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A Burgess-like subconvex bound for twisted L-functions

V. Blomer, G. Harcos, P. Michel, and Appendix 2 by Z. Mao

(Communicated by Peter Sarnak)

Abstract. Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and ne-
bentypus, y a primitive character of conductor ¢, and s a point on the critical line s = % Itis
proved that

L(g ®Xvs) Kegos ql/2—(1/8)(1—2())+1)7

where ¢ >0 is arbitrary and 6= % is the current known approximation towards the
Ramanujan—Petersson conjecture (which would allow ¢ = 0); moreover, the dependence on s
and all the parameters of g is polynomial. This result is an analog of Burgess’ classical sub-
convex bound for Dirichlet L-functions. In Appendix 2 the above result is combined with a
theorem of Waldspurger and the adelic calculations of Baruch-Mao to yield an improved
uniform upper bound for the Fourier coefficients of holomorphic half-integral weight cusp
forms.

2000 Mathematics Subject Classification: 11F66; 11F67, 11M41.

1 Introduction

Let g be a general cusp form, that is,

¢ a holomorphic form of integral weight k, > 1, level D, and nebentypus y,,

e or a Maass form of weight 0 or 1 (without loss of generality), level D,
. ni/2 .

and nebentypus y, having spectral parameter 7, = (A—1)"", where 1 is the

Laplacian eigenvalue.

(1.1)

We suppose that ¢ is “new” in the sense of Atkin-Lehner theory; in particular, g is
an eigenform of the Hecke operators T, n > 1, and we will denote by 4,(n) its n-th
Hecke eigenvalue. We shall be concerned with the twist g ® y, where y is a primitive
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character to a large modulus ¢. This is again a newform (of level dividing Dg?), and
its L-function L(g ® y, s) equals up to finitely many Euler factors ), A,(n)y(n)n"; to
be precise, we have

Llg®y,s) = ZM

n=1 N

2., -1 -1
- l_ﬂg(p)g(p) L2 Az‘”v(p) 0 (1_’1!1®xy(P) +xg®x2£p>) _
D) D P~ pl(q,D) D )4

In this paper we are interested in upper bounds for L(g ® y,s) when s is on the crit-
ical line s =1.

In some respects, the weight k, of a holomorphic form and the spectral parameter
t, of a Maass form behave similarly, the reason being that if g is holomorphic of
weight k, then y¥/?g(z) is Maass having spectral parameter ¢ = ;%51 . For a uniform
notation let us therefore define the infinity type 4, of g as

k“’; Loif g is holomorphic of weight k,

My =91, if g is a Maass form of weight 0 or 1 and
Laplacian eigenvalue § + 27,

and let us write y, := 1 + |f,|. Then the general convexity bound gives
1/2
L(g® 1,5) < (|slu,aD)*(s|u,) > D" q'2

for Rs = % and for any ¢ > 0 which, however, is often not sufficient for applications.
In particular, it is of interest to break convexity in the g-aspect while keeping a
polynomial control in the remaining parameters |s|, s, D.

The first breakthrough was obtained by Duke—Friedlander—Iwaniec [DFI93]. If ¢
is holomorphic of level D = 1 they proved the subconvex exponent

1 1

1.2 ===

using the J-symbol method. In the case of a general holomorphic cusp form of weight

at least 2, Bykovskii [By96] derived, by a different method, the stronger subconvex
exponent

(1.3) %—

0| =—

as long as (D,q) = 1. While it is unclear whether and to what extent Bykovskii’s
method carries over to the general case (1.1), the second and third author in-
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dependently used the strategy from [DFI93] to break convexity also in the Maass
case [HO3a, HO3b, M04a]. As a notable feature of [H03a], a very flexible variant
of the J-symbol method due to Jutila [J92, J96, J99] was introduced into the
argument.

Sarnak [SO1] recently developed a new method using relatively deep spectral anal-
ysis and in particular estimates for triple products of automorphic forms. Although
not stated explicitly, his method yields

1 1-20
A R Ve

when g is holomorphic; see also [Co03, CoPSS] for an explicit version in the more
general context of holomorphic modular forms over totally real fields. This is stron-
ger than (1.2), but weaker than (1.3). Here and henceforth, § > 0 denotes any
admissible constant, by which we mean that the following approximation to the
Generalized Ramanujan—Petersson conjecture is satisfied:

Hypothesis Hy. For any cuspidal automorphic representation © on GL,(Q)\GL2(Ag)
with local Hecke parameters ac,g)(p), aszz)(p) for p < oo and ,uszl)(oo), ,uszz)(oo), one has

the bounds

(resp. [Rul/) (o0)| <0, j = 1,2)
provided w0, (resp. my,) is unramified.

Currently, the best admissible constant is 0 = 614 as follows from the work of Shahidi,
Kim-Shahidi, Kim and Kim-Sarnak [KS02, K03, KS03].

Eventually, Sarnak’s method and the bound (1.4) can be generalized to arbitrary g,
but this requires very delicate arguments from the theory of automorphic repre-
sentations. However, these difficulties can be avoided, and in this paper we combine
various ideas from [Bl04b, HM04b] to obtain the stronger exponent

1 1-26
(15) 35—

valid in the general case (1.1). Precisely, we have
Theorem 1. Let g be a cuspidal automorphic newform (i.e., either a holomorphic form

or a Maass cusp form) as in (1.1), and let y be a primitive character of conductor q. For
any ¢ > 0 and for Rs = % one has

(1.6)  L(g® z.5) <. (Islu,Dq)°|s| uZDC g2~ 1/H1-20),
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where

31+40 75 + 120 9
A.— 16 5 B—T, C—E7

and 0 < 0 < % is any real number such that Hypothesis Hy is satisfied. Since 0 = 6—74 is
currently admissible, the current subconvex exponent equals

1 25 103
3 356 = 356 = 0.40234375.

Remark 1.1. Unlike all previous bounds, our estimate is explicit in all the parameters
of g which turns out to be useful for applications. The numerical values of 4, B, C
can be improved with more careful estimates.

Remark 1.2. The bound (1.6) should be compared with Burgess’ bound [B63] for
Dirichlet L-functions. Indeed, the square of L(y,s) can be interpreted as the twisted
L-function L(E ® y,s), where E denotes the (derivative of the) standard weight zero
Eisenstein series of level 1 and Laplacian eigenvalue %. In this context, Burgess’

bound (in its hybrid version by Heath-Brown [HB78]) is written as
L(E®7.5) <. (1slg)"ls|" 2> 1.

Thus the bound of Theorem 1 is the cuspidal analog of Burgess’ result under the
Ramanujan—Petersson conjecture (i.e., § = 0).

Remark 1.3. Under more restricted assumptions, the sharpest subconvex exponent
for this problem is due to Conrey—Iwaniec [CI00], namely

1
L(g ®X>§> Kep, q1/3+s

for a quadratic character y and for g either a cusp form of level 1 or g(z) =
E(z,%+ it) the Eisenstein series of full level (here 7 € R); in the latter case, one has

1 1
L(g ®x,§> = ‘L<x,§+n)
1

so this bound is the exact analog of Weyl’s ¢ bound for the Riemann zeta function.
Note, however, that the argument leading to this bound uses crucially the positivity
of the central value L(g ® ){,%) and is therefore limited to the case of y a quadratic

character, ¢ a self-dual modular form and to the special value s = %

2

b

Remark 1.4. It is a nice feature that our method permits a uniform treatment of all
cusp forms on GL,(®Q)\GL,(Ag). Depending on the applications, Theorem 1 can be
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optimized with respect to various auxiliary parameters, and it can be used as an in-
gredient for several other subconvexity problems, some of which will be considered
elsewhere. Here we want to focus on Rankin—Selberg L-functions. Let f and ¢
be two cuspidal newforms. Then for s on the critical line one has the convexity
bound

L(f X g.5) <o.9.04"7",

where ¢ denotes the level of f. The problem of improving this estimate was solved in
[KMV02, M04a, HMO04a]. The hardest case is when the conductor of the nebentypus
of f is large (if the nebentypus is primitive for instance). In this configuration, the
subconvexity problem for twisted L-functions plays a key role. In [HMO04a], we use
the results of the present paper to obtain the following corollary:

Corollary. There exist positive absolute constants A, 6 > 0 with the following property.

For any two newforms [ and g (holomorphic or Maass) of respective levels q, D and
respective nebentypus xy, x, such that y,y, is non-trivial, one has

4 1/2-5
L(f x g,5) < (Isluut, D) "q'/*~°
Jor Rs = % Assuming Hypothesis Hy we can take

C(1-20(1-20)
0=""3 202 ©

so that at the current state of knowledge 6 = %lw is admissible.

Combining some of the methods of [HMO04a, Bl04b] and of the present paper it
is possible to reduce considerably the constant 202 above. We will return to this on
another occasion.

