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Abstract 

Here, we present the structural and dynamic description of CBP-ID4 at atomic resolution. ID4 
is the fourth intrinsically disordered linker of the CREB-Binding Protein (CBP). In spite of the 
largely disordered nature of CBP-ID4, NMR chemical shifts and relaxation measurements 
show a significant degree of α-helix sampling in the protein regions encompassing residues 
2-25 and 101-128 (1852-1875 and 1951-1978 in full-length CBP). Proline residues are 
uniformly distributed along the polypeptide, except for the two α-helical regions, indicating 
that they play an active role in modulating the structural features of this CBP fragment. The 
two helical regions are lacking known functional motifs, suggesting that they represent thus-
far uncharacterized functional modules of CBP. The present work provides novel insights 
regarding the functions of this protein linker, which may exploit its plasticity to modulate the 
relative orientations of neighboring folded domains of CBP and fine tune its interactions with 
a multitude of partners. 
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Introduction 

Large proteins are often composed by several folded domains separated in the primary 
sequence by flexible linkers. While folded domains are generally well characterized at atomic 
resolution, only little information is available for linkers. These protein segments seldom 
crystallize, and they are often quite challenging to be characterized by nuclear magnetic 
resonance (NMR) spectroscopy because of their peculiar amino acid composition and their 
structural and dynamic properties. However, it is unlikely that linkers play passive 
connecting roles only, because they often constitute as much as half of the primary 
sequence of complex proteins. In fact, their amino acid sequences often show functional 
features such as interaction motifs, post-translational modification sites and conservation in 
the primary sequence across species (1, 2). To learn more on the role of these protein 
elements it is important to accomplish their experimental characterization, exploiting 
recently developed NMR tools (3-14). With this in mind we decided to focus on a well-
studied key protein in biological systems, the transcription factor CREB-Binding Protein 
(CBP).  

CBP and its paralog p300 are transcriptional co-regulators that integrate signals from 
numerous signal transduction pathways, and play critical roles in basic cellular processes 
ranging from development and differentiation to DNA repair (15). Their biological function is 
related to their ability to interact with a large number of proteins through multiple protein-
interaction domains as well as to their acetyl-transferase activity. There are seven 
autonomous folded domains in CBP/p300, the 3D structures of which have been determined 
in recent years either by X-ray crystallography or NMR (16-24). Four of them require zinc(II) 
ions in order to adopt a stable fold: the transcriptional-adaptor zinc-finger-1 domain (TAZ1), 
the plant homeodomain (PHD), the zinc-binding domain near the dystrophin WW domain 
(ZZ) and the transcriptional-adaptor zinc-finger-2 domain (TAZ2); other folded domains are 
the KID-binding domain (KIX), the bromodomain and the histone acetyl-transferase domain 
(HAT). Finally, a domain named nuclear-receptor coactivator-binding domain (NCBD) is 
intrinsically disordered, but folds upon binding to its partner(s). 

Regions between CBP folded domains represent more than 50% of the total 2,442 residues 
of the protein; these are predicted to be mostly intrinsically disordered (25). In fact, the 
folded domains listed above are spatially separated by five linkers of different length, 
denoted as CBP-ID# (where ID stands for Intrinsically Disordered and # represents the 
number of the linker), which have not been yet characterized at atomic resolution. Very little 
is known about their structural and functional roles, which may range from maintaining a 
specific distance between the various folded domains to fine-tuning and modulation of 
interaction processes. The second hypothesis is supported by the fact that the primary 
sequence of CBP linkers is well conserved in evolution. 

The amino acid composition of CBP linkers is biased towards disorder-promoting amino 
acids, as typically found in the case of intrinsically disordered proteins (IDPs) (26-28). Overall, 
they contain a high proportion of prolines (16%), glutamines (15%), serines (11%), glycines 
(9%) and alanines (9%). In particular, CBP-ID4 and CBP-ID5 exhibit the most distinctive amino 
acid composition, since almost 40% of their primary sequences is constituted by prolines and 
glutamines. 

In this work we present the characterization by NMR spectroscopy of CBP-ID4, the 207 
residues long linker (CBP residues 1851-2057) located between the TAZ2 and NCBD domains. 
Among all CBP linkers, ID4 is the one containing the highest percentage of proline residues 
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(22%) and it is predicted to be intrinsically disordered, two aspects that make it a challenging 
target for NMR. To obtain its sequence specific assignment we thus used a strategy tailored 
for IDPs, combining 1H and 13C detection and multidimensional experiments (14, 29, 30 and 
references therein), which resulted in the complete NMR characterization of this linker. 

We believe the findings described in the present work will open new frontiers towards a 
deeper understanding of the roles of CBP linkers and represent the demonstration that NMR 
can provide a wealth of information on IDPs difficult to access with other techniques. 

 

Materials and Methods 

Protein expression and purification 

The recombinant vector pET21a-CBP-ID4 containing the human CBP-ID4 native gene was 
transformed into E. Coli BL21 (DE3) for protein expression. For 15N- and 13C,15N-labeled 
protein production, a colony from a freshly transformed plate was selected to inoculate in LB 
medium (50 ml) containing ampicillin and was grown overnight at 37°C and 180 rpm. Cells 
from the overnight LB growths were diluted 1:100 into 4 l of LB medium and grown at 37°C 
with constant agitation at 160 rpm. Once an OD600 of 0.7–0.8 was reached, the cells were 
gently centrifuged at 4500 rpm for 20 min. The pellet was resuspended in 1 l of minimal 
medium (48.5 mM Na2HPO4, 22.0 mM K2HPO4, 8.5 mM NaCl, 0.2 mM CaCl2, 2.0 mM MgSO4, 
1 mg l-1 each of biotin and thiamin, 7.5 mM (15NH4)2SO4 and 11.1 mM glucose/13C6-glucose) 
and grown at 37 °C for 1 hour with constant agitation at 160 rpm, following the Marley’s 
method (31). The cells were induced with 0.5 mM IPTG and allowed to grow for additional 4 
hours at 30°C. The culture was then harvested at 8000 rpm for 20 min and the pellet was 
stored at -20°C. Frozen cells were thawed and suspended in 45 ml of equilibration buffer A 
(50 mM MES, 10 mM EDTA, 20 mM NaCl, pH 5.5). Cells were disrupted by sonication on ice 
(at 80% sonication power) with cycles of 6 s with 4 s delay pulses for 25 min. Lysed cells were 
centrifuged at 40000 rpm for 40 min at 4°C and the supernatant (≈ 40 ml) was warmed at 
80°C for 20 min in order to remove contaminants. This solution was spun at 8000 rpm for 20 
min at 4°C and the supernatant was filtered through a 0.22 μm pore membrane in 
preparation for the purification steps. Cation exchange chromatography was performed on a 
6 ml Resource S column (GE Healthcare) pre-equilibrated with buffer A. A linear gradient 
between buffer A and buffer B (buffer A with 0.5 M NaCl) was applied over 20 min at a flow 
rate of 2.5 ml/min. The CBP-ID4 was eluted with a salt concentration around 300 mM. 
Fractions were analyzed by SDS–PAGE and those containing the target protein were 
concentrated until 2 ml. The sample was further purified by gel filtration on Hiload 16100 
superdex 75 (GE Healthcare) in 20 mM potassium phosphate buffer at pH 6.5, 100 mM NaCl, 
50 μM EDTA. The fractions containing pure CBP-ID4 were concentrated up to 2 ml and 
stored at 4°C for biophysical analysis. Mass spectrometry (MALDI) was performed to confirm 
the molecular mass of purified CBP-ID4.   

 

NMR samples 

All the multidimensional NMR experiments for sequence-specific assignment were 
performed on a sample of 0.6 mM uniformly 13C, 15N labeled human CBP-ID4 in 20 mM 
potassium phosphate buffer, 100 mM KCl at pH 6.5, with 10% D2O added for the lock. 15N 
relaxation experiments were acquired on a 0.5 mM uniformly 15N labeled human CBP-ID4, in 
the same experimental conditions. For all the experiments, 3 mm NMR sample tubes were 
used to reduce the detrimental effects of high salt concentration. 
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NMR data acquisition 

A set of multidimensional 1HN and 13C detected NMR experiments tailored to achieve 
sequence-specific assignment of IDPs was acquired at 283.0 K. 2D CON-IPAP (32, 33), 3D 
(H)CBCACON-IPAP (34), 3D (H)CBCANCO-IPAP (34), 4D (HCA)CON(CA)CON-IPAP (35) and 4D 
(HN)CON(CA)CON-IPAP (35) experiments were acquired at 16.4 T on a Bruker Avance 
spectrometer operating at 700.06 MHz 1H, 176.03 MHz 13C and 70.94 MHz 15N frequencies, 
equipped with a cryogenically cooled probehead optimized for 13C-direct detection. 2D BEST-
TROSY (BT) (11, 36), 3D BT-HNCO (11, 37, 38), 3D BT-HN(CA)CO (11, 38), 3D BT-HNCACB (11, 
38), 3D BT-HN(CO)CACB (11, 38), 3D BT-(H)N(COCA)NH (11) and 3D BT (H)N(CA)NNH (39) 
experiments were performed at 21.1 T on a Bruker Avance spectrometer operating at 
898.57 MHz 1H, 225.95 MHz 13C and 91.05 MHz 15N frequencies, equipped with a 
cryogenically cooled probehead. 5D BT-(H)NCO(CAN)CONH (40) and 5D BT-HN(COCAN)CONH 
(40) experiments were collected at 22.3 T on a Bruker Avance III spectrometer operating at 
950.20 MHz 1H, 238.93 MHz 13C and 96.28 MHz 15N frequencies, equipped with a 
cryogenically cooled probehead. 

