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Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopatho-
genic activity of Bt is related to the existence of the crystal consisting of protoxins, 
also called delta-endotoxins. In order to optimize and explain the production of 
delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium com-
ponents: soybean meal, starch, KH2PO4, K2HPO4, FeSO4, MnSO4, and MgSO4 and 
their relationships with the concentration of delta-endotoxins using an experimen-
tal design (Plackett–Burman design) and Bayesian networks modelling. The effects 
of the ingredients of the culture medium on delta-endotoxins production were esti-
mated. The developed model showed that different medium components are impor-
tant for the Bacillus thuringiensis fermentation. The most important factors infl u-
enced the production of delta-endotoxins are FeSO4, K2HPO4, starch and soybean 
meal. Indeed, it was found that soybean meal, K2HPO4, KH2PO4 and starch also 
showed positive effect on the delta-endotoxins production. However, FeSO4 and 
MnSO4 expressed opposite effect. The developed model, based on Bayesian tech-
niques, can automatically learn emerging models in data to serve in the prediction of 
delta-endotoxins concentrations. The constructed model in the present study implies 
that experimental design (Plackett–Burman design) joined with Bayesian networks 
method could be used for identifi cation of effect variables on delta-endotoxins vari-
ation.
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Introduction

Bacillus thuringiensis (Bt) is a Gram-positive bacterium, producing par-
asporal crystals including delta-endotoxins responsible for its insecticidal po-
tency [1] through sporulation. Upon ingestion by vulnerable insects, the crystals 
are dissolved in the midgut lumen. With the action of proteases, the endotoxins 
are changed into toxins that attach to receptors on the microvilli, causing dam-
ages to the epithelial midgut [2]. These proteins are highly toxic to a huge number 
of insect pests, safe to the environment, innocuous to non-target insect species. 
In general, conditions for the culture of B. thuringiensis are adjusted to have both 
high microbial biomass and delta-endotoxins concentration. A fermentation im-
provement plan can begin by estimating product yield as a solution to factors as 
activity of medium ingredients. Nutritional needs may be conducted either by 
the usual or mathematical approach. Mathematical methods present many advan-
tages over usual methods being quick and decreases total number of trials [3]. 
In fact, Plackett–Burman design is considered as a section of a two-level facto-
rial design and permits the probe of n-1 variables in at least n experiments [4]. 
The Plackett–Burman design is suggested when more than fi ve factors have to be 
studied. These designs are helpful for detecting great main effects, supposing the 
fact that all interactions are insignifi cant when compared with the few signifi -
cant main effects.

Recently, Bayesian networks (BN) have become an effective device for 
 biological network reconstruction [5, 6, 7]. BNs constitute one of the most used 
formalisms for calculation and forecast under uncertainty. BNs offer a useful 
 approach to illustrate the general dependency structure of a big number of vari-
ables, therefore removing the restriction of examining the relations between var-
iables. The purpose of the present study is to develop a model that can automati-
cally learn emerging models in data to serve in the prediction of delta-endotoxin 
concentrations.

Materials and Methods

Microorganism

The used strain BUPM5 of B. thuringiensis subsp. kurstaki is known by a 
high delta-endotoxin production [8]. The strain was maintained by streak inocu-
lating Luria Broth (LB) nutrient plates (g l–1): yeast extract 5, peptone 10, NaCl 5 
and agar 15, incubated at 30 °C for 24 h and stored at 48 °C for future use.
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Inocula preparation method

Inocula preparation was previously optimised based on delta-endotoxin 
production yields [9]. One isolated colony was dispensed in 3 ml of LB medium 
and incubated overnight at 30 °C. 0.5 ml aliquots were used to inoculate 250 ml 
shake fl asks including 50 ml of LB medium. After 6 h of incubation at 30 °C 
at 200 rev min–1 in a rotary shaker (New Brunswick Scientifi cTM, Edison, NJ, 
USA), the culture broth was used to inoculate the media. The O.D.600 was esti-
mated using a SmartSpecTM 3000 UV-spectrophotometer (Bio-Rad Laboratories). 
The culture broth was used to inoculate the culture media to begin with a pri-
mary optical density at 600 nm (O.D.600) of 0.15. Considering that an O.D.600 
of 1 in B. thuringiensis bacterium is previously estimated to represent approxi-
mately 2×108 CFU ml–1 [10], the initial cell counts in the performed cultures are 
considered equal to approximately 3×10–7 CFU ml–1.