Remark 1.5. Theorem 1 can be combined with the powerful results of Shimura and
Waldspurger to improve on the known upper bounds for the Fourier coefficients of
half-integral weight holomorphic or Maass cusp forms. The recent careful adelic
calculations of Baruch—Mao enable one to derive these estimates with proper uni-
formity in all the parameters of the underlying cusp form. The details in the holo-
morphic case have been kindly worked out for us by Zhengyu Mao and have been
included in this paper as Appendix 2 (see Theorem 6).

Acknowledgements. The second author wishes to thank Universit¢ Montpellier II
for its hospitality during the week June 15-21, 2004. The third author would like to
thank the American Institute of Mathematics (Palo-Alto) and the organizers of the
workshop “Emerging applications of measure rigidity”’—during which this work was
initiated—for their kind invitation and the excellent working conditions.
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2 Some general results

In this section, we indicate our normalization for the Fourier coefficients of modular
forms, recall some of their properties and state various results from the spectral
theory of automorphic forms; for more background and references, we refer to
[DFI02] and to [HMO04a)].

2.1. Fourier coefficients. We will follow the notation of [DFI02] to large extent. A
Maass cusp form g of weight k > 0 and Laplacian eigenvalue (1 -+ it) (4 — it) admits
an expansion

g(z) = Zpg(”)W(n/\n|)(k/2),ir(47f|n|y)e("x)
ne
n#0

in terms of the Whittaker function W, ;(y). Note that W, ;(y) ~ y*e 2 for
y — +o0. For an Eisenstein series Eq(z,3 + i) attached to some cusp a of I'g(D), we
have a Fourier expansion of the type

1 . 1 .
E, (z, 3 + iz) = Saeoe /P 4 g, (E + it)yl/z”

+ lea(n, OWinjinl)(k/2), i (47| m] y)e(nx).
ne
n#0

Finally, when ¢(z) is a holomorphic cusp form of weight k, we write

2.1)  g(z) = X p,(n)(4mn) P e(nz),

n>1

keeping in mind that y*/?¢(z) is a Maass form of weight k.
We will need the following general Voronoi-type summation formula ((HMO04a,
Proposition 2.1]).

Proposition 2.1. Let g be a cusp form (holomorphic or Maass) of weight k, level D
and nebentypus y,. Let ¢ =0 (mod D), and let a be an integer coprime to c. If
F e C*((0,00)) is a Schwartz class function vanishing in a neighborhood of zero, then

22) S anme(nd)rm =205 5 Vipte(7al) 75 (4).

n>1 4 + n>1
In this formula,

+ .f .7 r(l"’_it_k)
py(n) :=p,(n), p,(n):= mpg(fn%

and
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(23)  FE(y) = J " F(x)7 (/37 dx

0

where t = t, is the spectral parameter of g in the Maass case, and

T (x) o=2mi' T (x), T (x) =0,

if g is induced from a holomorphic form of weight I;

JF(x

[0 = gy V2000 + Yo}y () = deh(mn) Ko (),

if k is even, and g is not induced from a holomorphic form;

J;(x) = {Ya2i(x) — Y_0i(x)}, Jy (x) := —4ish(nt) Ky (x),

sh(nt)

if k is odd, and g is not induced from a holomorphic form.

2.2. Hecke operators. We recall that there is an action on the L>-space of modular
forms of level D and some given nebentypus by the commutative algebra T generated
by the Hecke operators {7,},. ;. We denote by TP the subalgebra generated by
{T }n,p)—1 and call a holomorphlc or Maass cusp form a Hecke—Maass cusp form if
it is an elgenform for T”). For a Hecke—Maass cusp form g we denote by Xy its
nebentypus and by A,(n) its n-th Hecke eigenvalue. If Hypothesis Hy is valid, one has

(24)  [2g(m)| < <(n)n’,

where 7(n) denote the divisor function. Moreover, for (n, D) = 1 the following rela-
tions hold:

26) Vi = 5 an(55)\/5

d|(m,n)

@) i = g @udn,(5) Van(3):

If g is a Hecke form and belongs to the new subspace (in the sense of Atkin—Lehner
theory), then g an eigenform of all Hecke operators and the above relations hold with
no restriction on #. In this case, we say that g is a newform.

2.3. Kuznetsov’s formula and the large sieve. We make the following convention: if
f and g are two Maass cusp forms of the same weight, same level D, and same
nebentypus, then we normalize their Petersson inner product {f,g) as
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dxdy

(2.8) <f’g>:Jr<D>\]H 90

if £ and g are holomorphic of weight k, {f,g) is given as above with an extra y¥
factor. In particular, we say that ¢ is L>-normalized if {g,g> = 1.

For a character y to modulus D, we denote by #(D; x) = {/;};~, (resp. A1(D; 1))
an orthonormal basis of the Lz-space of weight 0 Maass cusp forms (resp of the
space of holomorphic cusp forms of weight k) of level D and nebentypus y. If y is the
trivial character, we simply omit it from the notation. We can always choose a basis
formed of Hecke—Maass cusp forms, and we will pick a special basis later in section
3.1. Let us now recall Kuznetsov’s trace formula (in the trivial nebentypus case, see
[187, Theorems 9.4, 9.5, 9.7]).

Theorem 2. Let m, n, D be positive integers and ¢ € CZ((0, 0)). One has

1 S(m, n; c) ¢<4n\/ﬁ)

c

C Y TRk -1 S g () + 3 2

p;(m)p;(n)
k=0 (2) e} (D) j=1€ )

Ly [ gy,

_o ch(nt)

and

)+ 325 [ . ()

where the Bessel transforms are defined by

@(k_u::r ()T 1 (x )‘i‘

0

29) 90 = || o) (Tl + Vo) 2

(2.10) (1) = r@ ()2 ch(7t) Ko (x )d;
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Remark 2.1. The kernels in (2.9) and (2.10) can be expressed alternatively as

ﬁgﬁ) {Y2u(x) + Yogiu(x)} = ﬁ(lm) {J2ie(x) = J2u(x) }5
2 ch(mt) Ko (x) = Zsh—(l) {Bi(x) = I au(x)}.

The next lemma is a variant of Lemma 7.1 of [DI82] and provides bounds for the
various Bessel transforms of the test functions ¢ above.

Lemma 2.1. Let ¢(x) be a smooth function, compactly supported in (X,2X), satisfying
o (x) < (Z/X)'

for some Z > 1 and for any integer i > 0, the implied constant depending only on i.
Then, for t > 0 and for any real k > 1, one has

=2t
@11) glie), (i) < % for0£t<%;
(212) 40,00, 0(1) « LTE/DL o,

1+ X/Z

(2.13)  ¢(1),0(0), p(1) < (E) (ﬂ%-‘ri;) Jor t > 1;

t

k
(2.14) o(0),9(0), 5(0) < (Z) (tl/ ; f) for t = max(2X, 1)

t

Proof. The inequalities (2.11), (2.12), (2.13) can be proved exactly as (7.1), (7.2) and
(7.3) in [DI82]. The last inequality (2.14) is an extension of (7.4) in [DI82], but we
only claim it in the restricted range / > max(2X, 1). On the one hand, we were unable
to reconstruct the proof of (7.4) in [DI82] for the entire range ¢ > 1; on the other
hand, [DI82] only utilizes this inequality for ¢ > max (X, Z) (cf. page 268 there, and
note also that for 7 « Z the bound (2.13) is stronger). For this reason we include a
detailed proof of (2.14) in the case of ¢(t). For ¢(¢) and ¢(¢) the proof is similar.

We may assume that k = 2j + 1 is a positive odd integer. The Bessel differential
equation

szzli‘r(x) + XKz/iz(x) = (xz - 4t2)K2it(X)

gives an identity
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(2.15)  ¢(1) = (Dip)" (1),

where

o (5 ()

This transform D,p is smooth and compactly supported in (X,2X), and it is
straightforward to check that

(D)), < (Z/1)*(Z)X)" for t > max(2X,1).

By iterating (2.15) it follows that
#(1) = (Dip)" (1),

where D/¢ is a smooth function, compactly supported in (X,2X), satisfying
I(D/p) ||, <, (Z/)¥(Z/X)" for t > max(2X,1).

We bound (D/¢)" (1) by (2.13) and obtain

S
P(1) «; (7) (m + 7) for t > max(2X,1). O

Finally, we recall the large sieve inequalities from [DI82].

