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There is an ever-increasing trend in advanced food analysis and foodomics to use more and more sophisticated 
analytical platforms that generate large and complex data structures, which in turn require more and more 
sophisticated data analysis tools for converting data into information. The choice of multivariate chemometric 
methods is primarily determined by the design of the study, type of the data, and the conclusions sought. In order to 
validate multivariate models, scientists are required to have basic chemometric knowledge and to be familiar with 
the variance structure of the investigated data. This review outlines some of the key aspects of applying common 
chemometric methods used within foodomics and provides selected examples of current applications. The review 
aims to provide simple insight into various multivariate methods and to illustrate pros and cons of unsupervised and 
supervised methods. The main analytical platforms used in foodomics are briefl y discussed from the application 
point of view and the utilization of the generated data is illustrated. In addition, advanced data pre-processing tools, 
prior to multivariate analysis, are explained and relevant tools are demonstrated.
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1. Introduction

The increasing world population and the continuous climate change result in reduction of 
agricultural lands for food production and shortage of drinking water. Subsequently this 
urges modern food science to develop sustainable food production systems and improve 
nutritional value of food products, while keeping the cost as low as possible. Quality and 
nutritional value of foods are highly dependent on environment, agricultural practices, 
production conditions, and consumer preferences, which all may provide different effects for 
human health. One of the main challenges of the food science is to optimize food production 
to have minimum environmental footprint, lower production costs, and improving quality 
and nutritional value. This societal quest has brought a new multidisciplinary area into the 
food science, namely foodomics (Fig. 1) (CIFUENTES, 2009; CAPOZZI & BORDONI, 2013). 
Foodomics has been defi ned as a new discipline that studies food and nutritional domain via 
cutting-edge analytical technologies and multivariate data analysis (chemometrics). 
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Foodomics studies generally attempt to cover broader range of more holistic research 
questions, such as for example how crop plants grown under drought conditions will change 
its chemical composition and how this in turn will affect food production and the health of 
the consumers. The questions behind most foodomics studies require untargeted analytical 
methods and the utilization of as much information as possible. Direct and indirect effects of 
food products on human health are studied within nutritional metabolomics that require 
untargeted and/or semi-targeted methods of analysis. In contrast, some of the important 
aspects of the food safety and food control require more targeted methods, such as for 
example targeted detection of food contaminants, where predefi ned questions can be 
answered by measuring relatively few compounds. The sheer size of the generated data in 
foodomics often becomes too big to be effectively evaluated by conventional univariate 
approaches and requires multivariate data analysis and pattern recognition methods that 
utilize all measured variables simultaneously and are able to identify underlying latent factors 
that carry important biological information.

Fig. 1. Foodomics in the centre of the multidisciplinary scientifi c cyclone with interactions to multiple disciplines 
and surrounded by a cloud of multivariate chemometric data integration

Analytical platforms, such as Gas Chromatography-Mass Spectrometry (GC-MS), 
Liquid Chromatography-Mass Spectrometry (LC-MS), Capillary Electrophoresis–Mass 
Spectrometry (CE-MS), Nuclear Magnetic Resonance spectroscopy (NMR), Infrared 
Spectroscopy (IR), Near-Infrared Spectroscopy (NIR), and Raman spectroscopy, are 
frequently employed in various foodomics studies and allow semi-quantitative and 
quantitative detection of broad range of molecules, which in turn may provide insight into 
biology and/or food process related changes. Foods are complex heterogeneous systems 
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including complex mixtures of different molecular families and therefore analytical platforms 
are required to be unbiased, selective, and sensitive in order to detect the wide range of 
molecules that might be present at very different concentrations. Such analytical platforms 
often generate several thousand variables per sample and depending on the analysis mode, 
the data may have two, three, and more dimensional structures. Analysis of such multivariate 
data with highly co-linear variables requires appropriate multivariate chemometric methods.

This review focuses on pros and cons of the most commonly applied chemometric 
methods in foodomics. The most frequently used unsupervised methods, such as Principal 
Component Analysis (PCA) (PEARSON, 1901; HOTELLING, 1933), Hierarchical Cluster Analysis 
(HCA) and supervised methods like Partial Least Squares Regression (PLSR) (WOLD, 1975, 
1980, WOLD et al., 1983), Partial Least Squares Discriminant Analysis (PLS-DA) (STÅHLE & 
WOLD, 1987), Extended Canonical Variates Analysis (ECVA) (NØRGAARD et al., 2006), and 
Soft Independent Modelling of Class Analogy (SIMCA) (WOLD & SJÖSTRÖM, 1977), are 
discussed, and selected applications from literature are highlighted. Moreover, the utility of 
more advanced chemometric methods, such as ANOVA–Simultaneous Component Analysis 
(ASCA) (SMILDE et al., 2005), sparse PCA (SPCA) (ZOU et al., 2006), PARAllel FACtor 
Analysis (PARAFAC) (HARSHMAN, 1970; BRO, 1997), and PARAllel FACtor Analysis 2 
(PARAFAC2) (HARSHMAN, 1972; BRO et al., 1999), will be explained in details and their 
advantages for exploring complex foodomics data sets are demonstrated. Alongside with 
short descriptions of the different chemometric methods, few examples of their use within 
food exploration (MUNCK et al., 1998), food control (ARVANITOYANNIS & VAN HOUWELINGEN-
KOUKALIAROGLOU, 2003, ARVANITOYANNIS & TZOUROS, 2005, BERRUETA et al., 2007), GMO 
foods (AHMED, 2002, VALDÉS et al., 2013), food adulteration (ARVANITOYANNIS et al., 2005a, 
KAROUI & DE BAERDEMAEKER, 2007), pesticide detection (MAS et al., 2010), and nutritional 
metabolomics (SAVORANI et al., 2013) will be demonstrated.

2. Analytical platforms

Foodomics studies employ various analytical platforms differing by their sensitivity, 
selectivity, and high-throughput capacity (Table 1), and the molecular composition of the 
investigated samples signifi cantly vary by their physico-chemical properties and 
concentrations (Fig. 2). In order to provide a holistic evaluation of the molecular perturbations, 
comprehensive studies require unbiased analytical platforms covering a broad range of 
metabolites. Modern analytical platforms can be divided into two categories: 1) separation 
followed by detection techniques, e.g. GC-MS, LC-MS, CE-MS, LC-NMR, and 2) direct 
detection techniques, e.g. Fluorescence, Raman, IR, NIR, and NMR spectroscopy.

GC-MS is based on separation of molecules in a gas phase based on their boiling points 
by applying heat and vaporized molecules fl y through the GC column under the steam of 
carrier gas, e.g. helium or hydrogen. Then, vaporized molecules reach the ionization chamber, 
where they will be fragmented into several characteristic m/z ions and subsequently separated 
and detected forming two-dimensional data (Fig. 3). Standardized electron ionization (EI) 
techniques with 70 eV energy electron beam provide unique mass spectra per chemical 
structure and have formed some of the richest metabolite databases, e.g. NIST and Wiley. 
However, GC-MS requires molecules to be thermally stable and volatile, thus samples are 
derivatized, where non-volatile and/or thermally unstable metabolites are chemically altered 
for increasing their detection (KHAKIMOV et al., 2013). GC-MS is widely utilized in various 
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food control (DURANTE et al., 2006), foodomics (BIANCHI et al., 2001), and nutritional 
metabolomics (ZAFRA-GOMEZ et al., 2010) applications.