Cultural conditions

For delta-endotoxin production, B. thuringiensis strains were grown ac-
cording to the medium compositions stated for each experiment (Table I). The 
250 ml shake fl asks, containing 50 ml of culture medium [11], were incubated for 
72 h at 30 °C in a rotary shaker at 200 rev min–1. The obtained values are the 
means (±SD) of three determinations of two different experiments.

Table I. Values of coded values used in factorial design (g l–1)

Nutrient code Nutrient Minimum value (–1) Maximum value (+1)

X1 KH2PO4  0.5  1.5

X2 K2HPO4  0.5  1.5

X3 MgSO4  0.1  0.5

X4 MnSO4  0  0.02

X5 FeSO4  0  0.02

X6 Starch 25 35

X7 Soybean meal 20 30
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Delta-endotoxin determination

Crystal proteins were dissolved before protein concentration assay as il-
lustrated by Zouari et al. [10]. Crystal-spore pellets were washed twice with 1 M 
of sodium chloride solution (NaCl) and twice with distilled water. Subsequently, 
samples were incubated in 0.05 M NaOH (pH 12.5) for 2 h at 30 °C in a rotary 
shaker (200 rev min–1). The soluble fractions were collected by centrifugation 
at 13000 rpm, for 10 min. The supernatant including the alkali-soluble insecti-
cidal proteins was used to estimate delta-endotoxins concentration by the Brad-
ford method [12] using bovine serum albumin (BSA) as a standard. Samples were 
estimated at 595 nm after 10 min.

Screening of important nutrient components

The signifi cance of the different media components towards delta-endo-
toxin production was tested using Plackett–Burman experimental designs [4]. 
This technique is based upon the existence of Hadamard matrices, which are 
square matrices of order N with entries at two levels, +1 and −1. These matrices 
are orthogonal such that for each column the number of +1 is equivalent to the 
number of −1. This statistical design is appropriate for screening the effect of a 
large number of factors in a trial and suffi cient for the determination of main ef-
fects. With such experimental design, N factors can be screened with only N+1 
trials and screening up to 100 variables [13] is possible with the support of this 
technique. For screening aim, seven medium components have been tested using 
the Plackett–Burman design. The Plackett–Burman design was established on 
the fi rst order model. The main effect was also estimated. Seven independent fac-
tors were evaluated in twelve trials and each factor was characterized by two 
levels: high and low concentrations. Statistical design analysis was carried out 
using the Minitab program package. The levels of independent and dependent 
variables evaluated in this study are listed in Table II [14]. The experimental de-
signs, according to the Plackett–Burman method, are given in Table II.

Bayesian networks modelling

Bayesian networks (BNs) are a powerful framework for decision support 
under uncertain knowledge. They come out from artifi cial intelligence studies 
and constitute one of the most coherent techniques for the acquisition and the 
modelling of complex systems. They have been applied to a large range of prob-
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lems and eventually in biology. BNs are directed acyclic graphs composed by 
nodes (variables of the problem) and arcs that encode conditional probabilistic 
independencies between the nodes. These graphical models are very attrac-
tive for their aptitude to explain probabilistic interactions connecting variables. 
In fact, they have proven to capture causal relationships between variables and 
they can show excellent forecast accuracy even with relatively small sample data 
sizes [15, 16].

To achieve the mentioned objectives, Bayesian networks modelling was 
used. We considered 8 nodes (7 variables representing medium components and 
1 node representing delta-endotoxins concentration). Since the data are discon-
tinuous and experimental data produced using Plackett–Burman are limited, and 
it is well known that the application of BN requires a lot of data for the learning 
and testing procedures, our proposed methodology includes the following three 
different stages for building model: 1) Data normalization; 2) Construction of an 
undirected Gaussian graph; 3) Construction of Bayesian Network.