Theorem 3. Let D be a positive integer, M, K, T > 1, and let (aw),, ., be a sequence
of complex numbers supported on [M,8M|. Then, for any & > 0,

2

M
(2.16) 3> T(k) > | amVmp,(m) <<£M‘"'<K2+E>Z|am|2;
k=0 (2) fe.@,f’(D) m m
k<K
1 2 M 5
2.17 — D auvmp;(m)| <, M? T2+—> aml”;
G e GG | Y] < (745 )

r 1
(218) ZGZJTCh(T[l) Zam\/apa(m;t)

m

2
M
dt <, M°* <T2 + D)za,,,|2.

m

3 A large sieve inequality

Theorem 4. Let D, q, r be positive integers. For M,N,C,Z > 1, let g(m,n;c) be a
smooth function compactly supported on
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[M/2,2M] x [N/2,2N] x [C/2,2C]

satisfying
pititk Zitjtk
amianiock 915 E) <ok BiNR:

and let (am) e pi/2,20m)> (On)ue v o 2n) be two sequences of complex numbers satisfying
G.1)  am #0=glm, (q,m/q) =1,

by #0=rln, (r,n/r)=1.
Then for any ¢ > 0 one has, under Hypothesis Hy,

SEMNC) i Y X S aby SO

¢=0 (D) m n

g(m,n;c)

c \¥
< (quZMNC)‘“’(qr)H(l +m>
1/2
vV MN D)M
x ZZ (23/2 +Z c 4 ZZ@ (qqu) >

1/2

+2Z% [lall, D],

x (23/2+Z@ (V’D)N>

rD
Proof. This is a variant of Theorem 9 of [DI82]. We only treat the bound for
2t (M,N;C), the bound for £~ (M,N;C) being similar. We first proceed as in

[DI82], and put the test function in a shape appropriate for the use of Kuznetsov’s
trace formula: We define G by

g(MJ%W) = “RZ G(&y,Ex)e(Eyxr + Exa) dEy dés,

so that by Fourier inversion one has

2M (2N An /%
(3-2) G(flvfz;x)zj J g<x1,x2,%)e(—51x1—ézxz)dxldxz,

M2 N2

and
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(3.3) X(M,N;C)

4 /mn

c

Il 5 S atcmbeten 256 (¢ e

R? c=0 (D) m n

)dfl dés.

Note that G(&;,&;x) as a function of the x variable is supported in the interval
[X,16X] with

(34) X:=

Let p1, p2, k be 3 positive integers. We integrate (3.2) by parts p; times with respect
to x; and p, times with respect to x,, and differentiate it k& times with respect to x
getting

ok zZ \"( z \*(z\
(3.5) WG(ébfZ?x) Lp1,pa.k (W) (|62N) (Y) MN

We postpone the integration over &;, &, and the choice of py, p, to the end of section
3. Having these parameters fixed for the moment, we simplify the notation and set

go(x) = G(él?éz; X),
and by slight abuse of notation we denote by a,, and b, the complex numbers
ame(&ym) and b,e(&yn), respectively. This, of course, does not change the values of

lall,, ||b]], or the support of these sequences. We apply Theorem 2, so that the in-
tegrand in (3.3) is the sum of three terms:

(36) THO]O + TMaaSS + Yinsen7

where

THelo . 4 Gk —1I(k) ( > am\/r?p__f(Pn)> < > bn\/r_zpf(n)),

k=0 (2) fe,@,f(D) m~M n~N

s g SO 5 anion) ) ( S b))

j=1 ntj) m~M n~N

ol [ o ) | SR X R

% ) ch(mt) \ ;T n~N

3.1. Contribution of the cuspidal spectrum. In this section we bound the contribution
from the holomorphic and the Maass spectrum. The proof of the bound for 7Hel js
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similar to that of M85 but sharper, so we only display the proof for TMas_ By

Cauchy—-Schwarz we have
2 P 2
)< (za )
>1

so that it is sufficient to bound each factor separately. Our aim is to establish multi-
plicative properties of the coefficients a,,, b, in order to exploit the condition (3.1).
Since the Hecke operators T, with (n,D) =1 are normal and commute with the
Laplacian, one may choose an orthonormal basis {f;} of %#(D) made of Hecke—
Maass eigenforms. More precisely, it follows from Atkin—Lehner theory that an
orthonormal basis of Hecke—Maass eigenforms can be obtained as follows. Let f be
any Maass newform of level D, dividing D, then the complex vector space gen-

(3.7)

TMaass 2 « ( |¢(l1)‘
| | ng ch(xt))

il
75) |

Z am \/’%p](m)

mn~

NZNb w/1p;(n)

erated by { Jfa(2) = f(dz),d | D%} is a 7(D/Dy)-dimensional subspace of the space
of cusp forms of level D formed of Hecke eigenforms of the T, (n, D) =1, with
eigenvalues being the same as those of f, that is, A,(n). By Gram—Schmidt there is

an L*-orthonormal basis { fa(2),d]| D%} of this subspace of the form

Ja(@) = > w(d)f(d'z), a(d)eC,

d'|D/Dy

(the oy(d") depend also on f but we suppress it from the notations). Now we form an
orthonormal basis of Hecke—Maass cusp forms of level D by the union of the

{f@ (z),d| DQ/} for f ranging over the L’-normalized cuspidal newforms of level

dividing D. Let us fix one of these basis elements f(4) for a moment. We have for any
m>1,

Vimpg, (m) = 3 aa(d'WWmpy, (m) = 5 Vd'aa(d')y/m/d'p(m/d),

d'D d'|(D,m)

where, in order to simplify notation, we made the convention that o,(d’) =0 if d
or d’ does not divide D/Dy. We suppose now that m = gm’ with (¢,m’) = 1. Setting
q¢' = (¢, D), we obtain by (2.7) that

= Vda(drdo)y | (4
\/Epﬁd)(m)_ > 1dr00q(drd>) pr oo

di|(D,m")
dalq’

! li

= Z \/dldzo(d dldz if( > Wlp},(ﬂ)7
(D) di "7 \dy
(l'7|l]
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since f is a Hecke eigenform for all Hecke operators. For the same reason, we have
the identity

q q q’) ( ) ( q' )
el )=/ ]| = d di)
f(dz) f(@’ d> d;\(q/qz,q’/dz))(f( ulds) g 'd drd;

Since (¢’,m’) = 1, we conclude that

mpf(d) (m)

q [ q'm’ q'm
= (r(ds)pu(ds) A Vdidyo,(didy) ( )
ds\W%’,q’)yf( s)ules) f(q/d3 &i|(Dim") 14204 () ddzdl d3dyd,

dalq'/d3

= [T ()

3)d’| D,q'm'/ds) dxd’
V()
&)

Hence it follows from (3.1) and (2. 4) that for f; an element of Hecke eigenbasis de-
scribed above (and by writing d for 2 )

= > xldy)u(ds) /1/(

dil(q/q'.4")

= > xld)uds /lf(

dsl(q/q’.4")

2 2
mpy(m)| < HOREIDSNEDY gV dm'py (dm'”)|
‘ d|(¢, D)l(m’,q)=1
and therefore
(3.8)
E |¢(tj)| ' (WZ) 2<T(q)2q29 Z Z |¢(tj)| Z a /Wp(dml) 2.
j=1¢h(xnty) | : B Aap) ;Z10@G) Ly Thrpg /

To estimate the j-sum we set
Ty := max(16X, (ZX)?, z2/3),

where X is given by (3.4), and we split the sum as

" 2
Z](J'}(:(tj” 2 aqm’mpj(dml) D IR D DI D DRD DR
j>

(mt;) m'~M/q l51<1 1<|y| < Ty T T<|4|<2T

where T runs through the numbers of the form 2"7Ty, v € Nj.
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By the large sieve inequality (2.17) combined with (3.5), (2.11) and (2.12), we ob-
tain

zZ \"( zZ \" ZN' ([ dM
&, 1+ X)2)%( -2~ MN(1+Z2) (1+==)||al?
022 () () v (1) (145 )i

Similarly, a combination of (2.17), (3.5) and (2.12) shows that

zZ \"( z \* z M\, .,
12 () (Y v (20 (1 2

. A P Z p2 amM
<<,,,,,1,,,2((1+X)Z)2'(W> <52|N) MN<Z4/3+ZX+qD)|a||§.

For each T = 2'T, such that T < Z'** we can combine (2.17), (3.5) and (2.13) to see
that

Z p1< y4 )1’2 (Z)( 1 X>< ) dM> )
Ly ) (=) MN(Z)(==+=)(T*+ u
R%;ZT &D1,P2 <§1|M) |& |V T Ti2 ' T gD | Hz

Z P1 Z P2 dM
o 22— ) (2 ) MN(Z¥?+zx + 2= 2
<enn (i) () 4w(27+ 2+ 5

The contribution of each T = 2"Tj such that T > Z'*¢ is negligible as follows from
(2.17), (3.5) and (2.14) with k = 10/e. In fact, we have Z < T'~%/?2, therefore

Z [ Z \» 2\ x dM
o Loy T MN(Z — + )T+ =) a3
e T(5h) () (F) (7 1) (7 )t

7 Pl( 7 )172 2( dM) 5
< — MNT (1 +—)|dll5.
bpnpe <|51|M) ISI qD lalz

By summing over all T > Tj and using also (3.8) we infer that

16(0)] :
2 (i)

N 7 p1 7 P2
Lepp (14 X)Zg) <§,|M> <|52|N> M

1\ .D\M
xq20<1+y> (23/2+ZX+22”LQD) )|a||§.