Table 1. Main advantages and drawbacks of analytical platforms GC-MS, LC-MS, CE-MS, NMR, 
and vibrational spectroscopy

Analytical 
platform

Advantages Drawbacks

GC-MS

•  High chromatographic resolution
•  Great sensitivity towards non-polar and volatile 

metabolites
•  Rich EI-MS metabolite databases are available
•  Cheaper than LC-MS and lower running cost 

(solvent free)

•  Requires sample derivatization for detection of 
polar and non-volatile metabolites

•  Only small MW metabolites can be detected 
(MW < 1000 Da)

•  Usually EI-MS does not provides mass of 
molecular ions

LC-MS

•  Wide range of metabolites can be detected 
(MW < 60 kDa)

•  No requirements for metabolites to be volatile
•  Great sensitivity towards polar metabolites
•  Larger volume of sample can be injected
•  Allows metabolite purifi cation

•  Mobile phase (pH, polarity, gradient program) 
dependent sensitivity towards polar metabolites

•  Ion suppression
•  Diffi cult to ionize volatile metabolites
•  Expensive (especially for high mass accuracy 

platforms)

CE-MS

•  Provides higher resolution of metabolites 
compared to LC

•  Allows separation of proteins, nucleic acids, 
ionic and very polar metabolites that are 
complicated in LC and GC

•  Provides highly reproducible profi les when 
experimental conditions are robust

•  Allows the analysis of heterogeneous samples

•  Small volume of sample introduction (1 μl) 
limits sensitivity and metabolite purifi cation

•  Resolution power highly depends on polarity 
and pH of solvent

•  Migration times of the same metabolites 
fl uctuate with the changing of the environment 
temperature

•  Limitations in electrolyte selections

NMR

•  Allows structure elucidation of unknown 
metabolites

•  Unbiased and inherently quantitative
•  Provides higher reproducibility and lower 

experimental error than MS based methods
•  Non-destructive with minimal sample 

preparation
•  Metabolite coverage is excellent

•  Lower sensitivity than MS based methods
•  Lower selectivity than MS based methods
•  Signals of metabolites may be overlapped and 

hamper quantifi cation
•  High running costs (deuterated solvents and 

cryogenic gasses)
•  Measurement speed is medium

NIR
IR
Raman

•  Non-destructive
•  High reproducibility and measurement speed
•  Applicable in on-line measurements
•  Well established and validated methods are 

available
•  Metabolite coverage is excellent
•  No sample preparation
•  Allows the analysis of solid state samples

•  Lower sensitivity compared to NMR and MS
•  Lower selectivity compared to NMR and MS
•  Metabolite structural information is limited to 

the type of functional groups, polarity
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Fig. 2. Analytical platforms frequently applied in foodomics

Fig. 3. A segment of the raw GC-MS data showing the three dimensional nature of the data 
(intensity as a function of elution time and mass)

LC-MS is a technique that allows mass spectrometric detection of metabolites that are 
separated in liquid phase due to their different mobile (solvent)-stationary (column) phase 
partitioning coeffi cients. Development of electrospray ionization (ESI) method has largely 
broadened the applications of LC-MS by offering an effi cient ionization of non-volatile/polar 
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metabolites that cannot be ionized by the EI and minimized problems related to the LC 
solvent interferences.

CE-MS is one of the most versatile analytical techniques commonly applied in foodomics 
studies (KOLCHet al., 2005; MISCHAK et al., 2009; CASTRO-PUYANA et al., 2012). In CE-MS the 
molecules travel through a capillary tube by using an electric fi eld and electrolytic solution 
and separation is based on migration rate, which depends on the molecular charge, the 
molecular size, and the electroosmotic fl ow of the solution. Resolution, sensitivity, and 
reproducibility of CE-MS depend on the nature of the capillary tube coating, stability of pH 
and temperature (ERNY et al., 2006, KASICKA, 2012). 

In a non-targeted set-up, the above-mentioned hyphenated platforms allow detection of 
up to 800 small biomolecules/metabolites of the investigated sample mixtures, and 
identifi cation of up to 200 molecules at level 1, 2, and 3 according to the Metabolomics 
Standards Initiatives (SUMNER et al., 2007). However, due to the complexity of the sample 
preparation and analysis protocols, the levels of experimental errors are usually higher than 
in the direct detection platforms.

Direct detection analytical platforms are used for measuring various physico-chemical 
properties of food samples as one whole system (non-destructive), but they are normally less 
specifi c to individual molecules. However, these methods provide effective quantitative 
analysis of the bulk primary metabolites, such as total starch content, fat content, protein 
content, dietary fi bres, and sugars, and facilitate rapid (high throughput) and non-destructive 
evaluation of the samples. Vibrational spectroscopic techniques, such as IR and NIR, are 
considered as a fi ngerprint of the underlying molecular structures and measure the energies 
of the fundamental vibrations, such as stretching, scissoring, wagging, rocking, and twisting 
of functional groups in the molecules, and last but not least, the absorption is directly 
proportional to concentration (Lambert-Beer’s law). Near infrared spectroscopy is analogous 
to IR spectroscopy (fundamental vibrations), but due to the shorter wavelengths and thus 
higher energy photons, it measures the energy absorbance due to molecular overtone and 
combination vibrations. As the “symphony” of overtones and combination tones usually 
gives rise to very complex and holistic spectra, multivariate regression methods are required 
to uncover the information about the overall physico-chemical state of the sample. NIR 
technology has a long tradition as a powerful tool for the rapid proxy evaluation of foods in 
food control and in process analytical technology applications (VAN DEN BERG et al., 2013).

NMR is one of the mostly used non-destructive and unbiased analysis method that 
provides medium rapid, highly reproducible, and quantitative detection of the broad range of 
metabolites that possess 1H atoms or any other atom with NMR active nuclei, such as 31P, 15N, 
and 13C. NMR fi ngerprints possess both qualitative and quantitative metabolomic information 
that easily can be turned into biological information with the help of multivariate data analysis 
(ENGELSEN et al., 2013). NMR has lower sensitivity compared to hyphenated platforms and it 
allows the detection of the most abundant metabolites (e.g. fi rst 50 metabolites) of sample 
mixture, while low concentration metabolites remain undetected.

3. Data pre-processing prior to chemometric analysis

Chemometric data analysis methods are sensitive to the noise and other non-sample related 
variations that might hide the true biological information and/or lead to misinterpretations. In 
foodomics, the level of non-sample related variations depends on complexity of protocols, 
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and data acquired using direct detection platforms possess less artifi cial variation than 
hyphenated platforms. In order to reduce such variations, complex biological samples are 
spiked with an internal standard and/or control samples are run at frequent intervals throughout 
the analysis. Data normalization to these standard samples signifi cantly reduces the 
experimental and instrumental variation to a certain extent. However, several other variations, 
e.g. retention time shift, chemical shift inconsistence, baseline drift, and occurrence of 
artifi cial peaks, might signifi cantly hamper extraction of data. Thus pre-processing of raw 
foodomics data is often required prior to the application of chemometrics. Most often 
foodomics data are pre-processed to remove the baseline, reduce noise and align peaks. This 
section provides an overview to the different pre-processing tools used with GC-MS, LC-
MS, NMR and NIR data.

GC-MS. Non-specialist analysts need user-friendly methods for quantifi cation and 
identifi cation of resolved or partially resolved GC-MS peaks from the complex raw data. 
This is for a large part possible by using commercial chromatographic data processing 
software, such as ChemStation and Mass Profi ler (Agilent), DataAnalysis (Bruker), and 
ChromaTOF (LECO). However, it becomes complex and laborious when dealing with 
profi les with several overlapped and/or closely eluted peaks that make reliable and high-
throughput quantifi cation and identifi cation diffi cult. Although automatic quantifi cation of 
resolved and overlapped peaks is possible using such software, it may not be reliable due to 
the inconsistencies in retention times of peaks, changes of peak shape, and omission of peaks 
having a low s/n ratio. One of the most utilized GC-MS data processing software, Automated 
Mass Spectral Deconvolution and Identifi cation System (AMDIS) (STEIN, 1999), allows 
automatic deconvolution of mass spectra from complex profi les and compares with NIST 
database. However, the technique requires validation of deconvoluted mass spectra, since the 
level of false positive results is high. Recently a similar method to AMDIS, GAVIN was 
developed as a freely available software (BEHRENDS et al., 2011). Another approach is based 
on multivariate curve resolution (MCR) (LAWTON & SYLVESTRE, 1971; DE JUAN & TAULER, 
2006) that decomposes three-way GC-MS data and allow spectral deconvolution and 
estimation of metabolite concentrations via modelling (HANTAO et al., 2012).