Heteronuclear 15N relaxation experiments (41-44) for the measurement of 15N R1, 15N R2 and 
15N-1H NOEs, (CLEANEX-PM)-FHSQC experiments (45) for the estimation of the extent of 
amide proton exchange with the solvent and the 3D HNHA experiment (46) for the 
determination of homonuclear 3JHN-Hα were measured at 283.0 K at 16.4 T on a Bruker Avance 
spectrometer operating at 700.13 MHz 1H, 176.05 MHz 13C and 70.94 MHz 15N frequencies, 
equipped with a cryogenically cooled probehead. 

The temperature dependence of CBP-ID4 was investigated by acquiring a series of 2D BEST-
TROSY and 2D CON-IPAP spectra in the range 238.0-308.0 K, with steps of 5 degrees, at 22.3 
T on a Bruker Avance III spectrometer operating at 950.20 MHz 1H, 238.93 MHz 13C and 
96.28 MHz 15N frequencies, equipped with a cryogenically cooled probehead. 

The parameters used for the acquisition of all the experiments are reported in the 
Supporting Material (Tables S1-S5). All the data sets were acquired using Bruker TopSpin 1.3 
or 3.1 software. 3/4/5D experiments for the sequence-specific assignment were performed 
using on-grid non-uniform sampling (NUS). The on-grid ‘‘Poisson disk’’ sampling scheme (47) 
was chosen to generate the time schedules with the RSPack program [J. Stanek, A. 
Zawadzka-Kazimierczuk, unpublished]. The distribution was relaxation-optimized, i.e. the 

density of points was decaying according to the Gaussian distribution exp(-t2/2), with 

=0.5. 

 

NMR data processing and analysis 

Conventionally sampled NMR data sets were processed using Bruker TopSpin 1.3 software. 
Instead, when NUS was employed, the NMR data were converted with nmrPipe (48) and 
then processed using either the Multidimensional Fourier Transform (MFT) algorithm (for 3D 
data sets) or the Sparse MFT (SMFT) algorithm (for 4/5D data sets), respectively 
implemented in ToASTD (49) and reduced (50, 51) programs. Both programs are available at 
http://nmr.cent3.uw.edu.pl.  

CARA (52) and Sparky (53) were used to analyze 3D and 4/5D spectra, respectively, whereas 
CcpNmr Analysis (54) was employed to analyze 15N relaxation data. 
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The secondary structure propensity from the heteronuclear chemical shifts was determined 
by using the neighbor corrected structural propensity calculator (ncSPC) tool (55), available 
online at http://nmr.chem.rug.nl. The Tamiola, Acar and Mulder random coil chemical shift 
library (56) was chosen for the analysis. 

Theoretical helical propensities were calculated using the Agadir algorithm (57-61), available 
online at http://agadir.crg.es. For the calculation the pH was set to 6.5, the temperature to 
283.0 K and the ionic strength to 0.1 M. 

Intrinsic protein disorder was predicted by using IUPred (62) and PONDR-FIT (63) tools, 
available at http://iupred.enzim.hu and http://www.disprot.org. 

For the conservation analysis, a comprehensive data set of 39 experimentally validated 
homologous amino acid sequences was assembled by performing a PSI-BLAST (64) against 
the non-redundant protein data set of NCBI. The query sequence was the ID4 segment of the 
human CBP protein (residues 1852-2057) [UniProt ID: Q92793], and the retrieved sequences 
covered all major vertebrate taxonomic groups from mammals to fish. The multiple 
sequence alignment was generated using MAFFT (65) and then used as input for the 
sequence- and disorder conservation analysis. We used the local version of the DisCons tool 
to analyze the multiple sequence alignment (66). DisCons was used with default parameters, 
namely predicting disorder with IUPred, and quantifying the sequence conservation with 
Jensen-Shannon divergence; the maximum allowed fraction of gaps for a position was set to 
0.6. 

The presence of linear motifs and functional sites was investigated by using the Eukaryotic 
Linear Motif (ELM) computational biology resource (67), available online at 
http://elm.eu.org. 

Potential serine, threonine and tyrosine phosphorylation sites were predicted exploiting 
NetPhos 2.0 (68), available online at http://www.cbs.dtu.dk. Potential kinase specific 
phosphorylation sites were predicted by using using NetPhosK 1.0 (69), available online at 
http://www.cbs.dtu.dk.  

To obtain the ensemble description of the protein linker under investigation 10,000 
conformers were generated using the program flexible-meccano (70), available online at 
http://www.ibs.fr. The SSP score calculated from experimentally measured chemical shifts 
was used as input in the calculation to allow also the generation of conformers whose 
backbone dihedral angles deviate substantially from those typically found in pure random 
coils. The ensemble and the underlying data were deposited in the Protein Ensemble 
Database (http://pedb.vib.be, 71) under the accession ID PED5AAE. 

 

Results and Discussion 

NMR sequence-specific resonances assignment 

The 2D BEST-TROSY and 2D CON-IPAP fingerprint spectra of CBP-ID4 are reported in Figure 
1. The 1H-15N correlation spectrum exhibits all the peculiar NMR features of an IDP, namely 
the reduced chemical shift dispersion particularly pronounced in the 1H dimension, and the 
high degree of signal crowding. The 2D CON-IPAP spectrum benefits from the larger spectral 
width in the 15N dimension, which includes signals due to proline residues nitrogen nuclei, 
and the fact that the experiment provides inter-residues correlations, which are more 
resolved with respect to intra-residue ones (72). A series of triple-resonance 3/4/5D NMR 
experiments (see Materials and Methods Section) specifically designed for IDPs, exploiting 
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either 1HN or 13C detection, was acquired. Non-uniform sampling (NUS) (73) was exploited to 
reduce the experimental time while preserving high spectral resolution in the indirect 
dimensions (74). 

The 13C-detected 3D and 4D spectra (34, 35) provided the key information to achieve the 
sequence-specific assignment of this proline-rich IDP. The 3D BEST-TROSY (BT) triple-
resonance experiments (11) were acquired to obtain the complementary information 
needed to complete the assignment, further supported by the 5D BT-(H)NCO(CAN)CONH 
and 5D BT-HN(COCAN)CONH experiments (40), used to resolve a few ambiguities and to 
confirm the chemical shift assignment obtained with the 3D spectra. 

This set of spectra tailored for the study of IDPs made it possible to assign the resonances 
belonging to all HN, N, C′, Cα and Cβ nuclei. The chemical shift assignment of CBP-ID4, both at 
283.0 and 308.0 K, is deposited in the BioMagResBank (BMRB, http://www.bmrb.wisc.edu,  
(75), entries 26616 and 26639. 

 

NMR characterization 

The presence of secondary structure propensity within CBP-ID4 was investigated by 
comparing experimentally measured heteronuclear chemical shifts (N, C′, Cα and Cβ 
nuclei) to the corresponding random coil values (55). The obtained differences (Figure 2) are 
distributed around zero, consistently with the disordered nature of CBP-ID4. However, two 
regions, encompassing residues 2-25 and 101-128, exhibit significantly positive values 
suggesting a high propensity to form α-helices in these regions.  

The 3JHN-Hα coupling constants (46) shown in Figure 3, provide complementary information to 
detect contingent residual structural propensity along the polypeptide chain, and are 
therefore often used in structural characterizations of chemically unfolded or intrinsically 
disordered proteins (76-80). The obtained average value of about 7 Hz is similar to values 
obtained for flexible proteins and other disordered peptides (79, 80). Only two protein 
regions (residues 13-16 and 106-118) substantially deviate from this trend, corresponding to 
those of highest predicted α-helical propensity. Therefore, conformations with values for the 
angle φ towards 60° are increasingly being populated in these protein regions. Interestingly, 
also residues 92-99 show significantly lower values, suggesting that a certain amount of 
structural organization may be present there too, as revealed by the SSP analysis (Figure 2). 
From 3JHN-Hα values alone it is not possible to conclude whether this include canonical α-
helical or polyproline type II (PPII) structures (81, 82). 

Backbone dynamics of CBP-ID4 was investigated through the measurement of 15N R1, 15N R2 
relaxation rates and heteronuclear 15N-1H NOE values. Relaxation parameters, determined 
for the majority of the assigned cross-peaks in the 2D 1H-15N HSQC spectrum, are reported in 
Figure 4. Considerably higher 15N R2 and 15N-1H NOE values are observed in the regions 
encompassing residues 2-25 and 101-128, confirming a reduced flexibility in these regions 
likely related to the observed α-helical propensity (Figure 2). Interestingly, the magnitude of 
the 15N R2 values indicates that the transient α-helix located between residues 101-128 is 
more rigid than that comprising residues 2-25. 15N-1H NOE values reveal that the fragments 
separating the two partially populated α-helices are highly flexible, with the first fragment 
(residues 26-103) more flexible than the second one (residues 129-207). 
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Local solvent accessibility was investigated by monitoring H2O exchange processes for 
backbone amide protons (45). The results, reported in Figure 5, show that exchange effects 
are overall very pronounced, becoming operative for the majority of the residues already 
with 16 ms of mixing time (τm). Notably, the two protein regions exhibiting significant α-
helical propensity, in particular the one encompassing residues 101-128, which is more rigid 
by 15N R2 measurements, appears to exchange less with the solvent; on the contrary, the 
other residues of the polypeptide chain are characterized by high-solvent exchange effect. 