Z am\/ﬁl‘pj(m)

m
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We have a similar bound for the second factor in (3.7). Therefore we obtain, for any
e >0,

zZ \"( Z \"
3.9) M L 02az 1) \igw) MY
(3.9) e prop (14 X)Zgr) <§1|M> <|52|N)

1\ DYM\ /2
x(qr)9<1+X> <Z3/2+ZX+Z”(q’qD) )

r,D)N 172
< (2420 2D o,

The contribution of holomorphic forms is treated similarly using (2.16); however,
since the Ramanujan—Petersson conjecture holds true for holomorphic forms, one
obtains the stronger bound

zZ \'"( Z \"
310 7 Holo . 14+ X)Zgr)? | —— N, MV
(3.10) Zeprp (1 + X)Zgr) <|/§1|M) (|52|N>

D)M\'/? (r, D)N\'/?
72 4 zx 4 WOMNT a5y (DN b,.
« (224 zx 4 00 2+ CONYE

3.2. Contribution of the Eisenstein spectrum. We now evaluate 7F" in (3.6). By

Cauchy-Schwarz one has
2
)= (1 “),
RC

and it is sufficient to bound each factor separately. We wish to imitate the argument
given above, but a slight difficulty occurs as the Eisenstein series E,(z,s) are not
Hecke eigenforms in general. The problem of diagonalizing Hecke operators on the
space of Eisenstein series was dealt with by Rankin [Ra90, Ra93, Ra92, Ra9%4|.
However, we proceed (as in [M04a, HM04a]) by computing directly the Fourier co-
efficients of the Eisenstein series. Recall (see [DI82, Lemma 2.3]) that the cusps {a} of
['y(D) are uniquely represented by the rationals

u
—:w|lD,ue, vy,
w

where, for each w|D, %,, is a set of integers coprime with w representing each reduced
residue class modulo W := (w, D/w) exactly once. In the half-plane S¢ < 0 we have
for m # 0 (see [DI82, (1.17) and p. 247)),

Eisen |2 « |¢|
T (LS

> ammp,(m; t)

m

En:b nV1pq(n)
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224 (o0, D Jw)\HH L 0
I palom, 1) = (") 2 o w o(em)
( Y 6 (mod yw), (6,yw)=1

r(3+it) wD 2 D=1 W

Jdy=u (modw)

with analytic continuation to &¢ = 0. The congruence condition on J can be analyzed
by means of multiplicative characters modulo w:

1 0
> = > e (—m —)
(y,D/w)=1 y1+2lt(5 (mod yw), (0, yw)=1 yw

Jdy=u (mod w)

=—— ¥ ¥ YO 6o
- (D(ﬂ)) l//modwlp( M)<y7 D%’):l y1+2it Gll’ (mv yw)a

where

Gylma)i= T poye()

b (mod q)

is the Gauss sum. Note that we may replace ¥ by its underlying primitive character,
since we only sum over b coprime with g. For brevity we write

sstmw) = 5 B0 Gy ),
(y,D/w)=1 b !
so that
2
S amvmp,(m, 1)
a m
_ T Z w Z Z lp(_u)za mjtS (m W) 2
’F(%-F it)‘zw\D WD(pz(w)ue@/.,, Y mod w m " v ’
By Parseval it follows that
: 7 2
n w

Z Z am\/’%pa(n% Z)

a m

N T +ir)|? wZu:)WDcﬂ(W) wn%:dw

Z amm ”Sl// (m; W)

m

In the following it will be useful to perform the summation over the primitive char-
acters underlying the y/’s. For each character ¥ mod w, we record by w* its conductor
and by " its underlying primitive character, so that
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2
(3.11) X213 amvmp,(m, 1)
al|m
S Dy Py e
|F(%+l'l‘)|2w*2\Dw*modw*yt’*|tt’\D/\¢7*WD(0(w) m " v 7 ’

where the y*-sum is over primitive characters only. To compute S, (m;w), we de-
compose w as

w=www" w|w)", W w) =1

Our aim is now to establish (3.13) below, i.e. for m = gm’ with (¢,m’') = 1 we want
to express Sy (gm’,w) in terms of Sy-(dm’, ) with d | (g, D). Let us first note that
according to our decomposition of w the Gauss sum factors as

Gy (myyw) =y~ (yw") Gy (m; w*w')r(m; yw")
= 0w Y (yw") Gy (m/w's w*)r(m; yw"),

where r(m; q) := Gi(m;q) is the Ramanujan sum and 6,,,, = 1 if w'[m and else it
vanishes. With this notation,

S (m /W) (W) Gy (1; W)
L) (y*2, 1 + 2ir)

(3 Gl £ L)

(y,D/w)=1 (a,D)=1

Sy (myw) =

- 5w’|mw/lf(m/wl)‘//*(W”)GW(1; W*) e
B L) (2, 1 + 2if) Ry (s w7y (),

say, where the superscript (D) indicates that the local factors at the primes dividing D
have been removed. We consider the y-sum

) — W*ZO}) . "
Ry(m;w")y = i Fms yw")
b= 7
(»,D/w)=1

Since (y,w*) = (y, D/w) = 1, it follows that in fact y|(w”)™ (justifying our notation),
and one has
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79
y2oh
R *(Wl, w//) H ( Z ' r(ptl,(n1);pot+/f) )
¥ Dt ﬁzopﬂ(l-ﬂn)
p*|ID
We suppose now that m is of the form m = gm’ with (¢,m’) = 1, and we factor w’
w” (recall that they are coprime) as
w' = wqw( D W' = W;’w”<‘1), where w,, w;/|¢g” and (W D" gy =1

Moreover, since (¢,m') =1 and w’ | gm’, it follows that w,; = (w', ¢). With these no-
tations we find that

Sll/* (qm/; W) w’\q W( ) lp*(w(/;l)Rl//* (q; W(/;/)”l//* (q)

= m' ¥ Gy (1;w*
><5w/<q>\er'(">zp (W/@)‘P (w"@)) v ( )

Ry-(m'sw" Ny . (m").
L0 (21 + 2ir) 2 1y ()

Setting

W//
vy =|+——=,9) and o,:= T[] p%
(M/” 2) %[y,
’ p*lwy
o <uv,(q)+1

an explicit calculation shows that Ry +(vy; 94) is nonzero and in fact

(3.12) |7§‘” (g:y)

y (g3 0g)

< 1+% < 3¢(D
p‘(lq_[D)(U[)() )K(p) — T( )T(q)v

where

1
29 p:27
K(p)::{i—l p>2
p’ :

Note also that w,v, | (¢, D) and 4|w

;- In particular, (wjvg,m') = 1 and 5, (w,v,) = 1,
therefore by the above formula

(3.13)

Ry (qwy
* Y \q * ~
Selamiv) = W]w (W ”q> (Uq) m’” (@) Sy (wyvgm’s w w'gw" ).

Combining (3.12) with (3.13) and noting that [5,-(¢q)| < 7(¢) we obtain by a trivial
estimation

2

<91(D)’(q)* 3

dl(¢,D)

S am™Sy (m; w)

m

2
( Z) Iaqm’(ml)itsl/,(dm/;w*wlﬁqw//(q))
m',q
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Given w* such that w*}|D and given w such that w*|w L | the number w; :=
w*w'g,w"(@ also satisfies w*|wi|w|2 . Moreover, if we set Wy := (wy, D/wi), one has
w Wy
—— <1(D)——,
() (1)

so we deduce from this discussion and from (3.11) that

2

SIS amvmp (m,1)| < 9t(D)’t(q)* Y ——
o o) P (4411

T

> i :

it 4
_ g (M) Sy (dm'; wy
w2 | Dy modw* w* w1 |D W1D(p(w1) > gm (m') w( W)

(m’,q)=1

2

> agwVdm'p,(dm', 1)

(m',q)=1

91(D)’e(g)" 3 %

d|(¢;D) a

We are now in a similar situation as in (3.8). Applying the large sieve inequality
(2.18) we obtain analogously the bound

(3.14) TEsen « (14 X)DZ r)£< z )pl ( z )pzMN
‘ &P1,P2 q |61|M |§2|N

DYM\'/? (r, D)N\'/*
7321 7y (q’— 732y gy L T
« (2 zx 4+ 80 + 2+ 0] fal ol

for any ¢ > 0.

Collecting (3.4), (3.9), (3.10), (3.14), and integrating over the &, &, variables (with
p1=01if |&| <Z/M, and p; > 1if |£| > Z/M and similarly for (&,, p»)) we con-
clude the proof of Theorem 4. |

4 A shifted convolution problem

Let ¢, /1, I, be positive integers, and g be a cuspidal newform of level D and ne-
bentypus y, and Hecke eigenvalues Z,4(n), n > 1. Let F(x, y) be a smooth function
supported on [X/2,2X] x [Y/2,2Y] which satisfies

aiJrj ZH—j
—— F —
oxioy/ (%) « XiyJ

(4.1)

for some X,Y,Z >1 and for all i, j > 0, the implied constant depending only on
i, J.