Comprehensive GC-MS foodomics requires high-throughput and reliable pre-processing 
methods, which will allow automated and/or semi-automated deconvolution of mass spectra, 
baseline correction, RT alignment, metabolite quantifi cation, and identifi cation (AMIGO et al., 
2010b, KHAKIMOV et al., 2014). While AMDIS and MCR can handle only one sample at a 
time, new technology based on multi-way decomposition modelling, PARAFAC2 performs 
the same task in a more effi cient and robust manner by extracting the same features across all 
samples. However, this approach also has some disadvantages related to its use by non-
specialist users. PARAFAC2 based chromatographic data processing requires division of the 
data (e.g. Elution time × Mass spectra × Samples) into smaller (less complex) intervals in 
elution time dimension in order to reduce model complexicity and improve model validation 
(BRO et al., 1999; AMIGO et al., 2010a; KHAKIMOV et al., 2012). An example of processing raw 
GC-MS data interval using PARAFAC2 is illustrated in Fig. 4. PARAFAC2 will be discussed 
in more detail in section 5.4.4.

LC-MS. Pre-processing of LC-MS data is complex and a number of good conducting 
habits and tricks of the trade is given in SKOV and ENGELSEN (2013). The LC-MS data pre-
processing involves conversion of the complex raw data into a simple metabolite table by 
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extracting informative characteristics of each detected ion in order to proceed with data 
analysis methods for interpretation. The informative characteristics include m/z, retention 
time of the ion (usually referred as a ‘feature’), and intensity measurements (height or area). 
In LC-MS based foodomics studies, thousands of peaks can be detected and usually the aim 
is to determine which of these features are responsible for distinguishing between two or 
more sample groups. Many software tools are available for pre-processing LC-MS data, 
either commercial from instrument vendors like MarkerLynx from Waters and Metabolic 
Profi ler Pro from Agilent or freely available, such as XCMS (SMITH et al., 2006), MetAlign 
(LOMMEN, 2009), and MZmine (PLUSKAL et al., 2010). The common task of these tools 
involves two critical steps: (1) feature detection, which aims to detect and integrate all true 
peaks within a chromatographic run for each sample, and (2) feature alignment, which 
intends to match the features representing the same ion in multiple samples. All these tools 
require selection of several parameters that has to be optimized based on instrumental 
conditions, and comparative studies have shown that the same data pre-processed with 
different softwares can lead to detection of only 20–40% common features (TAUTENHAHN et 
al., 2008; GÜRDENIZ et al., 2012). This mismatch can be explained by large number of peaks 
with varying peak shapes and differences in the implemented peak detection method and 
corresponding parameter settings for each software. So far, there has been no study to clearly 
demonstrate that any of the software performs better than the others and thus many factors 
are to be considered for the choice of software platform, such as programming skills, provided 
GUIs for visualization, and the computer power for pre-processing large number of samples. 
Some of the practical properties of XCMS, MZmine, and MarkerLynx are listed in Table 2. 
The pros and cons of several LC-MS data pre-processing tools have been reviewed by 
CASTILLO and co-workers (2011).

Fig. 4. (A) PARAFAC2 decomposition of the three-way GC-MS data, (B) example of the PARAFAC2 based 
processing of the raw GC-MS data interval
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Table 2. Properties of commonly used LC-MS data pre-processing tools, MZmine, XCMS, and MarkerLynx

MZmine XCMS MarkerLynx

Availability Free Free Commercial

User interface
•  GUI*

•  No requirement of 
programming skills

•  R software command line
•  Some programming skills are 

required

•  GUI*

•  No requirement of 
programming skills

Memory usage

•  Adjustable to maximum 
available memory in the PC.

•  Less effi cient than XCMS, 
e.g. 16 GB RAM = 
maximum ~2000 samples

•  Adjustable to maximum 
available memory in the PC, 
e.g. 16 GB RAM = 
maximum ~5000 samples

•  Fixed, e.g. maximum ~1000 
samples

CPU usage •  Adjustable to maximum 
available CPU in the PC 

•  Adjustable to maximum 
available CPU in the PC •  Fixed

Identifi cation
tools

•  Basic identifi cation tools
•  Automated advanced tool 

CAMERA is partially 
incorporated

•  Automated advanced 
identifi cation tool CAMERA •  Basic identifi cation tools

Coverage of 
pre-processing 
pipeline

All steps Final feature table includes 
isotopic peaks All steps

Visualization 
of the results Yes Yes No

NMR. In NMR spectroscopy, the chemical shifts derive from free induction decay by 
utilizing a Fourier transformation, and the fi rst step of pre-processing is phase and baseline 
correction, which is often performed by the software tools provided by machine-vendor 
software. Due to pH differences, overall dilution of samples and relative concentrations of 
some metabolites, the chemical shift of the same analyte signal may vary across different 
samples. In order to correct for these variations, a simple and common approach, spectral 
binning, has been widely applied. The main disadvantage of binning is loss of spectral 
resolution, and in order to avoid this problem, more sophisticated alignment tools have been 
proposed, utilizing varying procedures to determine optimum values for alignment, such as 
genetic algorithms (FORSHED et al., 2003), partial linear fi t (VOGELS et al., 1996), and 
correlations (VESELKOV et al., 2009; SAVORANI et al., 2010b). Correlation based alignment 
methods, such as recursive segment-wise peak alignment (VESELKOV et al., 2009) and interval 
correlated shifting (icoshift) (SAVORANI et al., 2010b) use the effi cient fast Fourier transform 
engine to optimize the algorithms to be able to handle large data sets in real time. The same 
methods can be used to align chromatographic data (TOMASI et al., 2011), but in chromatography, 
there has been a tradition of using the more fl exible and meta-parameter demanding 
Correlation Optimized Warping (COW) method (NIELSEN et al., 1998, TOMASI et al., 2004).

Vibrational spectroscopy. Vibrational spectroscopic data, such as IR spectra and 
especially NIR spectra, are infl uenced by undesired scatter effects caused by the sample 
morphology and the particle size of biological samples. The scatter effects are observed both 
as baseline shifts, multiplicative effects, and non-linearities that hinder the extraction of 
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relevant information using chemometric bilinear modelling (e.g. PCA and PLS). Bilinearity 
requires that the signal of each identical compound is stored in a column among all samples. 
Pre-processing of NIR spectral data aims to eliminate undesirable scatter effects prior to data 
analysis (RINNAN et al., 2009). Two of the most common pre-processing methods are 
Multiplicative Scatter Correction (MSC) (GELADI et al., 1985) and Standard Normal Variate 
(SNV) (BARNES et al., 1989). The MSC eliminates irrelevant variation due to scatter effects 
in two steps: (1) regression of a sample against a reference spectrum, (2) correction of the 
sample spectrum using intercept and slope of this fi t. The SNV performs a correction of each 
sample by the standard deviation of all variables for that sample. In the course of SNV, each 
sample is processed individually, independently from entire set unlike MSC, where a 
reference spectrum is required.