Data normalization

To normalize data from different experiences, a random sample with 116 
data was created from experimental data (each new observation is the average of 
30 observations).

Table II. Study of variables on delta-endotoxin productions by Plackett–Burman design

Trial X1 X2 X3 X4 X5 X6 X7 Y

 1 +1 +1 –1 +1 –1 –1 –1 2130±90

 2 –1 +1 +1 +1 –1 +1 +1 3810±75

 3 –1 –1 +1 +1 +1 –1 +1 2350±100

 4 +1 +1 –1 +1 +1 –1 +1 3060±110

 5 +1 –1 +1 +1 –1 +1 –1 2300±85

 6 –1 –1 –1 –1 –1 –1 –1 1725±75

 7 +1 +1 +1 –1 +1 +1 –1 1975±80

 8 +1 –1 +1 –1 –1 –1 +1 3490±95

 9 +1 –1 –1 –1 +1 +1 +1 3500±105

10 –1 +1 +1 –1 +1 –1 –1 1700±80

11 –1 –1 –1 +1 +1 +1 –1 1240±60

12 –1 +1 –1 –1 –1 +1 +1 3890±100
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Construction of an undirected Gaussian graph

In order to defi ne the different conditional interactions between variables 
(medium components) and delta-endotoxin concentration variable, a Gaussian 
graphical model [17, 18] was developed. The principle of the model is based on 
conditional independence. Indeed, from a full connected graph, an edge is 
 removed between two nodes if the conditional independence between two varia-
bles is accepted. The graph obtained is called conditional independence graph. 
The used distribution of the variables is considered as Gaussian (implying 
 normality of each variable). Therefore, two variables are independent only if 
the partial correlation coeffi cient is null [see (I)]. We consider graph consisting of 
n nodes, each node i is associated with a random variable Xi. It is assumed 
that the vector X = (X1, …, Xn) is Gaussian with mean “m” and matrix empirical 
variance-covariance Σ = (σij)1 ≤ i ≤ j ≤ n. We denote Σ–1 = ((wij)) the precision matrix. 
The partial correlations can be defi ned as following:

 ρij = Corr(Xi, Xj/X) (Xi, Xj)) for 1 ≤ i ≤ j ≤ n (I).

Under the normality hypothesis, Xi and Xj are conditionally dependent only 

if ρij ≠ 0, it is know that ρij = – 
wij

√wii wjj
. This formula estimates the partial 

correlations [19] and constructs a conditional independence graph.

Construction of Bayesian Network

A Bayesian network [20] is generated as following: two nodes i and j  having 
a partial correlation are connected by a non-oriented edge. The orientation is 

determined by a heuristic method based on the following test: If Bij = 
wjj σii

wii σjj  > 1, 

the arc is then oriented from i to j and if Bij = 
wjj σii

wii σjj
 < 1, the arc is then oriented 

from j to i. The other edges with Bij = 
wjj σii

wii σjj
 = 1 remained undirected. The graph 

with all directed arcs constituted the Bayesian network. It is imperative to note 
that it does not necessarily include all nodes contained in the network [21]. The 
advantage of Bayesian network is to deduct all parent nodes (nutritional compo-
nents) which are directly dependent on child nodes (delta-endotoxins concentra-
tion). Matlab program was used to analyze obtained data.
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Results and Discussion

Medium component effects for delta-endotoxin production using 
Plackett–Burman design

A total of seven components were screened through twelve experimental 
runs. The main effects of the components in the medium for delta-endotoxins 
production are presented in Figure 1. The soybean meal showed the maximum 
positive effect on delta-endotoxin production, followed by starch, K2HPO4 and 
KH2PO4. The effect of FeSO4 and yeast MnSO4 were negative indicating that 
these components are required in the medium for delta-endotoxins production 
but in lower concentration than the low level. MgSO4 had neutral effect on delta-
endotoxin production.