A Burgess-like subconvex bound 81

In this section we estimate, for positive integers /1, b, ¢, the following average of
shifted convolution sums:

(g,h,b,9) == S plgh) 35 Ag(m)ig(m)F(Lim, L),

h#0 lim—hLn=qh

where by symmetry we may assume that Y > X and ¢(gh) is a redundancy
factor (borrowed from [DFI94a] to ease the forthcoming computations) arising
from a smooth even function ¢ such that ¢,y ,y =1, supp¢ = [-4Y,4Y] and
¢ (x) «; Y. Our analysis follows closely Sectlons 4.1-5. 2 of [HMO04a], but we also
make use of the essential ingredients of [Bl04b], namely the square mean bound for
shifted convolution sums taken from [J96] and the spectral large sieve of [DI82] in
our improved form of Theorem 4. The proof of Proposition 2.4 of [HMO04a] yields
the following uniform estimate for exponential sums associated with g:

(42)  Sy(a,x) := Y Ay(n)e(na) <, (Du,x) Dl/z,ul/2 12

n<x
where

_lgll,
gl

In the same proof we also demonstrated by an elementary argument that
(43) 0, <. (Dug)eDl/zuj/z.

With this bound at hand we derive the following square mean bound for shifted
convolution sums, a variant of Lemma 3 in [J96] (cf. Lemma 3.2 in [Bl04b]): for
li,lb € Z and x, y > 1 we have by Rankin—Selberg theory

2

1
44) X | X 2m)iyn) =LISg(—llof,X)Sg(ilef,y)lzdfx

h'eZ| m<x,n<y
Lm+bLn=h'

1
. 2
Kg (Dﬂyx)éwgDﬂgx JO ‘Sg(i ha, y)|” do
= (D) ‘o D¢ 30y (m)|°
n<y

2¢
< (Duyxy) cojD,ugxy

the implied constant depending on ¢ alone. Our goal is
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Theorem 5. Assume Hypothesis Hy. Set
T .= qD,ugll ZzXYZ,

and assume (by symmetry) that Y > X. Then

1/2
: \'? (¢q,Dhi
D(g, 11, b, q) <, T*‘wgD,ugy“wZZS/”qu’1/2 Y((}) + (C;D]ll]zz) Y) .

The remaining part of this section is devoted to the proof of this theorem.

4.1. Setting up the circle method. We detect the summation condition /ym — hn —
gh = 0 by means of additive characters:

2(9,h,h,q) = J]R G(a)1p,1)() dot

G(a) := H(o)K(a) := /;0 P(gh)e(—agh) x zlg(m)ig(n)F(llm,lzn)e(oc(llm — hn)).

As in [HO3a, HM04a, Bl04b], we apply Jutila’s method of overlapping intervals
[J92, J96] to approximate the characteristic function of the unit interval 7(x) =
1j,1(«) by sums of characteristic functions of intervals centered at well chosen ra-
tionals. Let C > Y be a large parameter to be chosen later, and let w be a smooth
function supported on [C/2,3C] with values in [0, 1] equal to 1 on [C,2C] such that
wl)(x) «; C~. We also set

0:=C"', D':=Dhh, L:= w(c)p(c), P:=TC =qDu,iLXYZC.
c¢=0 (D)

Note that, assuming C > D', L satisfies the inequality

2—¢

for any ¢ > 0. The approximation to /(x) is provided by

i(OC) = AT Z W(C) Z la c—0,a/c+o ((Z)
25]‘4;0 (D") a (modc) faleoajerd]
(a,c)=1

(which is supported in [—1,2]), and by the main theorem in [J92] one has
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C2+E 3¢ (Dll 12)2
SI2 <, C c

(4.6) J (%) — F(2)2 der <,
1.2

Next, we introduce the corresponding approximation of %(g, /i, b, q):

92((']7117127(1) = J[ ] G(oc)i(zx) do.
-1,2

Then it follows from (4.6) that

.. DIty

12(g, 1,1, 9) = (g, 1, b, )| < [T = 1|,[|Gll, <. C cin

IG]l,-

By Parseval,

A2
1G> < [H]LIK].,. < (3) 1]l

while an integration by parts shows that

K(x) = lllzj J FUD(1x, by)Sy(—ho, x)Sy(—ha, y) dx dy,
0 Jo
so that by (4.1) and (4.2),

XY)I/ 2

K TZS 2D ZZ
1K1, < T¥o}0u 2 (]

Collecting the above estimates, we find that

I lzXY2>l/ 2

5 2. 202, 2
47) 2-9 <« P oD uzZ ( 4C

4.2. 9 as a sum of Kloosterman sums. We have

~ 1 ~
9 = z Z W(C) Z J()',a/w
c=0 (D) a (mod ¢)
(a,c)=1

where
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and

1

E(x.2) = Fllix h)ilas) 5| elolhn =y = g2)d

By applying Proposition 2.1 to the variables m, n and by summing over «a, ¢, we get
(observe that the factor z,(@) from the m-sum is cancelled by y,(@) coming from the
n-sum) together with (2.5)

o ro 47l

g
4 0o Jo

and where e; = land ¢, = +1 is the sign of ¢ if it is not induced from a holomorphic

T(3+it+k
” FE;—#—; py(n) foralln > 1.

form, i.e., ¢, satisfies p,(—n) = ¢

g

4.3. Estimates for &*'* and its derivatives. Notice that the definition of E and the
various assumptions made so far imply that

(49) E(x,y,z)=0 wunlessx~ X/, y~Y/h, |qgz]| <4Y.
Moreover,

- Zi+_jliquk
(410) E( ‘Jv/)(x, y,Z) <<i,j,k Tﬁ’
so that for any fixed &

ZH Y g xy
XiYitk ’

@.11)  [[ECP0 (o )|y <k

and therefore

Zi+jllifll{*1qk71XYz
XiYyJjtk

IECIR|) <<k
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Next, we evaluate &+ *(m,n, h; ¢) and its partial derivatives. Depending on the case,
&*%(m,n, h; c) can be written as a linear combination (with constant coefficients) of
integrals of the form

0 o 4rl
a1y PO [ gy, (Y g (R v,

¢ 0 Jo

where

Y, (x)
ch(nt)

{J1v(x),J2,(x)} = { ,ch(nt)Kv(x)}

with v e {£2it,} if g is a Maass form of weight 0 and spectral parameter #,; or

{J1v(x),J2,(x)} < {Si‘((nxt)) ,sh(m)Kv(x)}

with v e {£2it,} if g is a Maass form of weight 1; or
J1(x%) = J2.0(x) = Ji, -1 (%),

if g is a holomorphic form of weight k,.

In order to estimate (4.12) efficiently, we integrate by parts i (resp. j) times with
respect to x (resp. y), where i (resp. j) will be determined later in terms of m (resp. n)
and ¢. Using (6.1), we see that & **(m, n, h; ¢) can be written as a linear combination
(with constant coeflicients) of expressions of the form

Libw(c) <11\/%)2i<12\/’7>2jrC r o {E(x, y, )W "W,y "}

¢ c c o Jo Oxidy/
X W (W) o,y (W) dx dy,

where {vi,v,} < {+2it,} (or vi,v» = k; — 1) and

W]I

_Anly\/mx vmlh X W, e dnl\/my  /nhY
- ~ C ) 2= ~ C )

c c

in view of (4.9). Using (4.11) and Proposition 6.2 in the slightly weaker form
Jl,v1+i(W1) <<i,1:/lé+6(l + Wlfl)i+2|<\‘rt(,\+5(l + Wl)il/z,

Torii(Wa) <<j’g'u!j]‘+e(1 + W{l)julszgm(l I Wz)il/z,
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we can deduce for any i, j > 0 that

+.+ 2t C? Cc? 2!
P 0) < P 2) ™ —+ | —
EXE(myn, h;c) < o ('u.‘l ) mX + (llmX>

CZ C2 1/2 J
% lan+<12nY> :(m,n),

where

(4.13)
E(

mn)'—ﬂ - C? 1+C2 [t 1+11LX 1+12n—Y —1/4
NS LImX hnY C? C? ’

This shows, upon choosing i and j appropriately, that &**(m,n, h;c) is very small
unless

472 472002

zZ-C zZ-C

al , n<<eP*"ug ,
hXx LY

(4.14) ¢lh| <4Y, c¢~C, m<,P¢

and in this range we retain the bound (by taking i = j = 0)
(4.15) &F*F(m,n, h;c) <, P°E(m, n).

The partial derivatives

ai+j+k+l

i jhk / i i gi,i
mn e s ¢

m,n, h;c)

can be estimated similarly. We shall restrict our attention to the range (4.14). The
same argument as above yields that outside this range the partial derivatives are very
small. By (6.1) applied to the m and n variables and (6.2) applied to the ¢ variable, the
above partial derivative is a linear combination of integrals of the form

az aa3 W(C) * Ochk ak / ap a d d
Ri(ty)c s\ ), ), WE(x,y, MW WRI v —a, (W), v, —a, (W2) dx dy,

where R; is a polynomial of degree </ and the nonnegative integers a;, a, a3
satisfy

at+a+ta<i+j+1

Therefore we obtain using (4.14)
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(4.16) m'n/h* e (&) ED (1 n k)

i+j+1
qlh| k / N IiimX A/ bnY +‘l+_
g | 1+ C + C E(m,n)

i ke P (—Y

K jk,le Psﬂé(Pglng) ZHHH(’” n).