4. Chemometric analysis methods

Unsupervised and supervised multivariate data analysis methods play a key role in exploration 
of multivariate data sets, where K number of variables are measured for N number of samples. 
Usually, the main aim from the analysis of such a data matrix, e.g. X (N×K), is to explore the 
underlying patterns in the dataset and extract variables that provide quantitative (e.g. 
prediction of melamine concentration in milk) and/or qualitative (e.g. discrimination of food 
products according to their origin) information. In foodomics studies, it is normal to include 
100–500 samples, and if these samples were to be measured by the classical quality control 
(QC) analysis set-up like NIR spectroscopy as is common in the classical quality control 
(QC) analysis set-up, typically 1000 spectral variables are recorded. Such data sets of the 
order of 100×1000 can, with advantage, be dealt with using chemometrics, which effi ciently 
can model collinear data sets with many more variables than samples. However, nowadays it 
is not uncommon that the analytical platforms may record more than 100 000 variables from 
each sample, which pushes the chemometric tools to the limit, as this increase will also 
increase the chances of spurious correlations and include more interferences (SKOV et al., 
2014). Indeed, in omics based profi ling experiments, K is much larger than N and highly 
multi-collinear. Multivariate methods make use of all these variables simultaneously and deal 
with the relationship amongst the variables. In the following sections, the commonly applied 
unsupervised and supervised multivariate methods will be discussed.

4.1. Data pre-treatment methods

Normalization, scaling, and centering are usually necessary for effi cient application of 
multivariate data analysis methods. Initial normalization can be applied for potential 
systematic error arising from sample preparation and/or in cases where instrumental issues 
can bring out unwanted variations between samples that may hinder the extraction of relevant 
variation.

The unwanted variation may appear in two forms: 1. Overall concentration variations 
between samples, i.e. the signal increase in all analytes of one sample compared to another 
sample. In this case, a scaling factor based normalization method can be used for correction 
of between–sample variations. Scaling factor based normalization is performed by division 
of each analyte in a sample by a factor, such as unit norm, total area, and total sum of 
intensities, calculated for that sample. 2. Analyte specifi c fl uctuations between samples, i.e. 
the signal increases for one analyte, while decreasing for another analyte. This may be an 
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issue in GC-MS and LC-MS applications, which can ideally be corrected by utilization of 
isotope labelled internal standards. It is suggested where each internal standard is added to 
each sample in identical concentrations. However, a fully labelled reference metabolome is 
not feasible. Thus, multiple internal standards, each representing metabolites from chemically 
related groups, can be used for correction of systematic errors on the metabolite level (BIJLSMA 
et al., 2006; SYSI-AHOet al., 2007).

Particularly in GC-MS and LC-MS based studies, the analyte levels can differ with 
orders of magnitude, yet this may not correspond to the biological question addressed. For 
instance, two metabolites with signals of 5000 and 50 are usually of equal importance. 
However, PCA tends to gravitate upon the larger variation that is provided by larger peaks. 
Thus, scaling is necessary prior to PCA or PLSR, to put metabolites on similar or equal basis. 
Centering adjusts for differences in the offset between high and low abundant metabolites, 
while mean centering forces the corrected (centered) metabolite concentrations to fl uctuate 
around zero mean. In most cases, centering is applied in combination to scaling. Autoscaling 
and pareto scaling are the most commonly employed scaling strategies in metabolomics. 
Autoscaling, which is the combination of unit scaling and mean centering, uses standard 
deviation as the scaling factor. After unit scaling of the data, all metabolites have standard 
deviation of one so that they have equal chance to infl uence the model. The main disadvantage 
of autoscaling is that it also infl ates the noise, particularly for NMR and NIR profi les, which 
in turn may hinder the extraction of relevant patterns. Pareto scaling utilizes square root of 
standard deviation as scaling factor. As a result, it reduces large scale differences between 
metabolites, but still they are close to the original measurements. Although some studies in 
LC-MS based metabolomics use pareto scaling of the data, in most cases autoscaling seems 
to be a better choice, unless there is a specifi c interest or situation (e.g. very noisy data). The 
reason is that the   magnitude of metabolite concentration differences are not representative of 
the biological relevance, which can only be provided by autoscaling (VAN DEN BERG et al., 
2006).

4.2. Unsupervised exploration and classifi cation

Unsupervised data analysis methods do not utilize any prior information on sample 
characteristics (quantity or category) in the modelling. In food control, foodomics and 
nutritional metabolomics, the most commonly used unsupervised data analysis methods are 
PCA and HCA.

4.2.1. Principal Component Analysis (PCA). PCA is the mostly utilized unsupervised method, 
which aims to extract the dominant patterns in a data matrix consisting of a large number of 
interrelated variables in terms of lower dimensional variables called principal components. 
Principal components represent linear combinations of original variables. The components 
are approximated as orthogonal directions in original variable space with the aim of capturing 
maximum variance. PCA can be formulated as

 X=T×P'+E (1)

where T is the score matrix (n×i-components), P is the loadings matrix (k×i-components), 
and E is the residuals. The sample patterns are commonly visualized by a scatter plot of 
scores, e.g., t1 vs. t2 for the fi rst two components, and the corresponding variable patterns are 
represented by a loadings plot e.g., p1 vs .p2.
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PCA can with advantage be applied to most multivariate data sets (ENGELSEN et al., 
2013) for outlier detection, data exploration, sample classifi cation, and replicate analysis. 
PCA has been in use in food analysis (WILLSON & FREEMAN, 1970; MACNAUGHTON et al., 
1972) and spectroscopy/spectrometry (RASMUSSEN et al., 1978) since the 1970s and is 
nowadays commonly used in various foodomics studies, such as food authenticity and food 
traceability. Typical examples could be the determination of the geographical origin of wine 
(SCHLESIER et al., 2009), classifi cation of fi sh oil products (AURSAND et al., 2007), and the 
authenticity of grape cultivars based on their antioxidant compounds detected using HPLC 
(BERENTE et al., 2000). In addition, PCA is frequently used to detect food adulteration and 
explore effects of food on human health. For example, OLIVEIRA and co-workers (2009) 
applied PCA on GC-MS aroma profi les of coffee samples to study adulteration of roasted 
coffee with roasted barley and SAVORANI and co-workers (2013) used PCA to explore contrasts 
between diets in the human metabolome.

In particular, PCA is the powerful tool for exploring complex data sets, such as NIR 
spectroscopic data, and such a combination have successfully been applied in various 
applications within foodomics (COZZOLINO, 2014). BOTROS and co-workers (2013) attempted 
to develop an untargeted adulterant detection method in milk powders based on PCA and 
NIR spectroscopy, and the same techniques have previously been applied for the identifi cation 
of mutant endosperm genes from NIR spectra of genetically modifi ed barley cultivars with 
exceptionally high beta-glucan content (MUNCK et al., 2004).

4.2.2. Hierarchical Cluster Analysis (HCA). The other main unsupervised method, HCA 
(CATTELL, 1943), is commonly used to study similarities and differences present amongst the 
investigated samples. HCA is based on either an agglomerative approach, that considers each 
sample as a separate cluster and then gradually merges it with other similar samples to form 
clusters, or a divisive approach that assumes that all samples constitute a single cluster and 
recursively splits the samples moving down the hierarchy. In HCA, similarities between 
samples can be estimated using metric systems, such as Euclidean distance, Manhattan 
distance, or Mahalanobis distance. The results of HCA are normally presented in dendrograms. 
The HCA method has been applied to complex data sets, such as LC-MS for studying a 
relationship between metabolites and plant’s resistance against insects (KUZINA et al., 2009) 
and GC-MS data, where covariance of primary and secondary metabolites of seven rice 
cultivars have been explored (KIM et al., 2013). In addition, HCA is frequently used on 
spectroscopic data, such as Raman spectroscopy for classifi cation of citrus fruit (FENG et al., 
2013) and FT-IR based molecular structural analysis of various feed and food mixture 
samples (ABEYSEKARA et al., 2013).