The temperature dependence of CBP-ID4 was investigated by acquiring a series of 2D BEST-
TROSY and 2D CON-IPAP spectra in the range 283.0-308.0 K (shown in Figures S2 and S3 in 
the Supporting Material). These spectra enabled the transfer of the resonances assignment 
obtained at 283.0 K to the other temperatures by following the chemical shift changes of the 
cross-peaks with temperature. A 3D CBCACON experiment was acquired to confirm the 
signals assignment at 308.0 K.  
In Figure 6a the difference of cross-peak intensities in the 2D BEST-TROSY NMR spectra 
acquired at 308.0 and 283.0 K is reported. The majority of cross-peaks become weaker or 
broadened with increasing temperature as a consequence of the higher rate of amide 
proton exchange with the solvent protons. Instead, the signals belonging to residues 101-
128, those exhibiting a significant propensity to form α-helix, become more intense at high 
temperature. This evidence suggests that this protein region results less affected by 
chemical exchange processes and benefits from an improved correlation time resulting from 
the faster rotational tumbling. Interestingly, an opposite behavior is observed in the other 
protein region characterized by high α-helix propensity (residues 2-25): it is destabilized by 
increasing temperature and experiences a decrease in signal intensities similar to that of the 
other unstructured regions of the protein.  
Correlations between amide proton temperature coefficients (ΔδHN/ΔT) and hydrogen 
bonds (83, 84) were also investigated (Figure 6b). Less negative temperature coefficients are 
clustered in the two protein regions exhibiting higher propensity to form α-helix, in 
agreement with the results of the other analysis. In particular, in the case of the transient α-
helix encompassing residues 101-128, the great majority of amide proton temperature 
coefficients result less negative than -4.6 ppb/K, a value considered the threshold below 
which the presence of intramolecular hydrogen bonds can be excluded with a predictive 
value of 85% (84). Therefore, transient intra-molecular hydrogen bonds are likely to be 
present in this protein region, which again appears more structured than the region 
comprising residues 2-25. 

 

Structural and dynamic properties of CPB-ID4 

The overall picture resulting from the high resolution experimental characterization of the 
structural and dynamic properties of CBP-ID4 reveals two well-defined partially populated 
helical fragments, termed helix I and helix II, which display properties significantly different 
from one another, separated by segments characterized by high local flexibility. It is 
interesting to note that prolines, the most abundant amino acid in CBP-ID4 (22%), are 
distributed quite uniformly throughout the protein primary sequence (Figure 1a) with the 
exception of the two parts of the protein exhibiting α-helical propensity (Figure 2). Proline 
residues may be selected against in the α-helical segments because of their helix-breaking 
properties: their peculiar side chain disrupts the H-bond network and interferes with the 
backbone helical packing of adjacent residues. Furthermore, it can be noted that 7 proline 
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residues are clustered in the region immediately preceding the inner transient helix II, 
suggesting that they are involved in its stabilization. In fact, it has been reported that 
prolines present in proximity of the so-called pre-structured motifs (PreSMos) (85) of IDPs 
are very important in promoting and delimiting the PreSMos themselves (86). Therefore, the 
prolines flanking helix II (residues 101-128) seem to play a specific structural role (87). This 
would also explain why this partially structured protein region appears to be more stable 
than that comprising residues 2-25, which in the full-length protein is preceded by a 
structured domain but is here unrestrained.  

The degree of α-helical propensity could have an important role in providing specific 
patterns for partner recognition through a specific surface provided by the helix itself, as 
shown in the literature in several different examples (25, 88, 89). On the other hand, the 
transition from a random-coil, extended conformation of the protein backbone to partially 
formed helices represents the more drastic local change for backbone dihedral angles, with 
the helical conformation constituting the most compact one (1.5 Å shortening for each 
amino acid part of the helix with respect to an elongated conformation). The presence of the 
secondary structure element can also reduce the degree of freedom of the polypeptide, 
which cannot freely bend to form compact structures. Therefore, the extent of local helical 
propensity could be a way to modulate the overall length of a specific polypeptide fragment 
with local cooperative changes in backbone dihedral angles. In this way, the insertion of a 
partially populated helical segment in between largely random coil backbone fragments, 
such as observed for the case of CBP-ID4, could provide a mean to modulate the overall 
length and orientation of the linker itself.  

To visualize the possible conformers populating the ensemble of structures in dynamic 
equilibrium in solution, the secondary structure propensities determined experimentally for 
CBP-ID4 were used as input to calculate an ensemble of conformers through the program 
Flexible-Meccano (70), using the statistical coil potential proposed for IDPs. The computed 
ensemble shows a great variability in the overall radius of gyration (Figure S4 in the 
Supplementary Material), in agreement with the idea that flexible linkers can indeed fine-
modulate the relative distance between folded units (PED ID PED5AAE). The obtained 
structures can be inspected locally to evaluate the properties of the partially populated 
helical conformers. In the present case, the two regions characterized by secondary 
structural propensities feature quite different composition in terms of the constituent amino 
acids, which has an impact on the properties of the partially populated helices. In particular, 
helix I (2-25) is characterized by the presence of several charged amino acids, resulting in an 
overall positive electrostatic potential (Figure 7e), with a quite peculiar methionine-rich 
patch on one side (3 methionine residues quite close to each other on the helix surface, 
Figure 7d). Instead, helix II (101-128) has an overall hydrophobic surface (Figure 7i) with 
some charged residues (three positive arginine residues and three negative glutamic acids 
residues, Figure 7h). Therefore, the two partially populated helical elements provide 
significantly different modules for protein-protein interactions. Both helices share a large 
number of polar amino acids, with a predominance of glutamine residues, which may 
promote the stability of these two segments. 

Although CBP-ID4 has never been characterized in detail before, the crystal structure of the 
TAZ2 domain of human p300, paralogue of CBP, was solved earlier (19). The construct used 
in that study, in addition to the TAZ2 domain, included at its C-terminus 21 residues of the 
subsequent linker, which is homologous to the initial part of CBP-ID4 (16/21 residues are 
conserved in the two protein sequences). Specifically, these residues correspond to residues 
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1-21 of CBP-ID4, identified as exhibiting significant α-helical propensity. Interestingly, in the 
crystal structure these residues assume a α-helix conformation, which extends outside the 
globular structure of TAZ2 domain. Furthermore, it has been reported that such α-helix 
contributes actively to the binding of p300 to the transcription factor Myocyte Enhancer 
Factor 2 (MEF2) (90). This observation fits with the general notion that IDPs often function 
by binding to partner molecules via structural elements that are dynamically sampled in the 
disordered ensemble (91). Such motives are conserved structural/functional elements of 
IDPs, and their presence can be concluded from the structural propensity of certain regions 
of the IDP chain. 

 

Prediction of functional regions within CBP-ID4 

It is interesting to compare the picture resulting from the experimental characterization of 
CBP-ID4 with all the information that can be predicted on the basis of the primary sequence, 
starting from the local propensities for local order/disorder, the local secondary structure, all 
the way to interaction motifs or post-translational modification sites.  

The significant local propensity for secondary structure that was observed in the ensemble 
model can hint at the presence of binding motifs within the helical regions, as often seen in 
IDPs (95, 96). Furthermore, the potential functional importance of the two helical regions 
should also manifest themselves in their sequence conservation. Thus, we have collected 
and aligned 39 CBP sequences and used the DisCons online tool to quantify the conservation 
of the amino acid sequence and of the structural disorder (66) (Figure 8 and Figure S5). The 
position-specific conservation scores of the amino acid sequence of regions 2-25 and 101-
128 are consistently high, and in fact higher than the conservation of disorder, which is 
suggestive of their functional importance and might indicate that these segments act as 
molecular recognition features, which are known to have higher sequence conservation and 
lower disorder with respect to their flanking regions (66). 

We have used the Eukaryotic Linear Motif (ELM) database (67) to identify the presence of 
Short Linear Motifs (SLiMs) in the sequence, since SLiMs are known to be involved in 
recognition and targeting processes (97). By definition, they are highly specific short 
structural/functional elements of 3-10 amino acids, mostly located in intrinsically disordered 
regions of proteins, which are able to mediate protein-protein interactions without the need 
of a stable three-dimensional structure. Remarkably, more than 95% of the SLiMs identified 
by ELM are located in the most disordered regions of CBP-ID4 (Figure S6a in the 
Supplementary Material). 