4.4. Bounding 2+ via the large sieve. We only treat 277, the other terms being
similar. To simplify notation, we rename 2~ as &2 and §°~ as &. We collect the
terms in the definition (4.8) according to

/’l, = 111’}’1 — lzl’l.
Thus we have the natural splitting
D=9"+9" +9,

where

. 1 _
2° =7 > Ag(m)dg(n) gl ) &(m,n, h;c)
lim=hn ¢=0 (DY h#0 €

with

r(gh;c) = S(gh,0;¢) = > ulc/c’)c’

¢|ghso)

the Ramanujan sum, and

@17) 9t=g ¥ ¥ oy S Ty m) 2y ()6, s ).
¢=0(D')h#0 +h'>0 ¢ lLim—bLn=h'

4.4.1. Bounding 2°. We set /| :=I,/(I1, ), I} := L/ (1, 5); then

g g(lm) Ay (lim) 37 L5 w6 om, lim, I c).

¢=0(D") € h#0

The ¢-sum equals

" C” ! I ’
c (D'/(c", D"))|e" h#0
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therefore by (4.14) and (4.15) it is bounded by

Y (! (q,DlLih) Y
<, P*—E(Lm, [lm)S> m «pr @O Y o
q ¢ (D'/(c",D")|c’ cc D[]Zz q
e~ C

In summing over the m variable we may restrict ourselves to the range
47202
[11,12]m L Pe,ugZ (C /Y),

as the remaining contribution is negligible. If Y /X <<8P8,ugZz, then we split the
m-sum into three parts,

N Z et .
[, blm<C?]Y C?2/Y <[l,hlm<C?/X C?/X <[l blm«<,PoutZ*(C?/Y)

“ey

and combine (4.5) and (4.13) with basic properties of the Hecke eigenvalues 4,(n) to
infer that

~ (q,Dlllz) XY2 _ - _ _ _ _
90 <<8P2£WT(X 6‘Y(7 ]+X 3/4Y ]/4+ﬂ;ZX 1/4Y 3/4).

If Y/X », P‘uj Z?, then we split the m-sum into two parts,

coe > cey
[[1,[2]m<C2/Y CZ/YS[ll‘lg]m<<gpsﬂgzz(C2/Y)

and infer similarly that

2¢ (q7 DZIIZ) XYZ

2% «, P
’ glh, b)) C

(X—[‘) Y(‘)—l + ﬂ2_4ez3/2_20X_6 YH_I).

In both cases we conclude that

_ Y3/4ys/4
4.18) 2° «, P36/¢§ZT.

4.4.2. Bounding Z*. Following [BI04b], we decompose the inner sum in (4.17) as

o0

0
(4.19) J > Ag(m)ag(n) = E(x, y, by c) dy,
’
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where the variables x and y are connected by the equation
(4.20) l]X - Zzy =

(note that /’, y > 0 implies x > 0). Then 2+ decomposes accordingly as

) =1 [ e

where
/
@2) T0= ¥ ¥ 5 b S gh i
e=0 (D) h£0h'>0
and
_ | !
(423) b= > Agm)ig(n), gy(h,h';c) = 6@0<2y+h ,y,é;c)
' n<y ) ) 5)’ ll q

Lm—hn=h'

In particular, g, (h, h'; c) and all its partial derivatives are very small unless

pHTC e
y X <L llX y DAY 12 Y s

(4.24) || <4Y, c~C

and in this range they obey by (4.16) and (4.20) the bound

hih/jckg;i,j.k) (h, h/; C)

Il oot o)
h I q q

ik, ,"/12””3"(P£Z)H’”‘y’l"(x y).

Using the definition (4.13) it can be checked that in the range (4.24) we have the
uniform bound

1/2
(4.25) ()22 (x, y) <, Pu zc(ff) —w,
162

so that in fact
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hih/jcng(,i"j’k) (/’l, /’l/; C) « i,_/'.k,e,u§+2j+3k(Pl;Z) 1+j+k Wx71/2y73/2.

This also shows that we can decompose g, (4, /h’;c) dyadically in the & and A’ vari-
ables such that

gy(hh'5e) = > gym (b h'sc),
HH>1

where H and H' run through the powers of 2 independently, and g, ' (h,h';c) as a
function of / (resp. h’) is supported on H/2 < |h| < 2H (resp. H'/2 < h’ <2H') and
satisfies

puzw  z
Chike %1232 "HIH'ICKE

(426) g\ h (i 0)

where

(4.27) Z:=PuZ,

and X is connected to y by the equation
hx—hLy=H'

The same argument also shows that all these partial derivatives are very small
unless

, g Z*C? ugZ*C?
(4.28) H<8Y, H'«P'=——, c~C y<P=——

Accordingly, 2% (y) of (4.22) decomposes into a double sum over the H and the H'.
We further decompose all the pieces according to the g-part of the / variable and we
find (after replacing g/ by h) that

429) 2'(n= > X D),

H,H'>1gq'|g”

where

~ S(h,h';c
Trtg () = S b SR o).

¢=0(D") qq’|h h'>0 ¢
(h/qq' qq")=1

We are ready to apply the large sieve for the sums Dy; ;.. (). By Theorem 4 and
(4.26), '
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B P‘S,uzZW s C 20
Do (V) <e W(CI P)*(qq") (1 +W>

Z
C + qq'D’

1/2
- - - VHH' - " D'YH
« 2( 3/2 7 20(€/qa ) >

1/2 1/2
~3/2 HH' -2 H' H
<Z + 7= C +Z ol qq’ 16411,

Here, by (4.23) and (4.4),
16,115 << Prary D2/ () 2.

If we choose C > Z ) Y, then by our general assumption Y > X it follows that in
the range (4.28)

172 172 12
c /(- VHH' H' H\" - y \/
+ + + — ) «,Pu — .
| 7Pz 7 pPiutzz’c
vHH’ C D’ / g qq/D/X

These additional estimates yield (for the relevant range (4.28))

11/4+6

Diipr.0(9) <o v (4 P 0, DV P2 Z T Cw (g

1/2
§ y 1/2 X 1/2 . (¢q',D") y /
qq'D'X X qq'D’ ’

and by the definition of W and Z (see (4.25) and (4.27)) the right hand side is

1/2
, C? _ r\"”? D’
<,y (¢’ P)”ewg q3/4+39225/4+e(qq/)0 UZY((Y) n (¢,D") v .

I gD’

Finally, by (4.29), (4.28), (4.21) and (4.5) we conclude that

1/2
- Y\ (g, Dhb)

4.30 gt PlZa D 63/4+BHZ25/4+H H—I/ZY - ) Y )

(4.30) < P w,Dyy q %) " 4Dl

The treatment of &~ is very similar to that of & except that instead of (4.19) we

decompose the inner sum in (4.17) as

J > /E(m))ug (n) i E(x, y, h; ) dx.
1 m<x ) Ox
Lym—hn=h'
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4.5. Concluding Theorem 5. Theorem 5 follows immediately from (4.7), (4.18) and
(4.30) upon choosing C to be a large power of T, say

C = (qDu,hLXYZ)'".

5 Application to subconvexity bounds for twisted L-functions

Let g be a cuspidal newform (i.e., either a holomorphic or a Maass cusp form) as in
(1.1), let Rs = %, and let y be a primitive character of conductor g¢.

5.1. Approximate functional equation. Using the functional equation of the
L-function attached to the cuspidal automorphic representation 7, ® y =
), (14, ® x,) and a standard technique involving Mellin transforms, we can express
the special value L(g ® y,s) = L(ny ® x,s) as a sum of two Dirichlet series of essen-
tially VC terms, where

C:=Clny ®,5) < |s’1; Dg*

is the analytic conductor defined by [IS00]. For example, Theorem 1 in [H02] shows
that

Llg®y,s)= > P () W<C’?/2) +r> A7) W<C’11/z)’

>t N n>1 nl=s

where x is of modulus one, 1. g,(n) are the coefficients of the Dirichlet series
L(g® x,s), and W is a smooth bounded function of (0, o) (depending on 7, ® x
and s) satisfying the uniform estimates

WO (x) < a(14+x)77"
for any x > 0, any integer i > 0 and any 4 > 0 with implied constants depending

only on i and 4. The coefficient 4, g,(n) may be complicated for 7 not coprime with
gD, however for Rs > 1 one has

1= 24P x(2)p~* + x(pP)p™  Ag()x(n)
Lig®y,s) = 9
@r9 pEID L™ (74,p ® 2 5) n>1 1

Y

so that by (2.4)

ina@,’((”) n 1
2. — W(C1/2> < 2 4120

N ,
nzl N d\(¢D)”

5~ Za(n)z() W< dn )

n>1 n’ C1/2

for any & > 0, the implied constant depending only on .
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By the rapid decay properties of W, the contribution of the d, n such that
dn > C'/?*¢ is negligible for any given ¢ > 0. For the rest of the sum we apply a
smooth dyadic decomposition, so that we are left with estimating O(log C) sums of
the form

N'2E(g®y, N)=N"123 2y (n)x(n) Wy s(n),

nx>1

where 1 < N < CY*** and Wy, is some smooth function supported in [N,2N]
satisfying

XY () < sl
the implied constant depending only on i.