4.3. Partial Least Squares Regression (PLSR)

PLSR is a linear regression based method for relating a set of predictor variables, X, with 
one or more response variables, Y. As mentioned previously, PCA aims to fi nd a subspace 
that explains the maximum amount of variation in X (N samples and K features). PLSR, on 
the other hand, tries to fi nd a smaller dimensional subspace that describes the X well, but at 
the same time the coordinates of this new subspace are good predictors of the response 
variable Y. Similar to PCA, the components are orthogonal. For PLSR, X matrix is 
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decomposed by using eqn (1), providing T and P. Decomposition of Y, on the other hand 
can be formulated as:
 Y=U×Q'+F (2)

such that U and Q are scores and loading matrices, respectively. In PLSR, the calculated T 
and P values differ as the criteria for PLSR is not only to describe X but also to provide a 
relation between X and Y. Thus, P and Q are calculated in such a way that the covariance 
between T and P is maximum. The PLSR scores and loadings can be interpreted as in PCA.

PLSR is one of the most powerful regression methods that exist, which can deal with 
highly collinear data, but it is important to note that it is prone to over-fi tting, i.e. good 
calibration fi tting, but with no predictive ability. Thus, determination of correct model 
complexity, in other words correct number of components, is critical and model must be 
validated before interpretation. In PLSR one of the most common validation methods is 
cross-validation, the samples are divided into training and validation sets. The training set is 
used to develop models with different number of components (i.e. from 1 to n). These models 
are evaluated based on their performance for correctly predicting the training set and then, 
the number of components providing the lowest value for Root Mean Square Error of Cross-
Validation (RMSECV) is selected. However, assessment of the performance of the fi nal 
model by RMSECV of the training sample set may lead to over-optimistic validation results. 
The model is optimized for the samples that are left out, so, those do not assess the validity 
of the fi nal model. For a proper validation, the total data should be divided into training, 
validation, and test sets. Then the optimized model using the training and validation sample 
sets is used to evaluate a fi nal model performance using the virgin test samples  (BRERETON, 
2006).

Supervised regression analysis is probably the most commonly used method for rapid 
prediction one or more valuable features of food products that are costly and diffi cult to 
measure. The fi rst applications of PLSR in food analysis (MARTENS et al., 1983; FRANK & 
KOWALSKI, 1984) and spectroscopy/spectrometry (LINDBERG et al., 1983, 1985) was published 
in the 1980s, and PLSR continues to play a most important role for analyzing foodomics data. 
PLSR is commonly used in food control, and new applications are emerging in nutritional 
metabolomics, such as for example to provide high throughput methods for measuring the 
postprandial levels of chylomicrons in the blood (SAVORANI et al., 2010a). PLSR has also been 
used to predict dioxin content in fi sh meal samples using GC-FID profi les (BASSOMPIERRE et 
al., 2007), for the prediction of caffeine and chlorogenic acid content in instant coffee 
mixtures from IR and NIR spectra (FABIÁN et al., 1994), and for the prediction of adulteration 
level of caprine and ovine milk with bovine milk from pyrolysis mass spectrometry data 
(GOODACRE, 1997). Recently, PLSR was applied to develop a NIR based method for rapid 
prediction of sugar content of sugarcane plants (TAIRA et al., 2013) and for prediction of the 
adulteration level of butter with margarine using Raman spectroscopy (UYSAL et al., 2013). 

4.3.1. PLSR with variable selection. PLSR is able to deal with large number of variables, 
yet, in many situations it is desired to reduce the number of variables in order to improve the 
model predictions and/or to obtain better interpretation. However, the vast amount of 
variables compared to the relative few objects may often generate spurious correlations when 
Y-based variable selection methods, such as “forward selection”, are applied (i.e. fi nd the 
variable that best predicts the response variable; fi nd the second variable that best improves 
the prediction; etc.). A large diversity of variable selection methods exist (ANDERSEN & BRO, 
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2010), but commonly applied variable selection methods are based on the model parameters, 
describing relevance of each variable, such as regression coeffi cients, variable importance of 
projections (VIPs), and selectivity ratio. Regression coeffi cient represents the importance of 
a given variable for modelling dependent Y, whereas VIP summarises its importance for both 
independent variable X and dependent variable Y (WOLD et al., 2001). Selectivity ratio is 
calculated for a variable as the ratio between explained and residual variance on the target 
projected component, which is a single latent variable explaining the covariance of the X 
variables with the Y (RAJALAHTI et al., 2009). In order to develop a highly predictive PLSR 
model with as low RMSECV as possible, the variables with insignifi cant regression 
coeffi cients, VIPs, or selectivity ratios are excluded, and a fi nal model usually includes only 
the selected variables with high predictive power. However, such models require an 
appropriate validation against an intact test set samples, which have been involved neither in 
the variable selection, nor in the regression procedures.

In this context, two other variable selection methods based on PLSR should be 
mentioned: interval Partial Least Squares (iPLS) (NØRGAARD et al., 2000) and recursive 
weighted Partial Least Squares (rPLS) (RINNAN et al., 2014). iPLS is commonly used for 
spectroscopic data, where adjacent variables are highly correlated. It involves the division of 
spectral data into a number of smaller intervals where PLSR is calculated for each interval. 
Subsequently, the intervals that are better for predictions than compared to the whole spectrum 
are selected using the RMSECV as evaluation criteria.

The combination of the iPLS with spectroscopic data has found widespread use in 
foodomics due to the improved interpretability and better performance (LARSEN et al., 2006; 
KRISTENSEN et al., 2010; DI ANIBAL et al., 2011). A few selected examples could be the 
prediction of the glucose content in various sport drinks by micro-Raman spectroscopy as an 
on-line quantifi cation tool (DELFINO et al., 2011), the prediction of crystalline lactose content 
in whey permeate powder by NIR spectroscopy (NØRGAARD et al., 2005). The extension of 
iPLS to discriminant analysis, namely iPLS-DA, was used for discrimination of red wines 
adulterated with anthocyanins from black rice, using NMR data (FERRARI et al., 2011).

rPLS iteratively uses the regression coeffi cients to magnify important variables and thus 
down-weight less important variables. Recursive weighted PLS is based on an iterative 
process of repeated PLSR models, in which the current regression coeffi cients are used as 
cumulative weights on X. The rPLS model has the excellent property that it will converge to 
a limited number of variables (equal to the number of PC’s), but it will exhibit optimal 
performance before normally including co-linear neighbouring variables. The rPLS method 
has great potential in foodomics studies, but so far the use of rPLS for exploitation of 
foodomics data has not been documented in literature.

4.4. Discrimination analysis

4.4.1. Partial Least Squares – Discriminant Analysis (PLS-DA). In foodomics, PLSR has 
been extensively applied in discrimination problems, where class labels (e.g. case vs. control, 
exposed vs. unexposed, pure vs. adulterated) are used as Y vector. PLS-DA (STÅHLE & WOLD, 
1987) is a classical PLS regression used to discriminate samples, considering two-class case, 
the Y variable is set to have zero and one entries for each class (dummy matrix), respectively. 
PLS-DA aims to improve the separation between the two groups by using the class 
information.

The orthogonal PLS-DA (OPLS-DA) has been developed as an extension of PLS-DA 
and it is extensively used in metabolomics (TRYGG & WOLD, 2002). In OPLS-DA, the Y 
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unrelated (orthogonal) variation is removed from X. In this way, OPLS-DA attempts to 
describe the classifi cation information in one component, which may provide advantages in 
terms of interpretation. However, the prediction power of PLS-DA and OPLS-DA is identical 
(KEMSLEY & TAPP, 2009).

