to EI control.
RBC: Red Blood Count (Erythrocytes); Hb: Hemoglobin; Hct: Hematocrit;  
WBC: White Blood Count (Leucocytes); Lymp: Lymphocytes.

Discussion

The main finding of the present experiment was that environmental light undoubtedly leads 
to alterations in most of the parameters studied, physical exercise performance, biochemical 
and haematological scores, entirely confirming our initial hypothesis. We found higher 
aerobic tolerance at standard illumination and generally worse conditions for the animals 
exposed to experimental luminosity.

We found lactate minimum test scores quite similar to the literature (2, 11) and only the 
lactataemia corresponding to LMT was influenced by experimental illumination. A decrease 
in LLM has already been shown in human beings (37) and rats (38) with low stores of 
glycogen. Ahead of this, experiments with malnourished rats report approximately similar 
results (39), showing that physiologically adverse conditions are capable of decreasing 
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lactate concentration, as occurred in our experiment. Lactataemia after TE was regulated by 
exercise and since the intensity was individually determined, the lactate responses were not 
statistically different.

Time to exhaustion at lactate minimum intensity was higher for animals maintained 
under standard illumination when compared to experimental illumination. We interpreted 
these results considering a multi-factorial view, once the glycogen stores and haematological 
variables measured in our experiment could directly influence this result. It is well known 
that the glycogen is the major energy substrate for our proposed exercise and some authors 
have associated the inability to continue exercise at the required intensity to a lack of energetic 
substrates, mainly glycogen depletion (15). In our study, the skeletal muscle glycogen content 
was decreased by the experimental luminosity (Table I). So, these animals started the exercise 
with low substrate in relation to SI animals, probably reflecting in the TE results. The 
variability of TE will certainly be the subject of further studies in our laboratory, but analysing 
our data it is clear that the EI leads to worse conditions for maintaining exercise, as shown by 
the haematological parameters.

Analysing blood cells, in general, we found that the exercise and experimental luminosity 
signalled a stressful situation. Scores found for control groups were close to those described 
in the specialised literature (7). Variations found were considered normal once we submitted 
the animals to two effects (luminosity and exercise) and haematological parameters are 
usually very sensible (30). Regarding red blood cells, the prolonged exercise generally 
promotes dehydration and the liquid loss consequently increases relative values (31), as 
found for red blood cells count, haematocrit and haemoglobin. The increase promoted by 
experimental illumination cannot be explained by data collected from our experiment and 
deserves more investigation; nevertheless, it is known that haematological parameters can be 
modulated by several factors, such as stress, circadian rhythm (34) or exercise (33).

The literature consistently associates high WBC counts with infection or inflammatory 
responses and it could set an individual’s health status (4). These cells usually show a 
transitory increase in acute events such as physical exercise (19), generally associated with 
high catecholamine activity (18). Exercise responses are intensity, physical condition and 
duration-dependent (19), being catalysed in prolonged exercise by corticosterone secretion 
(29). Despite the acute phase modulation on WBC caused by exercise, we have shown that 
the lighting environment was capable of promoting these increases in a chronic manner, as 
found in some diseases. Light is a very important environmental signal for circadian rhythm, 
promoting significant physiological and behavioural alterations (8, 20, 26). The high WBC 
counts in animals exposed to experimental illumination was probably generated by the stress 
of constant light during dark period, even through the light source was carefully determined. 
This result shows that the duration of light exposure during dark period is strong enough by 
itself to influence physical exercise performance and biochemical and haematological 
parameters.

Analysing the data set, we have found that the experimental illumination causes a higher 
WBC counts, which is associated with inflammation, infection or stress conditions. Stress 
exposure can stimulate the anterior pituitary gland, increasing the release of adrenocorticotropic 
hormone (ACTH) (1). This process is closely related to high levels of epinephrine and 
corticosterone secreted by the renal gland (3), generating an increase of glycolytic and 
glycogenolytic metabolism and consumption of high levels of glycogen at rest (24). Con-
sidering the chronic stress exposure (from 45 to 90 days old), lower glycogen concentrations 
were found in the skeletal muscle of EI groups at rest, leading to worse haematological 
conditions and performance (TE).
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Environmental light leads to modulation in physical exercise and haematological and 
biochemical parameters. The standard illumination was effective for animal visualisation for 
all procedures during dark period, promoting a normal range of haematological and 
biochemical parameters and a longer time to exhaustion at lactate minimum intensity. The 
experimental illumination proposed in the present study dramatically and negatively 
influenced most of the parameters investigated, promoting generally poor conditions when 
compared to the proposed standard illumination. Confirming our initial hypothesis, we 
postulate that environmental luminosity should be observed in nocturnal animal experiments 
in order to enhance methodological control and produce scientifically reliable results.
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