Table III shows the results of regression (coeffi cient, standard error, t and 
p-values) generated by applying experimental design technique. The signifi cance 
of coeffi cients was estimated by Student’s t-test and p-val ues. The higher the 
level of the t-value and the lower the p-value, the more signifi cant is the coeffi -
cient [22]. All but MgSO4 were considered signifi cant or marginally signifi cant 
having an infl uence on the delta-endotoxin production on the 0.1 signifi cance 
level (Table III). In our study, the soybean meal, starch, FeSO4 and KH2PO4 were 
the most signifi cant nutrients for improvement of delta-endotoxin production 
by Bt. However, KH2PO4, MnSO4 and MgSO4 were considered as insignifi cant. 
The use of high concentrations of KH2PO4, K2HPO4, starch and soybean meal 
and exclusion of FeSO4 and MnSO4 increased the level of delta-endotoxin produc-
tion. MgSO4 has no effect on production of delta-endotoxins. Besides, the coef-
fi cient of determination (R² = 98.42%) explains the high degree of collinearity 
between simulated and measured data. Likewise, R² illustrates the proportion of 
the variance in measured data explained by the model. R² ranges from 0 to 1, with 
higher values indicating less error variance, and usually values greater than 0.5 
are judged acceptable [23].

The statistical signifi cance of the ratio, between the mean square variation 
(MS), due to regression, and the mean square residual error, was tested using 
analysis of variance (ANOVA) (Table IV). ANOVA is a statistical technique that 
subdivides the total variation of a set of data into component associated to spe-
cifi c sources of variation for the purpose of testing hypotheses for the modelled 
parameters. According to the ANOVA, the F-value was high, which indicates 
that variation on the response variable can be explained by the regression model. 
The associated p-value is used to estimate whether F is large enough to indicate 
statistical signifi cance. A p-value (0.002) is lower than 0.01, which indicates that 
the model is considered to be statistically signifi cant [24].
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Figure 1. Effect of media components on delta-endotoxins production in submerged culture

Table III. Estimated regression coeffi cients for delta-endotoxin production

Term Coeffi cient Standard Error t p-value

Constant 2597.5 54.75 47.45 0.000

KH2PO4  145.0 54.75  2.65 0.057

K2HPO4  163.3 54.75  2.98 0.041

MgSO4    6.7 54.75  0.12 0.909

MnSO4 –115.8 54.75 –2.12 0.102

FeSO4 –293.3 54.75 –5.36 0.006

Starch  188.3 54.75  3.44 0.026

Soybean meal  752.5 54.75 13.75 0.000

R² = 98.42%; R²(pred) = 85.82%; R²(adj) = 95.67%
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The matching quality of the data obtained by the proposed model was 
 evaluated by considering the correlation coeffi cient (R2) between the experimen-
tal and modelled data. The statistical adjustment of those values generated an 
R2 = 0.9836, revealing that the model could not explain only 1.64% of the overall 
effect and showing that it is a robust statistical model.
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Figure 2. Gaussian graph representing 
conditional interaction between variables
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Table IV. Analysis of variance for delta-endotoxins

Source DF Seq SS Adj SS Adj MS F p-value

Main effects  7 8.9478 8987217 1283888 35.70 0.002

Residual error  4 143858 143858 35965

Total 11 9131075

R² = 98.36%; R²(pred) = 85.23%; R²(adj) = 95.49%

Bayesian networks

BN is a graph in which nodes represent variables and arcs represent de-
pendencies among these variables. Usually, assigning a value to a variable deter-
mines the state of the variable. The obtained graphs for delta-endotoxins produc-
tion are shown in Figures 2 and 3. The network contains 8 nodes: experimental 
variables, namely FeSO4, MnSO4, MgSO4, KH2PO4, K2HPO4, soybean meal 
(S.meal) and starch, and the measured variable known as delta-endotoxins con-
centrations (delta endo).

Figure 2 illustrates an interconnection between different nodes in the net-
work (with a minimum partial correlation of 0.45). The network also demon-
strates that the output variable (delta endo) is strongly correlated with starch, 

Figure 3. Bayesian network 
representing relationships between nutrients 

and delta-endotoxins
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soybean sulphate. These variables were the most infl uential on delta-endotoxin 
production.