Over-fi tting is a potential danger in foodomics data as it usually contains a large number 
of irrelevant variables. Yet many studies have appeared to present PLS-DA scores and 
loadings plots from models without any indication of validation diagnostic statistics. To point 
out this issue, WESTERHUIS and co-workers (2008) performed PLS-DA on NMR spectra of 23 
healthy volunteers, which were arbitrarily divided into two classes. Although PLS-DA scores 
plot showed a clear separation, cross-validation of revealed Q2 values of –0.18 (no 
classifi cation) illustrated the importance of validation (WESTERHUIS et al., 2008). In addition 
to the proposed validation routine described for PLSR, double cross-validation has been 
suggested for reducing over-optimism in PLS-DA cross-validation (ANDERSSEN et al., 2006; 
SMIT et al., 2007). In this case, training, validation, and test sets were selected randomly a 
high number of times. PLSR variable selection methods also apply for PLS-DA, but the 
danger of over-fi tting increases. PLS-DA model performance has been evaluated using 
different diagnostic statistics, such as RMSECV, number of misclassifi cations (NMC), the 
Area Under the Receiver Operating Characteristic (AUROC), Q2 and Discriminant Q2 (DQ2). 
SZYMANSKA et al. (2012) demonstrated that for the evaluation of two group discriminmation 
problem, NMC and AUROC are effi cient and reliable diagnostic statistics compared to DQ2 

and Q2. It is important to note that although the importance of validation and validation tools 
are described under the PLS-DA section, it is applicable to other supervised methods 
described in the subsequent sections (ECVA and SIMCA).

In order to demonstrate the over-fi tting issues of PLS-DA for datasets, where small 
number of samples were represented with large number of variables, an example dataset 
comprising 3703 variables (measured by UPLC-QTOF) representing of 41 urine samples, 23 
and 18 samples after coffee and water intake, respectively, has been used. Figure 5 shows an 
example of PLS-DA based misclassifi cation percentages based on calibration set, two 
different kinds of CV and independent test set validation on the data with original and 
randomly permuted classes. As shown in Fig. 5, the calibration set does not provide 
meaningful information, as the dataset with both original and random class labels had zero 
misclassifi cations. This example shows that PLS-DA without a proper validation provides a 
wrong classifi cation of the sample groups. The leave-one-out CV also showed an over-
optimistic result indicating just above 20% of misclassifi cation error for random class dataset 
and zero error for the original class dataset. However, the random subset CV, when one fourth 
of the samples were selected as CV set with 10 iterations, also displayed a relatively over-
optimistic classifi cation performance and showed just above 30% of misclassifi cation error 
for the random class dataset. These results urge to apply independent test set validation for 
the reliable classifi cation, since with large number of variables and relatively few samples 
PLS-DA is always capable of fi nding dimensions that may separate sample groups.

PLS-DA is one of the most powerful classifi cation tools and it is normally the reference 
method in supervised classifi cation studies within food adulteration, food authenticity, food 
traceability, and food effects on human health. In nutritional metabolomics PLS-DA is the 
favourite classifi cation method due to its sensitivity to reveal hidden patterns related to diets 
effects that are diffi cult to be revealed by unsupervised techniques (ANDERSEN et al., 2014). 
Other recent studies include the authentication of geographical origin of palm oils based on 
GC-MS profi les of triacylglycerols (RUIZ-SAMBLÁS et al., 2013) and differentiation of NIR 
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spectra of cow milk samples based on farm altitude, different feeding regimes, and different 
breeding systems (VALENTI et al., 2013). The combination of NIR spectroscopy and PLS-DA 
classifi cation have also been proposed to augment the control of GMO foods by allowing 
high-throughput screening and discrimination of transgenic potato line (LeETR2) from its 
parental non-transgenic lines (XIE et al., 2007).

Fig. 5. Misclassifi cation errors in PLS-DA models with different validation methods in the examples of the UPLC-
QTOF data (41 samples and 3703 variables) from a metabolomics intervention study. PLS-DA misclassifi cation 
percentages  based on (1) calibration set, (2) leave-one-out cross validation (CV), (3) random subset CV (1/4 of 

the data is selected as CV set, with 10 iterations), and (4) independent test set validation. 
: original class; : random class

4.4.2. SIMCA. SIMCA is a classifi cation technique based on disjoint PCA models for 
each class within data (WOLD & SJÖSTRÖM, 1977). The method assumes that it is possible to 
capture information refl ecting similarities of individuals within each class, by class specifi c 
PCA models using training samples from each class. Then unknown samples are compared 
to the class models, and assigned to classes according to their analogy to training samples. 
Originally, the number of components required for PCA models to describe the training 
samples in each class is determined using cross-validation. The distance of a sample to the 
class model is calculated utilizing the orthogonal distance of the sample to the model space 
and the distance of the sample to the scores space. The SIMCA classifi cation rule is then 
based on the comparison of the squared distance, with the class residual variance, by means 
of an F-test. The unknown samples are assigned to a class if the test is passed. The sample 
may also be assigned to several or none of the classes. More recently, the distance is 
determined by means of some other methods, such as HOTELLING’s T2 and Mahalanobis 
distances, that were also used for outlier detection (HAWKINS et al., 1983). SIMCA is useful in 
situations when variance is relevant to separate classes. However, in cases where the between-
class variation is smaller than the within-class variation, the classes will merge, therefore, 
SIMCA provides poor classifi cation results (GALTIER et al., 2011).
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Like PCA, SIMCA can be used in various foodomics studies, such as food adulteration, 
food authenticity, food traceability, and food effects on human health. However, in contrast 
to PCA the class information is used actively. Recently, SIMCA was applied to detect 
adulteration of hazelnut paste with almond paste or chickpea flour based on NIR spectroscopy 
(LÓPEZ et al., 2014), authentication of geographical origin of honey (LATORRE et al., 2013), 
and for the discrimination of fresh and frozen beef burger products from beef offal adulteration 
using IR spectroscopy (ZHAO et al., 2014).

4.4.3. Extended canonical variates analysis (ECVA). ECVA (NØRGAARD et al., 2006) has 
been developed as a modifi cation of Canonical Variates Analysis (CVA). CVA (CAMPBELL & 
ATCHLEY, 1981) aims to estimate directions in space that maximize the differences between 
the groups according to well-defi ned optimization criterion, which is fi nding a direction that 
maximizes difference between projected mean values of each group relative to projected 
variance within groups.

Data generated in foodomics experiments are multi-collinear and CVA cannot deal with 
multi-collinear data. ECVA is based on the standard CVA, yet it reformulates eigenvector 
problem in CVA as a regression problem, which can be solved by using PLSR. In this way, 
canonical variates are calculated in the original high-dimensional space making it possible to 
deal with such data. Application of linear discriminant analysis (LDA) to the canonical 
variates allows the discriminative directions to be estimated directly in the original 
multidimensional space (NØRGAARD et al., 2006). The number of canonical directions is 
always one less than the number of classes in the dataset. ECVA provides plots easily 
interpretable, similar to PLS-DA loadings and scores, canonical weights, and variates explain 
the patterns related to variables and observations, respectively, in each canonical direction. 
Additionally, ECVA has been shown to be an effi cient classifi cation method for more than 
two class problems (NØRGAARD et al., 2006).

Application of supervised classifi cation method ECVA in foodomics studies is scarce, 
despite its potential for solving classifi cation problems involving several classes. The method 
was successfully applied in nutritional metabolomics to study effects of onion intake, in 
which ECVA was used to distinguish between the urine NMR metabolic profi les of rats with 
normal feed and rats with an onion diet (WINNING et al., 2009) and to the discrimination of 
Rioja wineries, which are even geographically very close (terroir) (LOPEZ-RITUERTO et al., 
2012).