The position of potential serine, threonine and tyrosine phosphorylation sites of CBP-ID4 
were also identified using NetPhos 2.0 (68), an artificial neuronal network-based method for 
predicting phosphorylation sites. The importance of post-translational modification (PTM) 
sites derives from their frequent involvement in the modulation of protein functions (98-
101). The location of the recognized sites (Figure S6b in the Supplementary Material), 
similarly to SLiMs, are distributed exclusively along the most flexible regions of the protein, 
and are excluded from the two α-helical segments. In particular, several identified 
phosphorylation sites are located in the region 26-103 which, by 15N-1H NOE analysis, is  the 
most flexible region of the entire protein (Figure 4c). Therefore, we can infer that the 
negligible secondary structure content of this protein region may facilitate the interaction 
between the phosphorylation sites and the corresponding phosphotransferases (102). 
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Based on the characterization of CBP-ID4 presented here, which shows that two parts of the 
polypeptide chain have an intrinsic propensity to adopt a helical conformation in solution, 
one might speculate on the active role played by this protein regions in the communication 
between different parts of complex proteins or between different partners. It is feasible that 
both transient α-helices identified in CBP-ID4 may promote the interactions between CBP 
and its partners. In addition, the highly flexible parts linking the two partially populated 
helices may provide complementary functional advantages through their largely exposed 
and flexible protein backbones. 

 

Conclusions 

The NMR description of CBP-ID4 presented here reveals very heterogeneous structural and 
dynamic properties of this “linker”, which combines a great extent of structural disorder 
together with two protein regions characterized by significant α-helical propensities. These 
findings lead to a reexamination of the concept of protein linker, traditionally considered as 
mere connection between folded domains, which instead may modulate and fine-tune 
protein function through an heterogeneous structural disorder. This study shows that the 
recently developed NMR methods allow to overcome potential limitations deriving from the 
peculiar properties of linkers (high proline content, extensive spectral overlap, fast amide 
protons exchange) and opens new possibilities for the characterization at atomic level of 
PTMs and of intra- and inter-molecular interactions of CBP-ID4, starting with the partners 
known to interact with adjacent folded domains of CBP.  
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Captions to the Figures 

 

Figure 1. Amino acid sequence and fingerprint spectra of CBP-ID4. a) primary sequence of 

CBP-ID4 in which proline residues are highlighted in bold; b) 2D BEST-TROSY and c) 2D CON-

IPAP spectra of CBP-ID4. Both spectra are reported with the same Hz/cm ratio in the direct 

dimension. 

 

Figure 2. Secondary structure propensity score obtained from experimentally measured N, 

C′, Cα and Cβ chemical shifts. Positive and negative values correspond to α-helical and β-

sheet propensities, respectively. The two protein regions which exhibit significant propensity 

for α-helix are colored in dark gray. Proline residues are highlighted along the protein 

sequence as black triangles on the top and result clustered in the most disordered regions of 

the protein. 

 

Figure 3. 3JHN-Hα coupling constants for the intrinsically disordered protein domain CBP-ID4. 

Symbols in the two protein regions characterized by high propensity for α-helix are colored 

in dark gray. 

 

Figure 4. Dynamic characterization of CBP-ID4. Bars in the two protein regions characterized 

by higher propensity for α-helix are colored in dark gray. a) 15N R1 relaxation rates; b) 15N 

R2 relaxation rates; c) 15N-1H NOEs. All 15N relaxation measurements were carried out at 16.4 

T at 283.0 K. 

 

Figure 5. Extent of amide proton exchange with the solvent. The residues belonging to the 

two protein regions characterized by high propensity for α-helix are colored in dark gray. 

Iτm/IRef values measured through the (CLEANEX-PM)-FHSQC experiments are reported as a 

function of residue number for two different mixing-times, namely 16 ms (filled dots) and 40 

ms (empty dots). Error bars have been removed to facilitate the comparison and are 

provided as Supporting Material (Figure S1).  

 

Figure 6. Temperature dependence of CBP-ID4. The values for the two protein regions 

experimentally identified as exhibiting high propensity to form α-helix are colored in dark 

gray. a) cross-peak intensity changes in the 2D BEST-TROSY spectrum acquired at 308.0 and 

283.0 K; b) temperature coefficients (ΔδHN/ΔT) reported as a function of residue number. 
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The black dashed line at -4.6 ppb/K represents the threshold to discriminate between intra- 

and inter-molecular hydrogen bonds (with a predictive value of 85%). 

 

Figure 7. Representative ensemble of conformers for CBP-ID4. a) Location of the helical 

segments within the primary sequence;  glutamine, arginine and methionine residues are 

shown in green, blue and gold. b) Subset of conformers obtained superimposing residues of 

helix I (residues 2-25). All the helical segments are shown in blue. c) Close-up of a set of 

superimposed helix I with amino acids atoms represented as sticks. d) Helix I with amino 

acids atoms represented as spheres; glutamine, arginine and methionine residues are shown 

in green, blue and gold. e) Electrostatic potential on the surface of helix I; positively charged, 

negatively charged, and neutral amino acids are represented in blue, red, and white. Panels 

f-i) contain similar information of panels b-e) for helix II (residues 101-128). The backbone 

models were generated with flexible-meccano (70), while side-chains and hydrogen atoms 

were added by using Molmol 2.0 (92); the energy of the models was minimized using 

Chimera (93) and the electrostatic potentials were computed by using APBS (94). 

 

Figure 8. Evolutionary conservation of the amino acidic sequence (black) and disorder 

tendency (gray) of CBP-ID4. The background of the plot corresponding to the two protein 

regions characterized by high propensity for α-helix is colored in light gray. 

  



14 
 

References 

 

 1.  Habchi, J., P. Tompa, S. Longhi, and V. N. Uversky. 2014. Introducing protein intrinsic 
disorder. Chem. Rev. 114: 6561-6588. 

 2.  van der Lee, R., M. Buljan, B. Lang, R. J. Weatheritt, G. W. Daughdrill, A. K. Dunker, M. 
Fuxreiter, J. Gough, J. Gsponer, D. T. Jones, P. M. Kim, R. W. Kriwacki, C. J. Oldfield, R. 
V. Pappu, P. Tompa, V. N. Uversky, P. E. Wright, and M. M. Babu. 2014. Classification 
of intrinsically disordered regions and proteins. Chem. Rev. 114: 6589-6631. 

 3.  Hiller, S., C. Wasmer, G. Wider, and K. Wüthrich. 2007. Sequence-specific resonance 
assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J. Am. 
Chem. Soc. 129: 10823-10828. 

 4.  Mittag, T., and J. Forman-Kay. 2007. Atomic-level characterization of disordered 
protein ensembles. Curr. Opin. Struct. Biol. 17: 3-14. 

 5.  Hsu, S. T., C. W. Bertoncini, and C. M. Dobson. 2009. Use of protonless NMR 
spectroscopy to alleviate the loss of information resulting from exchange-
broadening. J. Am. Chem. Soc. 131: 7222-7223. 

 6.  Narayanan, R. L., H. N. Duerr, S. Bilbow, J. Biernat, E. Mendelkow, and M. 
Zweckstetter. 2010. Automatic Assignment of the Intrinsically Disordered Protein Tau 
with 441-Residues. J. Am. Chem. Soc. 132: 11906-11907. 

 7.  Nováček, J., A. Zawadzka-Kazimierczuk, V. Papoušková, L. Židek, H. Sanderová, L. 
Krásný, W. Koźmiński, and V. Sklenar. 2011. 5D 13C-detected experiments for 
backbone assignment of unstructured proteins with a very low signal dispersion. J. 
Biomol. NMR 50: 1-11. 

 8.  Felli, I. C., and R. Pierattelli. 2012. Recent progress in NMR spectroscopy: towards the 
study of intrinsically disordered proteins of increasing size and complexity. IUBMB 
Life 64: 473-481. 

 9.  Harbison, N. W., S. Bhattacharya, and D. Eliezer. 2012. Assigning backbone NMR 
resonances for full length tau isoforms: efficient compromise between manual 
assignments and reduced dimensionality. Plos ONE 7: e34679. 

 10.  Zawadzka-Kazimierczuk, A., W. Koźmiński, H. Sanderová, and L. Krásný. 2012. High 
dimensional and high resolution pulse seqeunces for backbone resonance 
assignment of intrinsically disordered proteins. J. Biomol. NMR 52: 329-337. 

 11.  Solyom, Z., M. Schwarten, L. Geist, R. Konrat, D. Willbold, and B. Brutscher. 2013. 
BEST-TROSY experiments for time-efficient sequential resonance assignment of large 
disordered proteins. J. Biomol. NMR 55: 311-321. 

 12.  Parigi, G., N. Rezaei-Ghaleh, A. Giachetti, S. Becker, C. Fernandez, M. Blackledge, C. 
Griesinger, M. Zweckstetter, and C. Luchinat. 2014. Long-Range Correlated Dynamics 
in Intrinsically Disordered Proteins. J. Am. Chem. Soc. 136: 16201-16209. 

 13.  Jensen, M. R., M. Zweckstetter, J. R. Huang, and M. Blackledge. 2014. Exploring free-
energy landscapes of intrinsically disordered proteins at atomic resolution using NMR 
spectroscopy. Chem. Rev. 114: 6632-6660. 

 14.  Konrat, R. 2014. NMR contributions to structural dynamics studies of intrinsically 
disordered proteins. J. Magn. Reson. 241: 74-85. 



