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Abstract  
 

Parameters governing the retention and movement of water and chemicals in 

soils are notorious for the difficulties and high labor costs involved in measuring 

them. Often, there is a need to resort to estimating these parameters from other, 

more readily available data, using pedotransfer relationships.  

This work is a mini-review that focuses on trends in pedotransfer development 

across the World, and considers trends regarding data that are in demand, data we 

have, and methods to build pedotransfer relationships. Recent hot topics are ad-

dressed, including estimating the spatial variability of water contents and soil hyd-

raulic properties, which is needed in sensitivity analysis, evaluation of the model 

performance, multimodel simulations, data assimilation from soil sensor networks 

and upscaling using Monte Carlo simulations. Ensembles of pedotransfer functions 

and temporal stability derived from “big data” as a source of soil parameter vari-

ability are also described.  

Estimating parameter correlation is advocated as the pathway to the improve-

ment of synthetic datasets. Upscaling of pedotransfer relationships is demonstrated 

for saturated hydraulic conductivity. Pedotransfer at coarse scales requires a differ-

ent type of input variables as compared with fine scales. Accuracy, reliability, and 

utility have to be estimated independently. Persistent knowledge gaps in pedotrans-

fer development are outlined, which are related to regional soil degradation, sea-

sonal changes in pedotransfer inputs and outputs, spatial correlations in soil hydrau-

lic properties, and overland flow parameter estimation.  

Pedotransfer research is an integral part of addressing grand challenges of the 

twenty-first century, including carbon stock assessments and forecasts, climate 

change and related hydrological weather extreme event predictions, and deciphering 

and managing ecosystem services.  



340  P A C H E P S K Y  e t  a l .  

Overall, pedotransfer functions currently serve as an essential instrument in the 

science-based toolbox for diagnostics, monitoring, predictions, and management of 

the changing Earth and soil as a life-supporting Earth system. 

 

 

Introduction 
 

Parameters governing the retention and movement of water and chemicals in 

soils are notorious for the difficulties and high labor costs involved in measuring 

them. Often, there is a need to resort to estimating these parameters from other, 

more readily available data. Following BRIGGS and SHANTZ (1912), who were the 

pioneers in the field, generations of researchers quantified and interpreted relation-

ships between soil properties. Such terms as “prediction of” or “predicting” soil 

properties, “estimation of” or “estimating” soil properties, “correlation of” or “cor-
relating” soil properties, were used interchangeably to name the contents, proce-

dures and results of these types of studies (CARTER & BENTLEY, 1991; RAWLS et 

al., 1991; VAN GENUCHTEN & LEIJ, 1992; TIMLIN et al., 1996; MCBRATNEY et al., 

2002).  

Relatively recently, equations expressing relationships between soil properties 

were proposed to be called “transfer functions” (BOUMA & VAN LANEN, 1987) and 

later “pedotransfer function”' or PTFs (BOUMA, 1989) and also the term 

“pedotransfer rule” (PTR) was introduced (BATJES, 1996) and used (DAROUSSIN & 

KING, 1996). Large international databases, such as UNSODA (LEIJ, 1996), 

HYPRES (WÖSTEN et al.,1999), WISE (BATJES, 1996), the NRCS National Soils 

Information System (RAWLS et al., 2007), EU-HYDI (WEYNANTS et al., 2013), as 

well as smaller national databases such as the Hungarian Detailed Soil 

Hydrophysical Database (MARTHA) (MAKÓ et al., 2010) were established and 

used for the purpose of PTF development. Recently the number of PTF applications 

has increased significantly due to the development of GIS-based regional modeling. 

According to the SCOPUS database, more than 55% of all pedotransfer papers were 

published in 2009–2015. 

Pedotransfer functions to predict soil hydraulic properties are most numerous 

(PACHEPSKY & RAWLS, 2004). Such PTFs have many potential user groups. For 

example, soil water retention and hydraulic conductivity data are needed to partition 

precipitation into runoff and infiltration, to assess evapotranspiration, to schedule 

management practices, especially irrigation and chemical application, to establish 

components of the heat balance, and to predict contaminant transport. Pedotransfer 

relationships are being developed for biogeochemical soil parameters. Research on 

global change relies on pedotransfer in many its components.  