4.5. Advanced data analysis methods

4.5.1. ANOVA Simultaneous Component Analysis (ASCA). Experimental design structures 
that investigate food systems as a function of more than one underlying design factors, such 
as different treatments, time course, doses of an active compound, and different processing, 
are commonly used in foodomics studies. In order to utilize the design information in the 
multivariate data analysis, ASCA (SMILDE et al., 2005) has been developed. ASCA allows for 
investigation of the individual design factor contributions and their interactions. ASCA 
utilizes advantages of both ANOVA in terms of partitioning the sources of variance and PCA 
for explaining maximum variance. Let us assume a data matrix, X with I observations and J 
variables, consists of balanced experimental design with two factors, A and B, which both 
have two levels (e.g. control vs. treatment, high vs. low dose, two different varieties or time 
points, etc.). The ANOVA model can be represented as shown in Figure 6. The fi rst term in 
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this model, the ‘overall’ mean matrix, Xmean, represents the variation of the variables profi le 
from zero. It is calculated as the column means of the original data, X. Initially, Xmean is 
removed from X and then contributions of factor matrices, XA and XB, are determined by 
taking the mean of each factor for each level. Later the factor matrices are also subtracted 
from X–Xmean and then XAxB interaction matrix as the average of columns of remaining 
residuals for combined levels of factors A and B. Finally, the effect of interaction terms is 
removed and the errors related to individual samples are collected in the residual matrix, 
Xindividual.

Fig. 6. Balanced ANOVA–simultaneous component analysis (ASCA) methodology

It is important to point out that the matrices provided by ANOVA decomposition are 
orthogonal, or in other words are independent from each other. Therefore, the effect of each 
of the term, i.e. the contribution of the factors and their interactions to the total variability, is 
estimated by means of the sum of squares (SS) of the corresponding matrix. Furthermore, 
each isolated matrix can be investigated independently by simultaneous component analysis, 
which is analogous to PCA, which can be formulized as:

 XA=TA PT
A+EA,     XB=TBPT

B+EB,     XA×B=TA×B PT
A×B+EA×B (3)

This leads to a reduction of J variables to the number of principle components, which 
satisfi es one of the main aims of ASCA – namely the dimension reduction. Here, T and P are 
the scores and loadings, respectively, for each decomposed matrix. The information that is 
not described by any of the ASCA sub-models is represented by total residual matrix E 
matrix defi ned as the sum of the sub-model residual matrices EA+EB+EA×B.

Nevertheless, the application of ASCA is limited to balanced design structures, so that 
there will be equal number of samples per each factors and their levels. In order to deal with 
unbalanced designs, a modifi ed version of ASCA has been suggested (STANIMIROVA et al., 
2011; RAGO et al., 2013).

Some foodomics studies use balanced experimental designs and may possess underlying 
factors, such as time resolved measurements, varying doses of a specifi c diet and/or drug in 
intervention studies, or by varying growth temperature in plant metabolomic studies. In such 
studies, separation of effects of individual factors and interactions between factors are 
essential. Due to the possibilities of including the experimental design into the data analysis, 
the ASCA method is becoming a powerful tool in nutritional metabolomics. One of the fi rst 
applications of ACSA was made to study the effect of grape/wine extracts on the NMR based 
human urine metabolome by dividing the effects into between and within the human subjects 
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(VAN VELZEN et al., 2008). Another early application was made to study the three different 
factors, apple dose (0, 5, and 10 g), carcinogen induction, and fasting/fed states, in the LC-
MS nutritional metabolomics study of rat plasma samples (RAGO et al., 2013). The latter 
study demonstrated that ASCA was able to reduce the complexity, such that, the unique 
variation refl ecting apple intake was isolated, which simplifi ed subsequent data analysis.

4.5.2. Multi-block analysis or data fusion. Foodomics studies are normally concerned 
with multifactorial problems and it makes good sense to explore and measure the same 
samples on several complementary analytical platforms (SKOV et al., 2014). Measurements at 
multiple platforms, such as NMR, LC-MS and GC-MS, provide a larger number of regulated 
metabolites and thus increase the chance for obtaining a better mechanistic understanding 
related to a specifi c diet or growth condition. However, the extraction of relevant information 
from such a complex dataset is challenging. Rather than analyzing each data block 
individually, simultaneous analysis of blocks of data using multi-block data analysis tools 
may provide better understanding of the investigated systems of interest. Multi-block 
methods attempt to extract the relevant information between and within blocks in terms of 
components or latent variables.

As an example, considering the same set of samples is analyzed in an IR and mass 
spectrometer, a multi-block component model can give insight into both uniquely and 
commonly represented information in the IR spectra and the mass spectra.

Similar to single block data analysis methods, multi-block techniques can be categorized 
into supervised and unsupervised approaches. Unsupervised multi-block methods include 
various extensions of PCA, such as SUM PCA (SMILDE et al., 2003), consensus PCA (WOLD 
et al., 1996), and hierarchical PCA (WOLD et al., 1987). Corresponding methods perform data 
integration in two steps approach providing (1) scores and loadings for each block, and (2) 
consensus information derived from combination of all blocks. When choosing the multi-
block method, it is important to clarify the objective of the study. The fi rst issue to consider 
is whether the primary interest is to study the variation between the blocks or the variation 
within each block of data is also of interest. Another point to consider is fairness, that is, 
whether each block contributes equally (SMILDE et al., 2003).

In many cases the goal of multi-block analysis or data fusion is to extract patterns not 
only common to all sources, but also specifi c to each source. For instance, in metabolomics, 
where the samples are measured by two different platforms, LC-MS and NMR, the interest 
may be to know whether the metabolites explaining a biological phenomenon are provided 
by one of the platforms (LC-MS or NMR) or there is a synergy between the variables provided 
for both platforms. Therefore, several methods aiming at accurate calculation of common and 
distinctive components have been developed, and their application potential in -omics based 
studies has been demonstrated (ACAR et al., 2012, VAN DEUN et al., 2012).

Supervised multi-block models, which may be regarded as an extension to PLS 
regression, aim to relate multiple blocks of data provided by different sources with a response 
variable Y. Actually, the data from each analytical platform can be regarded as an interval – to 
follow the iPLS scheme –, the art is how to weight the individual analytical blocks. Some of 
the simple methods are regression based solutions of previously mentioned unsupervised 
methods, such as hierarchical PLS (WESTERHUIS et al., 1998), multi-block redundancy 
(BOUGEARD et al., 2011), and a consensus orthogonal PLS (O-PLS) (BYLESJO et al., 2007).

Thus far multi-block and data-fusion applications in foodomics have been limited, but 
coupled matrix factorization was applied on NMR and LC-MS profi les of rat plasma and 



23KHAKIMOV et al.: APPLICATION OF CHEMOMETRICS TO FOODOMICS 

Acta Alimentaria 44, 2015

illustrated the usefulness of the method in a metabolomics application, where potential 
markers for apple intake are identified through coupled analysis of LC-MS and NMR data 
(ACAR et al., 2012).