5.2. Amplification. We shall estimate the sums X(g ® y, N) by the amplification
method of [DFI93]. That is, we choose some L so that log L =< log ¢ and estimate the
amplified second moment

2

S(g:N) = > Z(g® 1, NI,

7' (modq)

7Dy ()

L<I<2L

where y’ runs over the characters modulo ¢ and

g @y N) = 3 Ag(n)y ()W s(n).

n>1

By orthogonality of characters one has (see [M04b])

Sg.N)<olg) > L)Y S dg(m)hy(n)F(hm, bn),

L<l,L<2L h Lym—lhn=hq

where
F(x,y) = Wy (x/l) Wy s(p/b).

The total contribution of 7 =0 can be estimated by Cauchy-Schwarz and the
Rankin—Selberg bound:

Ag(m)Ag(n)F(hm, hn) «, T°NL, T := |s|u,Dq.
L<hb<2L ‘
llm:lzn

For each pair /i, [, coprime with ¢, the contribution of / # 0 can be estimated di-
rectly by Theorem 5 with the parameters (when /; < h) X =|N, Y = LN, Z = |s|:
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B N \/2
oo > Agm)Ay(m)F(lim, hn) <, T"Uq”l/zNL<1 + —> ,
h#0 Lm—hLn=hq C]L

where we have put for convenience
(51) U= |S|25/4+9wgﬂ23/4+30D~
We also note that

(52) N<TVq, V:=|sluD'"?,

whence the obvious lower bound

S(g, N)\'?
NL2

|
together with the above estimates imply that
A2 172
(53) Lig®y,s) <, T‘”{% + Uql/“(’L(l + Z) } .
The expression on the right hand side suggests that we choose L of the form

(54) L:=q"20/%R,

where R > 1 depends only on s, 4, and D. If R is not too large then we can guarantee
with the help of the convexity bound

Lg®y,s) <, T‘ng/qu/2

that L > ¢° with some J > 0. More precisely, the bound (5.3) follows from the con-
vexity bound unless

2
Uq1/2+€L(1 +Z) < 1y,
which by (5.4) is equivalent to

U U2 1/3
max W’ (W) < L.

Fixing any ¢ > 0, this inequality can be rewritten as
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U U? 13179 g(1-20)/4 g
max Vzez(m) TR ) <b

which implies that

U U2 1/3 i
R0 « max VRS (W) = ¢°U20/% « L.

This justifies the choice

p\(1-9/6-0)
. R:=(—
55 r=(%)

since then (5.3) holds true either because L is admissible or as a consequence of the
convexity bound.

5.3. Concluding Theorem 1. We choose L according to (5.4)—(5.5), where ¢ is a very
small positive number depending on ¢ and U, V are defined in (5.1)—(5.2). Then (5.3)
implies that

L(g ® 7, S) <, T4e{ UV1/2q1/2+(7‘L}1/2 <, T5£U1/4 V3/8(](3+20>/8.
In view of (4.3), this is the bound of Theorem 1.

Appendix 1: Bounds for Bessel functions

In this appendix we recall some facts about Bessel functions. Proofs of Propositions
6.1 and 6.2 can be found in the Appendix of [HMO04a].
For s € €, the Bessel functions satisfy the recurrence relations

(FI) = X1 (x), (CV() = XY (x), (FK(x) = —x Ko (3).

In particular, if » > 0 and H, denotes either J;, Y; or K, then

(6.1) ((rf) Hy (V) = £(77/2) (r/X) ' Hy (rV/%),

and for any j > 0,

(6.2)

e (£) = 0w (£) + 00 (£) o () - e (£ 1 2).

where each Q; is a polynomial of degree i whose coeflicients depend only on 7 and j.
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Proposition 6.1. For any integer k > 1, the following uniform estimate holds:

xk!

Jeo1(x) < {zklr(k%) 7

kx—1/2, I <x.

0<x<l;

The implied constant is absolute.

Proposition 6.2. For any ¢ > 0 and any ¢ > 0, the following uniform estimates hold in
the strip |Rs| < o

(1S x % 0<x<1+|Ss);
eI Y (x) < L (14 |Ss]) o, 1+ [Ss) < x < 1+]s]%
x~ 12, 1+ s < x.

en|i‘ss\/2K (X) « {(1 + |%SDU+£-X?J?87 O<x<l1+ n|%s|/2;
’ e XSSl =1/2) 1 +7Ss]/2 < x.

The implied constants depend only on ¢ and ¢.

Appendix 2: Improved bound for the Fourier coefficients of holomorphic
half-integral weight cusp forms

By Zhengyu Mao

In this appendix we apply the estimate obtained in Theorem 1 along with the work of
[BMO5] to get an improved upper bound for the Fourier coefficients of holomorphic
half-integral weight cusp forms. For positive integers k and M and an even Dirichlet
character y modulo 4M let Sy/,(4M, x) denote the space of holomorphic forms of
weight k + 1, level M, and nebentypus . The functions f(z) in this space satisfy (cf.
[Wa8l))

az+b

(7.1) f<m

) = j(o. MU f () o= ( d) e [o(4M),

where

Let S, /2(4M , ) denote the orthogonal complement in Sy /»(4M, y) of the space of
theta series in one variable. Note that S} /2(4M ,x) s the entire space Sy.1/,(4M, x)
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for k > 2, while for k =1 it equals the subspace V' (4M;y) defined in [U93]. In the
following we prove:

Theorem 6. Let B, C, 6 be the constants as in Theorem 1. If

/() = i () () > e (n2)

is an L?-normalized cusp form in S,i+l/2(4M,)() (c¢f (2.1), (2.8)), then for ¢ > 0 and for
any n > 1 whose square part is coprime with 2M we have

—1/2
(72) \/ﬁpf(l’l) 3 (an)E(r (k + %)) k<B+])/2MC+lnl/4_<l/]6>(l_26).

Remark 7.1. A similar bound holds for Maass forms. For example, when

St iy)= 5 o) Woapiupa .4zl ye(n)
ne
n#0

is an L2-normalized Maass cusp form of weight %, level 4M, and Laplacian eigen-
value % + #2 (t € R), one has, for any n > 1 whose square part is coprime with 2M,

Vipy(n) << ((1+ [e)) Mn])*(ch(me) 2 (14 1) M € )4 0AO00
for some positive constants B’ and C’. We leave the details to a future work.
Remark 7.2. The first breakthrough in obtaining nontrivial bounds for the Fourier

coefficients of half-integral weight cusp forms was achieved by Iwaniec [I87] and
reads with slight refinements as (cf. Lemma 2 in [DSp90])

-1/2
Vaps(n) <. (kMn) (T k+l J9/21/4-1/28
Py 3

with the above normalization and under the above assumptions, providing that n is
square-free. Estimates that are valid for all n have been obtained in [Bl04a], Theorem
1 and Lemma 4.4, which are particularly useful for applications with ternary qua-
dratic forms. Combining (7.2) with Lemma 4.2 in [Bl04a], we obtain (cf. [Bl04a, p. 5]
for the notation)

(7.3) r(spnf, I’l) _ r(f, I’l) <, N41/16nl/2—(1/16)(l—20)+e

for integers n whose square part is coprime with N.
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7.1. Cusp forms and cuspidal automorphic representations. Let Aq be the ring of
adeles of the rational field Q. Define the additive character  of Agq such that
¥, (x) = e*™ over Q,, = R and for x € Q,, Y,(x) = e~ where p'x € Z for some
integer / and x — x € Z,, the ring of integers of Q,,. The additive measures on Q, are
defined to be self-dual with respect to ¥, for v = p or co.

Let f(z) € S;,/,(4M, ), then associated to f(z) is a vector ¢ = #(f) in the space
of cuspidal automorphic representations of SL,(Agq), the two-fold cover of SL»(Ag).
Here ¢ = t(f) is a function on SL,(Aq) which is continuous and left-invariant under
SL, (@) and satisfies

VP X/P\ [ cosO sind k214 il 1/2)0 -
(7.4) (( 0 1/y5 )\ Zsing coso L0 =y e f(x+ yi),

where y > 0, x € IR, and —n < 0 < n. By the strong approximation theorem for SL,,
we see that ¢ = #(f) is unique.

It is clear that ¢ decomposes into a sum of ¢, = &), ¢, ,, where each ¢; is a vector in
some irreducible cuspidal representation 7; of SLy(Ag). We will first establish the
bound (7.2) in the case when ¢ = #(f) itself is a vector ¢ = ), ¢, in an irreducible
cuspidal representation 7 of éiz(AQ).