15 
 

 15.  Goodman, R. H., and S. Smolik. 2000. CBP/p300 in cell growth, transformation, and 
development. Genes Dev. 14: 1553-1577. 

 16.  Legge, G. B., M. A. Martinez-Yamout, D. M. Hambly, T. Trinh, B. M. Lee, H. J. Dyson, 
and P. E. Wright. 2004. ZZ domain of CBP: an unusual zinc finger fold in a protein 
interaction module. J. Mol. Biol. 343: 1081-1093. 

 17.  De Guzman, R. N., J. M. Wojciak, M. A. Martinez-Yamout, H. J. Dyson, and P. E. 
Wright. 2005. CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding. 
Biochemistry 44: 490-497. 

 18.  Liu, X., L. Wang, K. Zhao, P. R. Thompson, Y. Hwang, R. Marmorstein, and P. A. Cole. 
2008. The structural basis of protein acetylation by the p300/CBP transcriptional 
coactivator. Nature 451: 846-850. 

 19.  Miller, M., Z. Dauter, S. Cherry, J. E. Tropea, and A. Wlodawer. 2009. Structure of the 
Taz2 domain of p300: insights into ligand binding. Acta Crystallogr. D Biol. Crystallogr. 
65: 1301-1308. 

 20.  Kjaergaard, M., K. Teilum, and F. M. Poulsen. 2010. Conformational selection in the 
molten globule state of the nuclear coactivator binding domain of CBP. Proc. Natl. 
Acad. Sci. U. S. A. 107: 12535-12540. 

 21.  Lee, C. W., M. A. Martinez-Yamout, H. J. Dyson, and P. E. Wright. 2010. Structure of 
the p53 transactivation domain in complex with the nuclear receptor coactivator 
binding domain of CREB binding protein. Biochemistry 49: 9964-9971. 

 22.  Wang, F., C. B. Marshall, K. Yamamoto, G. Y. Li, G. M. Gasmi-Seabrook, H. Okada, T. 
W. Mark, and M. Ikura. 2012. Structures of KIX domain of CBP in complex with two 
FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator 
recruitment. Proc. Natl. Acad. Sci. U. S. A. 109: 6078-6083. 

 23.  Filippakopoulos, P., S. Picaud, M. Mangos, T. Keates, J. P. Lambert, D. Barsyte-
Lovejoy, I. Felletar, R. Volkmer, S. Müller, T. Pawson, A. C. Gingras, C. H. Arrowsmith, 
and S. Knapp. 2012. Histone recognition and large-scale structural analysis of the 
human bromodomain family. Cell 149: 214-231. 

 24.  Plotnikov, A. N., S. Yang, T. J. Zhou, E. Rusinova, A. Frasca, and M. M. Zhou. 2014. 
Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD 
finger module of human transcriptional coactivator CBP. Structure 22: 353-360. 

 25.  Dyson, H. J., and P. E. Wright. 2005. Intrinsically unstructured proteins and their 
functions. Nat. Rev. Mol. Cell Biol. 6: 197-208. 

 26.  Dunker, A. K., J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero, J. S. Oh, C. M. 
Ratliff, K. W. Hipps, J. Ausio, M. S. Nissen, R. Reeves, C. Kang, C. R. Kissinger, R. W. 
Bailey, M. D. Griswold, W. Chiu, and E. C. Garner. 2001. Intrinsically disordered 
protein. J. Mol. Graph. Model 19: 26-59. 

 27.  Vucetic, S., C. J. Brown, A. K. Dunker, and Z. Obradovic. 2003. Flavors of protein 
disorder. Proteins 52: 573-584. 

 28.  Hansen, J. C., X. Lu, E. D. Ross, and R. W. Woody. 2006. Intrinsic protein disorder, 
amino acid composition, and histone terminal domains. J. Biol. Chem. 281: 1853-
1856. 

 29.  Felli, I. C., and R. Pierattelli. 2014. Novel methods based on 13C detection to study 
intrinsically disordered proteins. J. Magn. Reson. 241: 115-125. 



16 
 

 30.  Nováček, J., L. Zídek, and V. Sklenar. 2014. Toward optimal-resolution NMR of 
intrinsically disordered proteins. J. Magn. Reson. 241: 41-52. 

 31.  Marley, J., M. Lu, and C. Bracken. 2001. A method for efficient isotopic labeling of 
recombinant proteins. J. Biomol. NMR 20: 71-75. 

 32.  Bermel, W., I. Bertini, L. Duma, L. Emsley, I. C. Felli, R. Pierattelli, and P. R. Vasos. 
2005. Complete assignment of heteronuclear protein resonances by protonless NMR 
spectroscopy. Angew. Chem. Int. Ed. 44: 3089-3092. 

 33.  Bermel, W., I. Bertini, I. C. Felli, and R. Pierattelli. 2009. Speeding up 13C direct 
detection Biomolecular NMR experiments. J. Am. Chem. Soc. 131: 15339-15345. 

 34.  Bermel, W., I. Bertini, L. Gonnelli, I. C. Felli, W. Koźmiński, A. Piai, R. Pierattelli, and J. 
Stanek. 2012. Speeding up sequence specific assignment of IDPs. J. Biomol. NMR 53: 
293-301. 

 35.  Bermel, W., I. C. Felli, L. Gonnelli, W. Koźmiński, A. Piai, R. Pierattelli, and A. 
Zawadzka-Kazimierczuk. 2013. High-dimensionality 13C direct-detected NMR 
experiments for the automatic assignment of intrinsically disordered proteins. J. 
Biomol. NMR 57: 353-361. 

 36.  Pervushin, K., B. Vogeli, and A. Eletsky. 2002. Longitudinal (1)H relaxation 
optimization in TROSY NMR spectroscopy. J. Am. Chem. Soc. 124: 12898-12902. 

 37.  Salzmann, M., K. Pervushin, G. Wider, H. Senn, and K. Wüthrich. 1998. TROSY in 
triple-resonance experiments: new perspectives for sequential NMR assignment of 
large proteins. Proc. Natl. Acad. Sci. U. S. A. 95: 13585-13590. 

 38.  Lescop, E., P. Schanda, and B. Brutscher. 2007. A set of BEST triple resonance 
experiments for time-optimized protein resonance assignment. J. Magn. Reson. 187: 
163-169. 

 39.  Weisemann, R., H. Rüterjans, and W. Bermel. 1993. 3D triple-resonance NMR 
techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-
labelled proteins. J. Biomol. NMR 3: 113-120. 

 40.  Piai, A., T. Hošek, L. Gonnelli, A. Zawadzka-Kazimierczuk, W. Koźmiński, B. Brutscher, 
W. Bermel, R. Pierattelli, and I. C. Felli. 2014. "CON-CON" assignment strategy for 
highly flexible intrinsically disordered proteins. J. Biomol. NMR 60: 209-218. 

 41.  Barbato, G., M. Ikura, L. E. Kay, R. W. Pastor, and A. Bax. 1992. Backbone dynamics of 
calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR 
spectroscopy; the central helix is flexible. Biochemistry 31: 5269-5278. 

 42.  Farrow, N. A., R. Muhandiram, A. U. Singer, S. M. Pascal, C. M. Kay, G. Gish, S. E. 
Shoelson, T. Pawson, J. D. Forman-Kay, and L. E. Kay. 1994. Backbone dynamics of a 
free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR 
relaxation. Biochemistry 33: 5984-6003. 

 43.  Peng, J. W., and G. Wagner. 1992. Mapping of spectral density function using 
heteronuclear NMR relaxation measurements. J. Magn. Reson. 98: 308-332. 

 44.  Peng, J. W., and G. Wagner. 1994. Investigation of protein motions via relaxation 
measurements. Methods Enzymol. 239: 563-596. 

 45.  Hwang, T. L., P. C. M. Van Zijl, and S. Mori. 1998. Accurate quantification of water-
amide proton exchange rates using the Phase-Modulated CLEAN chemical EXchange 



17 
 

(CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J. Biomol. 
NMR 11: 221-226. 

 46.  Vuister, G. W., and A. Bax. 1993. Quantitative J correlation: a new approach for 
measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched 
proteins. J. Am. Chem. Soc. 115: 7772-7777. 

 47.  Kazimierczuk, K., A. Zawadzka, and W. Koźmiński. 2008. Optimization of random time 
domain sampling in multidimensional NMR. J. Magn. Reson. 192: 123-130. 

 48.  Delaglio, F., S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax. 1995. NMRPipe: a 
multidimensional spectral processing system based on UNIX Pipes. J. Biomol. NMR 6: 
277-293. 

 49.  Kazimierczuk, K., A. Zawadzka, W. Koźmiński, and I. Zhukov. 2006. Random sampling 
of evolution time space and Fourier transform processing. J. Biomol. NMR 36: 157-
168. 

 50.  Kazimierczuk, K., A. Zawadzka, and W. Koźmiński. 2009. Narrow peaks and high 
dimensionalities: Exploiting the advantages of random sampling. J. Magn. Reson. 197: 
219-228. 

 51.  Kazimierczuk, K., A. Zawadzka-Kazimierczuk, and W. Koźmiński. 2010. Non-uniform 
frequency domain for optimal exploitation of non-uniform sampling. J. Magn. Reson. 
205: 286-292. 