4.5.3. Sparse PCA (SPCA). In PCA, PCs are linear combinations of all variables 
(nonzero loadings), thus interpretation is often very diffi cult due to high number of irrelevant 
variables. Particularly for large and complex data sets, such as in foodomics (many variables 
for relatively few samples), it becomes very diffi cult to identify and select groups of important 
variables from many irrelevant ones. In order to overcome this issue, sparse PCA (SPCA) has 
been developed (ZOU et al., 2006). SPCA aims to produce modifi ed PCs with sparse loadings 
by imposing penalties on the model parameters (in this case loadings vectors), the less 
influential variables are forced to have zero influence on the model. Several methods have 
been proposed for estimating SPCA, utilizing either the regression error property or the 
maximum variance property of principal components (WITTEN et al., 2009). In the context of 
maximizing variance, SPCA can be formulated as a penalized optimization problem with the 
main objective being a minimization problem similar to PCA but with L1 norm penalties 
imposed on the loadings:
 argmin(ǁX–TPTǁ2F) (4)

subject to ǁpiǁ
1
1≤c and ǁpiǁ

2
2=1, for i = 1,…,k

where XX(n×k), is the data matrix, ǁpiǁ
1
1 is the sum of absolute values (L¬1 norm) of the 

columns of loading matrix P, and T is the score matrix. The tuning parameter c is a positive 
penalty parameter bounding the sum of absolute values of the normalized loading vector 
(ǁpiǁ1≤c). Thus, it leads to some loadings being exactly zero. If c is chosen large enough, it 
will lead to the unconstrained PCA solution. A meaningful sparse solution can be found when 
c is chosen between 0 and the sparsity level, producing unconstrained solution (RASMUSSEN & 
BRO, 2012). Unlike PCA, SPCA does not impose orthogonality constraint between 
components. SPCA components are correlated and the SPCA loadings are not orthogonal, 
which in some cases improves the extraction of relevant biological information from large 
metabolomics data as it forces less effective metabolites to have zero loadings, thereby 
variable selection becomes more effi cient. As an example, in a LC-MS based metabolomics 
study, in which the metabolites refl ect the time since last meal, the information has been more 
effi ciently extracted using SPCA compared to PCA (GÜRDENIZ et al., 2013). It has been noted 
that the main obstacle in SPCA is the selection of sparsity level (meta parameter) that adjusts 
the number of variables with zero loadings. The evaluation is based on visual inspection of 
scores and loadings and might be rather time demanding. Sparsity penalty has also been 
implemented in unsupervised multi-block models applied on nutritional metabolomics to 
ease the selection of relevant metabolites (ACAR et al., 2012).

4.5.4. PARAllelFACtor Analysis 2 (PARAFAC2). PARAFAC2 is an extension of 
PARAFAC (HARSHMAN, 1970, BRO, 1997) that is able to model more complex three-way data 
sets with disturbed trilinear structure. Both PARAFAC and PARAFAC2 can be considered as 
the generalization of the principal component analysis (PCA) to higher order data arrays. In 
contrast to PCA, PARAFAC2 does not suffer from rotational problems and is able to model 
three-way data sets by decomposing it into a smaller number of components that will be 
represented by scores and loadings (Fig. 4A). In order to condense the three-way data in such 
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a way, PARAFAC2 applies some constraints that restrict the degree of freedom and provide 
simpler and more robust models. Therefore, PARAFAC2 may not be able to model all the 
variation that a PCA can capture, which is often the case when dealing with complex data sets 
with higher order of variations. Any three-way data can be unfolded to two-way matrix (in 
any mode) and modelled by PCA, which may result in explanation of the substantial part of 
the data variation, however, interpretation of such a model is challenging. Instead, PARAFAC2 
offers several advantages for exploration of three-way arrays. Firstly, the obtained solutions 
are unique, which means that its scores and loadings directly represent the modes of the 
investigated data array. Secondly, models are robust and easily interpretable, however, model 
validation might be challenging if the data are complex. However, recent studies performed 
for improvement of PARAFAC and PARAFAC2 model validation (KAMSTRUP-NIELSEN et al., 
2013) have described more reliable and easier way of deciding the number of components of 
the PARAFAC models.

The main difference between PARAFAC and PARAFAC2 is that PARAFAC2 is less 
restrictive to the trilinear structure of the data and it is able to cope with data shifts in some 
extent. For example, in chromatography, retention time shifted peaks of the same metabolites 
over the different samples can still be modelled as the same metabolite, because PARAFAC2 
uses not only the retention time dimension but also the mass spectral information (since mass 
spectra of these shifted peaks will be identical if they are derived from the same metabolite). 
All these features of PARAFAC2, e.g. uniqueness, shift and noise handling, and easier 
interpretation, make the method very useful for processing raw metabolomic three-way data 
sets derived from hyphenated platforms, such as GC-MS (AMIGO et al., 2010a), LC-MS 
(KHAKIMOV et al., 2012), and LC-DAD (MARINI et al., 2011). By PARAFAC2 processing of 
such hyphenated metabolomic data, it is possible to extract most if not all the quantitative and 
qualitative information (Fig. 4B). The PARAFAC2 model of the three-way GC-MS data 
defi ned by elution times × mass spectra × samples provide three following outputs: (1) 
PARAFAC2 elution time profi les that represent the elution profi les of the resolved peaks, (2) 
PARAFAC2 mass spectral profi les that correspond to the actual mass spectra of the resolved 
peaks that can be used for metabolite identifi cation from libraries, and (3) PARAFAC2 
concentration profi les, which represent the areas of the resolved peaks.

The method provides processing raw metabolomic data and allows extraction of vast 
amount of information in a high-throughput manner. PARAFAC2 allows processing of all 
samples simultaneously, deconvolution of mass spectra of hundreds of metabolites per 
sample, and separation of pure analyte peaks by eliminating chromatographic baseline and 
alignment of retention time shifts. However, the method has some drawbacks primarily 
related to its availability and use by non-specialists. Despite its comprehensiveness, the 
method can provide fruitful results, when the data is less complex. Therefore, PARAFAC2 
based processing of raw chromatographic data is mainly performed in baseline separated 
intervals, where the data is divided into smaller intervals in retention time dimension.

5. Current challenges and perspectives

Foodomics is a multidisciplinary research fi eld that investigates foods, food processing, and 
foods effects on human health and wellbeing. In order to extract useful and reliable information 
from foodomics studies, they must have an appropriate design depending on the purpose of 
research. While the success of foodomics studies depends on the obtained data, the quality 
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and amount of this data are determined by the applied analytical platforms. State-of-the-art 
analytical instruments allow simultaneous detection of up to several thousands of analytes 
from the investigated sample matrix. Despite today’s advances in analytical platforms, it is 
still not possible to detect a whole metabolome, and even more challenging to obtain 
reproducible quantitative data. In fact, there is always a compromise between the amount of 
the data and their quantitative/qualitative quality.

As the data generated by analytical platforms applied in foodomics are becoming more 
and more megavariate, appropriate validation of the results is becoming more and more 
important (SZYMANSKA et al., 2012). Unfortunately, the validation of multi- and megavariate 
foodomics models is not always straightforward, which makes many new fi ndings, especially 
made by the PLS-DA type of classifi cation tools, questionable.

Foodomics studies normally concern multifactorial problems, wherefore more and more 
studies employ two or more analytical platforms, which urge researchers to develop new 
chemometrics tools that handle such large data sets and assist to extract relevant (meaningful) 
biological information. For example, development of new multi-block methods is one of the 
fi rst steps made towards analysis of megavariate metabolomics data acquired on various 
systems simultaneously. This, in fact, has a high potential in near future to combine various 
data sets obtained from metabolomic, proteomic, transcriptomic, and genomic studies and 
perform in-depth data exploration to analyze the variance and co-variances present along 
different omics data sets. In foodomics, not only the human metabolome is in play, but also 
the food microbiota co-metabolome and the food metabolome (genotypes). Obtaining 
dynamical and coherent foodomics data from all these three streams of causality tracks is a 
tremendous task, which is far from being resolved yet. Nevertheless, the foodomics approach 
is here to stay and will be an integrated part of future discussions on bioactive substances, 
their bioavailability, and part of the documentation for obtaining health claims. The high-
throughput analytical platforms and the related advanced multivariate chemometric methods 
will also be integral parts of future global health screenings and for development of stratifi ed 
nutrition.
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