The given result by the obtained Bayesian network (Figure 3) showed that 
the output node of delta-endotoxins was mainly determined by the “parents” 
identifi ed as soybean meal, starch and potassium dihydrogen phosphorus. Other 
elements such as FeSO4, MgSO4, MnSO4 affected the production of the toxin, 
but indirectly. We also note that iron sulfate attracts the majority of nodes sug-
gesting that Bt consumes iron in a complexed form. These observations are in 
line with several studies indicating high external validity. Indeed, soybean meal, 
the main source of nitrogen for Bt, is considered as the most important nutrient 
during bacterial cell multiplication due to its participation in the construction of 
cellular proteins and nucleic acid synthesis. Nitrogen sources have direct control 
on crystal formation by stimulating the production of delta-endotoxin [10, 25]. 
The degradation of starch, considered as a carbon source, produced acetic acid 
which is directly consumed by the bacterial cell and also the precursor of PHB 
production. Acetates are partly converted into intracellular PHB. Subsequently, 
acetates and PHB are assimilated in tricarboxylic acid cycle (TCA), a fundamen-
tal energy source for cell growth [26, 27]. According to Braun [28], the absence 
of manganese (Mn) in the medium reduces the capacity of delta-endotoxin 
 synthesis, suggesting the opposing direction of the arc. Similarly, Yang and Wang  
[29] deducted that the presence of PO4

3– in the culture medium is required to 
 ensure better turnover of metabolic pathways. In fact, Gupta et al. [30] showed 
that phosphate has a role of regulator on the metabolite synthesis of Bt and is 
furthermore implicated in stimulation of delta-endotoxin production. This is con-
fi rmed by the Bayesian network indicating a causal relationship between potas-
sium dihydrogen phosphate and delta-endotoxin production. On the other hand, 
the addition of ions such as Fe3+, Mg2+, Cu2+, Co+ in the culture medium can im-
prove the growth of Bt [31].

The effects of the parent nodes on output variable are estimated by multi-
ple linear regression. ANOVA based on Bayesian method was carried out, the 
signifi cance of each variable (parent) on delta-endotoxins production was de-
termined using the Student’s t-test and the accepted confi dence level was 95% 
( Table V). The regression results, t-values and p-values are given in Table V. 
 Generally, factors having the larger t-value and smaller p-value were considered 
to be more signifi cant in comparison to the factors whose t-value and p-value 
were different [32, 33]. These results showed that the values of KH2PO4, starch 
and soybean meal were highly signifi cant (p < 0.05). The high value of adjusted 
R square (R2 = 0.941) suggests that 94.1% of the delta-endotoxins production 
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is mainly explained by these three variables. Besides, the regression model based 
on the Bayesian network displayed a higher value of predicted R squared 
(R²(pred) = 93.94%), which indicates that the model fi ts well to the data and pro-
vides higher prediction power for future observations.

From Figure 4, we note an important infl uence of KH2PO4 on the delta-
endotoxin production. Quantitatively, it is approximately estimated at 6 times 
greater than starch and 3 times higher than soybean meal.

Conclusions

The model developed in this study suggests that experimental design 
(Plackett–Burman design) coupled with Bayesian networks method could be 
 employed for identifi cation of effect variables on response variation. However it 
has been demonstrated only for very simple systems. A wider range of parame-
ters of nutritional conditions should be examined in order to establish the im-
pact on response variables, such as delta-endotoxins in our case.

Figure 4. Effects of principal components on delta-endotoxins production
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Table V. Regression results for delta-endotoxins production

Coeffi cient SE t p-value

Constant –3.2483 0.3359 –9.6710  1.898×10–16

KH2PO4 0.4322 0.0337 12.8176 1.0625×10–23

Starch 0.0648 0.0089 7.2799 4.9295×10–11

S.meal 0.1378 0.0038 36.1672 1.3206×10–63

R² = 97%; R²(pred) = 93.94%; R²(adj) = 94.1%
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