 52.  Keller, R. L. J. 2004. The Computer Aided Resonance Assignment Tutorial, Cantina 
Verlag. 

 53.  Goddard, T. D., D. G. Kneller, SPARKY 3, University of California, San Francisco. 

 54.  Vranken, W. F., W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon, Llinas M, E. L. Ulrich, J. 
L. Markley, J. Ionides, and E. D. Laue. 2005. The CCPN data model for NMR 
spectrooscopy: development of a software pipeline. Proteins: Struct. , Funct. , Bioinf. 
59: 687-696. 

 55.  Tamiola, K., and F. A. Mulder. 2012. Using NMR chemical shifts to calculate the 
propensity for structural order and disorder in proteins. Biochem. Soc. Trans. 40: 
1014-1020. 

 56.  Tamiola, K., B. Acar, and F. A. A. Mulder. 2010. Sequence-Specific Random Coil 
Chemical Shifts of Intrinsically Disordered Proteins. J. Am. Chem. Soc. 132: 18000-
18003. 

 57.  Muñoz, V., and L. Serrano. 1994. Elucidating the folding problem of helical peptides 
using empirical parameters. Nat. Struct. Biol. 1: 399-409. 

 58.  Muñoz, V., and L. Serrano. 1995. Elucidating the folding problem of helical peptides 
using empirical parameters. II. Helix macrodipole effects and rational modification of 
the helical content of natural peptides. J. Mol. Biol. 245: 275-296. 

 59.  Muñoz, V., and L. Serrano. 1995. Elucidating the folding problem of helical peptides 
using empirical parameters. III. Temperature and pH dependence. J. Mol. Biol. 245: 
297-308. 

 60.  Muñoz, V., and L. Serrano. 1997. Development of the multiple sequence 
approximation within the AGADIR model of alpha-helix formation: comparison with 
Zimm-Bragg and Lifson-Roig formalisms. Biopolymers 41: 495-509. 



18 
 

 61.  Lacroix, E., A. R. Viguera, and L. Serrano. 1998. Elucidating the folding problem of 
alpha-helices: local motifs, long-range electrostatics, ionic-strength dependence and 
prediction of NMR parameters. J. Mol. Biol. 284: 173-191. 

 62.  Dosztanyi, Z., V. Csizmok, P. Tompa, and I. Simon. 2005. IUPred: web server for the 
prediction of intrinsically unstructured regions of proteins based on estimated energy 
content. Bioinformatics 21: 3433-3434. 

 63.  Xue, B., R. L. Jr. Dunbrack, R. W. Williams, A. K. Dunker, and V. Uversky. 2010. 
PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim Biophys 
Acta 1804: 996-1010. 

 64.  Camacho, C., G. Couloris, V. Avagyan, J. Papadopoulos, K. Bealer, and T. L. Madden. 
2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. 

 65.  Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772-780. 

 66.  Varadi, M., M. Guharoy, F. Zsolyomi, and P. Tompa. 2015. DisCons: a novel tool to 
quantify and classify evolutionary conservation of intrinsic protein disorder. BMC 
Bioinformatics 16: 153. 

 67.  Dinkel, H., K. Van Roey, S. Michael, N. E. Davey, R. J. Weatheritt, D. Born, T. Speck, D. 
Krüger, G. Grebnev, M. Kuban, M. Strumillo, B. Uyar, A. Budd, B. Altenberg, M. Seiler, 
L. B. Chemes, J. Glavina, I. E. Sánchez, F. Diella, and T. J. Gibson. 2014. The eukaryotic 
linear motif resource ELM: 10 years and counting. Nucleic Acids Res. 42: D259-D266. 

 68.  Blom, N., S. Gammeltoft, and S. Brunak. 1999. Sequence and structure-based 
prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294: 1351-1362. 

 69.  Blom, N., T. Sicheritz-Pontén, R. Gupta, S. Gammeltoft, and S. Brunak. 2004. 
Prediction of post-translational glycosylation and phosphorylation of proteins from 
the amino acid sequence. Proteomics. 4: 1633-1649. 

 70.  Ozenne, V., F. Bauer, L. Salmon, J. R. Huang, M. R. Jensen, Segard S., P. Bernadó, 
Charavay C., and M. Blackledge. 2012. Flexible-meccano: a tool for the generation of 
explicit ensemble descriptions of intrinsically disordered proteins and their 
associated experimental observables. Bioinformatics 28: 1463-1470. 

 71.  Varadi, M., S. Kosol, P. Lebrun, E. Valentini, M. Blackledge, A. K. Dunker, I. C. Felli, J. 
D. Forman-Kay, R. W. Kriwacki, R. Pierattelli, J. L. Sussman, D. I. Svergun, V. N. 
Uversky, M. Vendruscolo, D. S. Wishart, P. E. Wright, and P. Tompa. 2014. pE-DB: a 
database of structural ensemble of intrinsically disordered and of unfolded proteins. 
Nucleic Acids Res. 42: D326-D335. 

 72.  Bermel, W., M. Bruix, I. C. Felli, V. M. V. Kumar, R. Pierattelli, and S. Serrano. 2013. 
Improving the chemical shift dispersion of multidimensional NMR spectra of 
intrinsically disordered proteins. J. Biomol. NMR 55: 231-237. 

 73.  Kazimierczuk, K., J. Stanek, A. Zawadzka-Kazimierczuk, and W. Koźmiński. 2010. 
Random sampling in multidimensional NMR spectroscopy. Prog. NMR Spectrosc. 57: 
420-434. 

 74.  Felli, I. C., A. Piai, and R. Pierattelli. 2013. Recent advances in solution NMR studies: 
13C direct detection for biomolecular NMR applications. Ann. Rep. NMR Spectroscop.  
359-418. 



19 
 

 75.  Ulrich, E. L., H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis, J. Lin, M. Livny, S. 
Mading, D. Maziuk, Z. Miller, E. Nakatani, C. F. Schulte, D. E. Tolmie, R. K. Wenger, H. 
Yao, and J. L. Markley. 2008. BioMagResBank. Nucleic Acids Res. 36: D402-D408. 

 76.  Schwalbe, H., K. M. Fiebig, M. Buck, J. A. Jones, S. B. Grimshaw, A. Spencer, S. J. 
Glaser, L. J. Smith, and C. M. Dobson. 1997. Structural and dynamical properties of a 
denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations 
of lysozyme in 8 M urea. Biochemistry 36: 8977-8991. 

 77.  Massad, T., J. Jarvet, R. Tanner, K. Tomson, J. Smirnova, P. Palumaa, M. Sugai, T. 
Kohno, K. Vanatalu, and P. Damberg. 2007. Maximum entropy reconstruction of joint 
phi, psi-distribution with a coil-library prior: the backbone conformation of the 
peptide hormone motilin in aqueous solution from phi and psi-dependent J-
couplings. J. Biomol. NMR 38: 107-123. 

 78.  Meier, S., M. Blackledge, and S. Grzesiek. 2008. Conformational distributions of 
unfolded polypeptides from novel NMR techniques. J. Chem. Phys 128: 052204. 

 79.  Otten, R., K. Wood, and F. A. A. Mulder. 2009. Comprehensive determination of 3JHNHa 
for unfolded proteins using 13C'-resolved spin-echo difference spectroscopy. J. 
Biomol. NMR 45: 343-49. 

 80.  Lendel, C., and P. Damberg. 2009. 3D J-resolved NMR spectroscopy for unstructured 
polypeptides: fast measurement of 3JHNHα coupling constants with outstanding 
spectral resolution. J. Biomol. NMR 44: 35-42. 

 81.  Schweitzer-Stenner, R. 2012. Conformational propensities and residual structures in 
unfolded peptides and proteins. Mol. Biosyst. 8: 122-133. 

 82.  Shi, Z., K. Chen, Z. Liu, and N. R. Kallenbach. 2006. Conformation of the Backbone in 
Unfolded Proteins. Chem. Rev. 106: 1877-1897. 

 83.  Baxter, N. J., and M. P. Williamson. 1997. Temperature dependence of 1H chemical 
shifts in proteins. J. Biomol. NMR 9: 359-369. 

 84.  Cierpicki, T., and J. Otlewski. 2001. Amide proton temperature coefficients as 
hydrogen bond indicators in proteins. J. Biomol. NMR 21: 249-261. 

 85.  Lee, S. H., D. H. Kim, J. J. Han, E. J. Cha, J. E. Lim, Y. J. Cho, C. Lee, and K. H. Han. 2012. 
Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins. 
Curr. Prot. Pept. Sci. 13: 35-54. 

 86.  Lee, C., L. Kalmar, B. Xue, P. Tompa, G. W. Daughdrill, V. N. Uversky, and K. H. Han. 
2014. Contribution of proline to the pre-structuring tendency of transient helical 
secondary structure elements in intrinsically disordered proteins. Biochim. Biophys. 
Acta. 1840: 993-1003. 

 87.  Kini, R. M., and H. J. Evans. 1995. A hypothetical structural role for proline residues in 
the flanking segments of protein-protein interaction sites. Biochem. Biophys. Res. 
Commun. 212: 1115-1124. 