In [Wa91] a map Sy, is defined from the set of irreducible cuspidal representations
of éiz(AQ) to the set of irreducible automorphic representations of PGL(Ag).
With our assumption of orthogonality to one-variable theta series, we see that
n := Sy(7) is a cuspidal representation. Let ¢ = @), ¢, be the unique (up to scalar
multiple) new vector in the space of 7 (cf. [Ca73, Sc02]). Define

_ai+b
Cci+d’

9(2) = p(a)(cz + d) 2, U:C’ z>eSL2(]R), z:

where SL,(R) is identified with its image in PGL;(Aq) under the embedding
o— (o,1,1,...).

Then g(z) is a newform of weight 2k, some level N, and trivial nebentypus. We can
be more precise on the size of N.

Lemma 7.1. We have N | (2M)* and N < (4M)*.

Proof. If p does not divide 2M, then 7, is unramified, thus so is 7,, which implies
that N is not divisible by p. Let ¢(n) denote the conductor of 7 (cf. [Sc02]), and let
v, denote the p-adic valuation on Q. Clearly, the conductor of the character y over
Q, is at most v,(4M). We see from Section 1.3.2 of [Wa81] that the newform cor-
responding to the representation 7 ® y has level at most 2M, that is, c¢(n, ® x) <
v,(2M). Then, from the table of conductors of local representations (see [Sc02]),
¢(n,) < 2v,(4M), which is equivalent to N < (4M)>. O
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We adopt the notation (2.1) to the present situation, that is,

9(z) = 3 py(m)(dnm)*e(nz).

n>1

7.2. A theorem from [BMO05]. We recall Theorem 4.3 in [BMO05]. The statement we
need is:

Theorem 7. Let © = Sy (7). Let S = {0} u{p: p|2M} be a finite set of places. For
all square-fiee integers D > 1, either WP (¢) = 0 or

~ 12 2 1
@I _WOIPLE®10:3) 1 g0 Gy )

(7.5) — .
gl el ves

where

e(py %)

7.6)  Eu(9,, 6,0, D) := — .
(76)  Ed )= P L ® 19, DD,

O

The notations are as in [BMOS5] which we will explain along the way. y, is the qua-
dratic character Ag,/Q" associated with the quadratic extension Q(vD). WP and W
are Whittaker functionals and are related to the Fourier coefficients:

(71.7)  WP(@) :=J¢(<1 ’f))w(—Dx)dx:eZﬂD(4nD)k/2+1/4p,.(D),

75w [o( (1 7))p0d=eTan .

The Petersson norms are related by (cf. (2.8))

vol(To(4M)\H)
vol(To(N)\H) -

loll>  <{g,g>/vol(To(N)\H) .5

7 I@l1>  <f /> /vol(To(4M)\H)

When v = o0, ¢, and ¢, are the lowest weight vectors in 7%, and 7., respectively. The
constant E,(¢,, @,,¥,, D) is computed in [BMOS5]; it equals

1 N
7.10) E(p,.,¢.,,V.,D) == P D120k VL 7y @ ypy= | -
o0 o0 o0 p) D 2

Note that

1 1 1
L(”®XD>§> =L, (nfc ®XD>§>L<Q ®XD7§>12(97D)’
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where

Lz(J®xD,2)

h(g,D) = <7T2®XD72>

is the quotient of the 2-factors of L(g ® yp,s) and L(z ® yp,s). Thus from Theorem
7 we have

(7.11)

Dlp,(D)|* « 1, (1)|*4¥T (k)

€9, 9> /vol(To(N)\

1
]I-I)M_IL< ® xp> >12(gv )H EP((pp’@P’WP’D)'

pl2m

The method of [HL94] implies that (cf. [HMO04a, Section 2.6], [DF194b, p. 219])

lp,(DI’T(2k)

{g,gy/vol(I'o(N)\H) < (kN)".

We note that by the duplication formula for the Gamma function we have

4T(k)  2ym
C(2k)  T(k+1)’

so that the above bound is equivalent to

19, (1) 24T (k) E !
712 Zg g FvolTann < &) (r (" *5)> |

As Lr(9 ® xpy3) < 5 and Ly (m2 ® rp,3) = we see that

(ﬁ D f+12’

(7.13) h(g,D) <« 1.

Therefore in order to obtain an upper bound for |p;(D)|, we only need to find upper
bounds for E,(¢,,9,,,, D).

7.3. Estimating E,(9,, §,, ,, D). In the definition (7.6) of E,(¢,, ¢, ¥,,, D), we have

lg.I?
e((pva ‘h) = m7
v Py
=12
6((ﬁm lpr) = N”L‘”

LY (3,1
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Here L, and LP? are the local (D-th) Whittaker functionals, llp,||* is the local Her-
mitian form defined as

o elel(* )

and [|@,||* is the local Hermitian form defined as

(el L)

The 0 is summed over the representatives of square classes of Q;, and I:UD(S are local
Whittaker functionals fixed to be compatible with L.
When v = p with p|2M, ¢, is a vector with

2 da
lal,”

2 da

jal,

~ 2 ‘2|u J
Dol =
@, > %:

(714) ﬁp(k)(ap = X])(k)¢p7 ke Kp(M)v

. . . b .
where K,(M) is the subgroup of SL,(Q,) consisting of matrices (i d) with
a,de€Z,,beZ,and ce 4MZ; y,(k) is some unitary character of the group K},(M).

We note that the double cover SL; splits over K, (M), thus we can consider K,(M) as
a subgroup of SL,(@,).

Lemma 7.2. When ¢, satisfies equation (7.14), e(@,, 1//},,0)71 < ﬁ(l — p’1)71 for any
Deq,. !

Proof. Clearly,

~ 112 |2PJ
> —
o=

When g, = 1, <a o ) € K,(M) and we get, for some unitary character y’,

B((1 ))o =2 s,

As the Whittaker functional L? is a linear form, we see that the integrand is
identi~ca11yD|LIf) (#,)|. The integral thus gives (1 — pHILY (#,)|’. From the definition
of e(@,,¥,”) we get the lemma. O
The vector ¢, is a new vector in 7,. Let F,(x) be its image in the Kirillov model of 7,.
Then L,(p,) = Fy(1) which we will assume to be 1, and
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2 de
= | |F —.
(A JI ()] ]

Looking through the table of F,(x) in [Sc02], we see either 7, is an unramlﬁed rep-
resentation or |F,(x)| < x|/ charz (x). In the latter case we get ||(pp|| < 1. In the
former case we computed \|¢p|| in BMOS] and obtained

oyl = (1 +p L= p 7172

Here s is a purely imaginary parameter (by the Ramanujan conjecture established by
Deligne) associated to m,. Thus we have

Lemma 7.3. (g, ) < (1+p~")(1 - p~ ). 0
Clearly, |D|, > p~'. Looking through the table of L(z,,}) in [Go70] we get
1 _
L(np ®;{D52> > (1+p'2)7?

Combining this with (7.6) and Lemmata 7.2-7.3 we get

Lemma 7.4. Ep(gop?(ﬁp?‘//va) =< 22 (1 +p71)(p +p1/2)2(1 - pil)_S‘ D
p

7.4. Concluding Theorem 6. The above Lemma gives

H EP((p/ﬂ @pa lpp; D) <g M2+£.
pl2M

Combining this estimate with (7.11), (7.12), (7.13), and Lemma 7.1 we obtain

Dlp;(D)* «. (kM) (r (k + %) )IML (g ® m%) .

By Theorem | and Lemma 7.1,
I3 (g ® 1, %) . (kMD) kP M€ pV/2-(1/801-20),
Thus we get, for square-free D,
N\\12
(715) \/Bpj(D) <, (kMD)E(F(k+§)) kB/zMC+1/2D1/4_(]/]6)<l_26)~

From the theory of the Shimura correspondence [Sh73, Theorem 1.9], we see that for
n = Dt* with D square-free and (¢,2M) = 1, we have
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k
Vg () = VB (D) 5 M (21 (230
’ rs=t \/; r r ’
where A(s) is the s-th Hecke eigenvalue of a fixed newform of weight 2k. By Deligne’s
bound, |A(s)| < 7(s) < 7(n) which shows that (7.15) remains valid if D is replaced by
any positive integer n whose square part is coprime with 2M.
Now an arbitrary f(z) with (f, /) =1 is a linear combination ), b;f;(z), where

fi(2) = X py; (n) (4zn) > e (),

{fi, iy =10 (thus >, |bi|* = 1), and the Fourier coefficients py;(n) satisfy the bound
of (7.15). By Cauchy—Schwarz,

|Pf(”)|2 = Z|,0f,-(”)|27

and by Theorem 4.2.1 of [Ra77], the dimension of S}, »

(4M, y) is at most
k+3%
12

[SLy(Z) : To(4M)] < kM,
therefore we conclude the bound (7.2).
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