 88.  Georgieva, E. R., S. Xiao, P. P. Borbat, J. H. Freed, and D. Eliezer. 2014. Tau binds to 
lipid membrane surfaces via short amphipathic helices located in its microtubule-
binding repeats. Biophys. J. 107: 1441-1452. 

 89.  Wright, P. E., and H. J. Dyson. 2015. Intrinsically disordered proteins in cellular 
signalling and regulation. Nat. Rev. Mol. Cell Biol. 16: 18-29. 



20 
 

 90.  He, J., J. Ye, Y. Cai, C. Riquelme, J. O. Liu, X. Liu, A. Han, and L. Chen. 2011. Structure 
of p300 bound to MEF2 on DNA reveals a mechanism of enhanceosome assembly. 
Nucleic Acids Res. 39: 4464-4474. 

 91.  Tompa, P., and M. Varadi. 2014. Predicting the predictive power of IDP ensembles. 
Structure 22: 177-178. 

 92.  Koradi, R., M. Billeter, and K. Wüthrich. 1996. MOLMOL: a program for display and 
analysis of macromolecular structure. J. Mol. Graphics 14: 51-55. 

 93.  Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, 
and T. E. Ferrin. 2004. UCSF Chimera - A Visualization System for Exploratory 
Research and Analysis. J Comp Chem 25: 1605-1612. 

 94.  Baker, N. A., D. Sept, S. Joseph, M. J. Holst, and J. A. Mc Cammon. 2001. Electrostatics 
of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. 
U. S. A. 98: 10037-10041. 

 95.  Fuxreiter, M., I. Simon, P. Friedrich, and P. Tompa. 2004. Preformed structural 
elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. 
Biol. 338: 1015-1026. 

 96.  Mohan, A., C. J. Oldfield, P. Radivojac, M. S. Cortese, A. K. Dunker, and V. N. Uversky. 
2006. Analysis of molecular recognition features (MoRFs). J. Mol. Biol. 362: 1043-
1059. 

 97.  Fuxreiter, M., P. Tompa, and I. Simon. 2007. Local structural disorder imparts 
plasticity on linear motifs. Bioinformatics 23: 950-956. 

 98.  Lu, K. P., Y. C. Liou, and X. Z. Zhou. 2002. Pinning down proline-directed 
phosphorylation signaling. Trends Cell Biol. 12: 164-172. 

 99.  Theillet, F. X., C. Smet-Nocca, S. Liokatis, R. Thongwichian, J. Kosten, M. K. Yoon, R. 
W. Kriwacki, I. Landrieu, G. Lippens, and P. Selenko. 2012. Cell signaling, post-
translational protein modifications and NMR spectroscopy. J. Biomol. NMR 54: 217-
236. 

 100.  Amata, I., M. Maffei, A. Igea, M. Gay, M. Vilaseca, A. R. Nebreda, and M. Pons. 2013. 
Multi-phosphorylation of the intrinsically disordere unique domain of c-Src studied 
by in-cell and real-time NMR spectroscopy. ChemBioChem 14: 1820-1827. 

 101.  Amata, I., M. Maffei, and M. Pons. 2014. Phosphorylation of unique domains of Src 
family kinases. Front. Genet. 5: 181. 

 102.  Iakoucheva, L. M., P. Radivojac, C. J. Brown, T. R. O'Connor, J. G. Sikes, Z. Obradovic, 
and A. K. Dunker. 2004. The importance of intrinsic disorder for protein 
phosphorylation. Nucleic Acids Res. 32: 1037-1049. 

 

 

 

 

 

 

 

 



21 
 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 

 

 

 



1 
 

 
Just a flexible linker? The structural and dynamic properties of CBP-
ID4 as revealed by NMR spectroscopy 
 

 

Alessandro Piai1, Eduardo O. Calçada1, Thomas Tarenzi1, Alessandro del Grande1, Mihaly 

Varadi2, Peter Tompa2,3, Isabella C. Felli1, Roberta Pierattelli1 

 

 
1 Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 

50019 Sesto Fiorentino (Florence), Italy 
 

2 VIB Structural Biology Research Center (SBRC), Vlaams Instituut voor Biotechnologie, 1050 Brussel, Belgium; 
Structural Biology Brussels (SBB), Vrije Universiteit Brussel, 1050 Brussel, Belgium 

 

3 Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, 1117 
Budapest, Hungary. 

 

 

 

 

Supporting Material 

  



2 
 

Supporting figures 

 

 

 
Figure S1. Extent of amide proton exchange with the solvent. Iτm/IRef values measured 

through the (CLEANEX-PM)-FHSQC experiments are reported as a function of residue 

number. In the top right of each plot, the length of the mixing time τm is indicated. The 

residues belonging to the two protein regions characterized by higher propensity for α-helix 

are reported in blue.  
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Figure S2. Temperature dependence of CBP-ID4. 2D BEST-TROSY spectra acquired at 

different temperature (from 283.0 to 308.0 K) are reported. The spectra are plotted with the 

same contour levels. 
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Figure S3. Temperature dependence of CBP-ID4. 2D CON-IPAP spectra acquired at different 

temperature (from 283.0 to 308.0 K) are reported. The spectra are plotted with the same 

contour levels. 
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Figure S4. Radius of gyration of the conformers of the computed ensemble. The wide 
distribution of the radius of gyration reflects the ability of the linker to fine-modulate the 
relative distance between attached globular domains. 

 

 

 

 
Figure S5. Disorder tendency of CBP-ID4 as predicted by IUPred (red), PONDR-FIT (blue) and 

Agadir (green). 
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Figure S6. Distribution of potential SLiMs (a) and phosphorylation sites (b) of CBP-ID4. The 
two protein regions characterized by significant α-helical propensity are highlighted in gray: 
almost no SLiMs and phosphorylation sites are predicted in these regions (a). The protein 
region highlighted in magenta was discarded from the analysis since recognized by the 
protein families database (Pfam) as the interlocking domain of CBP, which forms a 3-helical 
non-globular array that forms interlocked heterodimers with its target. b) Residues having a 
phosphorylation potential above the threshold are considered to be highly probable 
phosphorylation sites. Phosphorylation sites predicted to be kinase specific are the 
following: Ser 34 (p38MAPK and cdk5 kinases); Thr 52 (p38MAPK, GSK3 and cdk5 kinases); 
Ser 62 (GSK3 and cdk5 kinases); Ser 67 (p38MAPK and cdk5 kinases); Thr 85 (PKC kinase); Ser 
90 (DNAPK kinase). 
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NMR data acquisition and processing information 

3D BEST-TROSY (BT) NMR experiments were performed at 21.1 T on a Bruker Avance 

spectrometer operating at 898.57 MHz 1H, 225.95 MHz 13C and 91.05 MHz 15N frequencies, 

equipped with a cryogenically cooled probehead. PC9 and E-BURP2 (or time reversed E-

BURP2) shapes of durations of 1800 and 1270 s, respectively, were employed for 1H band-

selective π/2 flip angle pulses; REBURP shape of duration of 1250 s was used for 1H band-

selective π flip angle pulse; BIP-750-50-20 pulse shapes of duration of 140 s were used for 

broadband 1H inversion. For 13C band-selective π/2 and π flip angle pulses G4 (or time 

reversed G4) and Q3 shapes of durations of 274 and 190 s, respectively, were used, except 

for the π pulses that should be band-selective on the Cα region (Q3, 660 s). The 13C band 

selective pulses on Cα and C' were applied at the center of each region, respectively. All 

gradients employed had a smoothed square shape. 

5D BT-NMR experiments were collected at 22.3 T on a Bruker Avance III spectrometer 

operating at 950.20 MHz 1H, 238.93 MHz 13C and 96.28 MHz 15N frequencies, equipped with 

a cryogenically cooled probehead. E-BURP2 and REBURP shapes of durations of 1200 and 

1180 s, respectively, were employed for 1H band-selective π/2 and π flip angle pulses; BIP-

750-50-20 pulse shapes of duration of 200 s were used for broadband 1H inversion. For 13C 

band-selective π /2 and π flip angle pulses G4 (or time reversed G4) and Q3 shapes of 

durations of 260 and 161 s, respectively, were used, except for the π pulses that should be 

band-selective on the Cα region (Q3, 667 s) and for the adiabatic π pulse to invert both C' 

and Cα (smoothed Chirp 500 s, 20% smoothing, 80 kHz sweep width, 11.3 kHz RF field 

strength). The 13C band selective pulses on Cα and C' were applied at the center of each 

region, respectively. All gradients employed had a smoothed square shape. 

3D and 4D 13C detected experiments were acquired at 16.4 T on a Bruker Avance 

spectrometer operating at 700.06 MHz 1H, 176.03 MHz 13C and 70.94 MHz 15N frequencies, 

equipped with a cryogenically cooled probehead optimized for 13C-direct detection. For 13C 

band-selective π /2 and π flip angle pulses Q5 (or time reversed Q5) and Q3 shapes of 

durations of 300 and 220 s, respectively, were used, except for the π pulses that should be 

band-selective on the Cα region (Q3, 860 s) and for the adiabatic π pulse to invert both C’ 

and Cα (smoothed Chirp 500 s, 25 % smoothing, 80 kHz sweep width, 11.3 kHz RF field 
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strength). The 13C band selective pulses on Cα/β, Cα, and C’ were given at the center of each 

region, respectively, and the adiabatic pulse was adjusted to cover the entire 13C region. 

Decoupling of 1H and 15N was achieved with waltz16 (1.7 kHz) and garp4 (1.0 kHz) 

sequences, respectively. All gradients employed had a sine-shape. All experiments employ 

the IPAP approach to remove the splitting in the direct acquisition dimension caused by the 

C –C’ couplings. The in-phase (IP) and antiphase (AP) components were acquired and stored 

in an interleaved manner, doubling the number of FIDs recorded. 

The most relevant experimental parameters used for the acquisition of 1HN and 13C detected 

NMR experiments for sequence-specific assignment are reported in Table S1 and Table S2, 

respectively. Experimental parameters of 15N relaxation NMR experiments are provided in 

Table S3. 15N relaxation rates (R1 and R2) were determined by fitting cross-peak intensities, 

measured as a function of a variable delay, as single-exponential decay. 15N-1H NOEs were 

obtained as the ratio between cross-peak intensities in spectra recorded with and without 1H 

saturation.  

The most relevant experimental parameters for (CLEANEX-PM)-FHSQC and 3D HNHA 

experiments are given in Table S4.  Exchange rates between amide protons and water 

protons were estimated by analyzing the ratio between cross-peak intensities in spectra 

recorded with and without CLEANEX-PM mixing period. Homonuclear 3JHN-Hα couplings were 

quantified by measuring the diagonal-peak to cross-peak ratio obtained in the 3D 15N-

separated quantitative J-correlation HNHA spectrum. 

Finally, parameters related to the NMR experiments for temperature dependence are shown 

in Table S5. 
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Table S1 Experimental parameters used for the acquisition of 1HN detected NMR experiments for sequence-specific assignment 

 Spectral widths and maximal evolution times 
No. of 
scans 

Inter-scan 
delays (s) 

No. of 
complex 

points (aq) 

No. of 
hypercomplex 

points 

Duration of 
the 

experiment 

Relative 
data points 
density (%) 

2D BEST-TROSY 2300 Hz (
15

N) 222.6 ms 10800 Hz (
1
H

N
) 95.1 ms 2 0.200 s 1024 512 15 min 100.0 

3D BT-HNCO 
2400 Hz (

13
C') 52.9 

ms 
2300 Hz (

15
N) 55.2 

ms 
10800 Hz (

1
H

N
) 

95.1 ms 
2 0.200 s 1024 4500 4 h 20 min 27.5 

3D BT-HN(CA)CO 
2400 Hz (

13
C') 52.9 

ms 
2300 Hz (

15
N) 55.2 

ms 
10800 Hz (

1
H

N
) 

95.1 ms 
4 0.200 s 1024 4500 8 h 45 min 27.5 

3D BT-HNCACB 
14000 Hz (

13
C

α/β
) 

24.9 ms 
2300 Hz (

15
N) 55.2 

ms 
10800 Hz (

1
H

N
) 

95.1 ms 
4 0.200 s 1024 6000 11 h 45 min 13.4 

3D BT-HN(CO)CACB 
14000 Hz (

13
C

α/β
) 

24.9 ms 
2300 Hz (

15
N) 55.2 

ms 
10800 Hz (

1
H

N
) 

95.1 ms 
4 0.200 s 1024 6000 12 h 30 min 13.4 

3D BT-(H)N(COCA)NH 
2300 Hz (

15
N) 28.7 

ms 
2300 Hz (

15
N) 55.2 

ms 
10800 Hz (

1
H

N
) 

95.1 ms 
8 0.200 s 1024 4500 18 h 20 min 52.5 

3D BT-(H)N(CA)NNH 
2300 Hz (

15
N) 33.0 

ms 
2300 Hz (

15
N) 33.0 

ms 
10800 Hz (

1
H

N
) 

95.1 ms 
16 0.200 s 1024 2400 20 h 30 min 40.5 

5D BT-(H)NCO(CAN)CONNH 
2600 Hz 

(
15

N)  
40.4 ms 

2600 Hz 
(

13
C') 40.4 

ms  

2600 Hz 
(

13
C')  

40.4 ms 

2600Hz 
(

15
N) 

40.4 ms 

13300 Hz 
(

1
H

N
) 77.0 

ms 
8 0.200 s 1024 2000 1 d 15 h 0.002 

5D BT-HN(COCAN)CONNH 
2600 Hz 

(
15

N)  
40.4 ms 

2600 Hz 
(

13
C') 40.4 

ms  

2600 Hz 
(

13
C')  

40.4 ms 

2600Hz 
(

15
N) 

40.4 ms 

13300 Hz 
(

1
H

N
) 77.0 

ms 
8 0.200 s 1024 2000 1 d 15 h 0.003 
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Table S2 Experimental parameters used for the acquisition of 13C detected NMR experiments for sequence-specific assignment 

 Spectral widths and maximal evolution times 
No. of 
scans 

Inter-scan 
delays (s) 

No. of 
complex 

points (aq) 

No. of 
hypercomplex 

points 

Duration of 
the 

experiment 

Relative 
data points 
density (%) 

2D CON-IPAP 2600 Hz (
15

N) 98.5 ms 5300 Hz (
13

C) 96.8 ms 16 2.500 512 256 12 h 30 min 100.0 

3D (H)CBCACON-IPAP 
12500 Hz (

13
C

α/β
) 

7.5 ms 
2600 Hz (

15
N) 50.0 

ms 
8800 Hz (

13
C) 

58.3 ms 
8 1.000 s 512 1100 1 d 8.8 

3D (H)CBCANCO-IPAP 
12500 Hz (

13
C

α/β
) 

7.5 ms 
2600 Hz (

15
N) 31.9 

ms 
8800 Hz (

13
C) 

58.3 ms 
16 1.000 s 512 1100 2 d 4 h 13.7 

4D (HCA)CON(CA)CON-IPAP 
2400 Hz (

13
C)  

24.2 ms 
2600 Hz (

15
N) 

24.2 ms 

2600 Hz 
(

15
N) 40.0 
ms 

8800 Hz 
(

13
C) 58.3 
ms 

16 0.900 s 512 850 3 d 1 h 0.2 

4D (HN)CON(CA)CON-IPAP 
2400 Hz (

13
C)  

24.2 ms 
2600 Hz (

15
N) 

24.2 ms 

2600 Hz 
(

15
N) 40.0 
ms 

8800 Hz 
(

13
C) 58.3 
ms 

32 0.600 s 512 700 3 d 18 h 0.2 

Table S3 Experimental parameters used for the acquisition of 15N relaxation NMR experiments 

 
Spectral widths and maximal 

evolution times 
No. of scans Inter-scan delays (s) 

No. of complex 
points (aq) 

Duration of 
the 

experiment 

15
N R1 

1800 Hz (
15

N) 
126.8 ms 

10500 Hz 
(

1
H

N
) 97.6 ms 

8 3.000 s 1024 
3 h 15 min – 
4 h 15 min 

15
N R2 

1800 Hz (
15

N) 
126.8 ms 

10500 Hz 
(

1
H

N
) 97.6 ms 

8 3.000 s 1024 3 h 40 min 

Steady-state heteronuclear 
15

N{
1
H} NOEs 

1800 Hz (
15

N) 
144.3 ms 

10500 Hz 
(

1
H

N
) 97.6 ms 

72 6.000 s 1024 2 d 15 h 

For the determination of R1, 10 experiments were acquired changing the variable delay from 15 to 995 ms. 
For the determination of R2, 10 experiments were acquired changing the variable delay from 30 to 375 ms. 
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Table S4 Experimental parameters used for the acquisition of (CLEANEX-PM)-FHSQC and 3D HNHA NMR experiments 

 Spectral widths and maximal evolution times No. of scans Inter-scan delays (s) 
No. of complex 

points (aq) 

Duration of 
the 

experiment 

(CLEANEX-PM)-HSQC 
1700 Hz (

15
N) 

147.3 ms 
8400 Hz (

1
H

N
) 61.1 ms 8 5.000 s 512 5 h 55 min 

3D HNHA 
1700 Hz (

15
N) 

46.0 ms 
7000 Hz (

1
H

α
)  

9.1 ms 
7000 Hz (

1
H

N
) 

107.2 ms 
8 1.000 s 750 2 d 7 h 

For the determination of the extent of amide proton exchange with the solvent, 5 experiments were acquired changing the length of the mixing 
time from 8 to 40 ms. An additional FHSQC experiment was measured with the same parameters to obtain the reference peak volumes. 

 

Table S5 Experimental parameters used for the acquisition of the NMR experiments for temperature dependence 

 
Spectral widths and maximal 

evolution times 
No. of scans Inter-scan delays (s) 

No. of complex 
points (aq) 

Duration of 
the 

experiment 

2D BEST-TROSY 
2300 Hz (

15
N) 

222.6 ms 

11400 Hz 
(

1
H

N
) 400.0 
ms 

2 0.001 4600 20 min 

2D CON-IPAP 
3500 Hz (

15
N) 

72.6 ms 
9600 Hz (

13
C) 

53.6 ms 
16 1.500 s 512 7 h 40 min 

 

 