PTFs package knowledge and data that are used for multiple applications of soil 

research in environmental science and engineering such as soil water flow modeling 

(DENG et al., 2009; PAN et al., 2012; CICHOTA et al., 2013), predictive soil mapping 

(DAI et al., 2013; UGBAJE & REUTER, 2013; WERBAN et al., 2013) or filling gaps in 

soil datasets (NEMES et al., 2010).  
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The applied purpose of PTF development does not, however, eliminate the basic 

and methodological questions about PTF. Why do pedotransfer relationships exist? 

Is there a knowledge other than just soil attribute values (soil classification being an 

example) leading to improvements in PTF accuracy and reliability? How to access 

the reliability of PTFs? Is there a limit of accuracy and reliability of PTFs and what 

does it depend on? What defines the relative importance of PTF inputs? What is the 

effect of scale on PTFs? How to evaluate the quality of PTF inputs and outputs? 

Answering basic questions is necessary to assure the best use of available data and 

the best feasible quality of PTFs in terms of accuracy, reliability, and utility.  

This work is a mini-review that focuses on trends in pedotransfer development 

across the World and does not cover the subject in depth. Pedotransfer has been 

defined as the conversion of data we have to data we need (WÖSTEN et al., 2001), 

and this review will consider trends regarding data that are in demand, data we 

have, and methods to build pedotransfer relationships. 

 

 
Estimating spatial variabil ity of water contents  and soil   

hydraul ic  properties  

 

Estimating spatial variability becomes a must in many applications of soil mo-

deling. Fig. 1 illustrates the critical need in variability estimation in several types of 

soil modeling activities. The sensitivity of a model to hydraulic properties requires 

knowledge of the variability of these properties. Evaluation of model performance 

should rely on comparison of uncertainties in data and uncertainties in model pre-

dictions (Fig. 1a). A model should not be more accurate than the data which is sup-

posed to be reproduced (DENG et al., 2009). Another use of variability of soil prop-

erties consists in using multimodel simulations (Fig. 1b). Calibration of variably 

saturated flow models with field monitoring data is complicated by the strongly 

non-linear dependency of unsaturated flow parameters on water content. Combining 

predictions using various independent models, often called multimodel prediction, 

is becoming a popular modeling technique (e.g. LIAO et al., 2014).  

The example in Fig. 1b shows the results of solving the Richards flow equation 

using HYDRUS-1D with 19 plausible soil hydraulic parameter sets (GUBER et al., 

2005). Yet another use of variability information can be found in data assimilation 

from soil sensor networks (Fig. 1c). Soil water flow models are necessarily based 

on simplified assumptions about the mechanisms, processes, and parameters of 

water retention and flow, which causes errors in soil water flow model predictions. 

Data assimilation (DA) with the ensemble Kalman filter (EnKF) corrects modeling 

results based on measured state variables, information on uncertainty in measure-

ment results and uncertainty in modeling results. The need to know the uncertainty 

of measurement results calls for finding water content variability estimates.  

Finally, knowing the variability of soil hydraulic parameters is a precondition 

for upscaling using Monte Carlo simulations (e.g. ARORA et al., 2015). Such 

upscaling includes either multiple simulations at the fine scale and then averaging 
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results (“modeling-to-averaging” yellow trajectory in Fig. 1d) or averaging of hy-

draulic properties followed by simulations with averaged parameters (“averaging-

to-modeling” orange trajectory in Fig. 1d). Knowing variability is a must for both 

the yellow and oranges trajectories.  

Two methods were proposed to estimate the variability of soil hydraulic proper-

ties at an arbitrary site. One method relies on PTFs developed at other sites, and 

another method calls for using “big data” that have become available recently.  

 

 

Fig. 1 

Uses of data on variability of soil hydraulic property and soil water contents.  
Notes: (a) evaluation of model calibration results (from QU et al. (2014); (b) ensemble mo-

deling of soil water contents (after GUBER et al., 2009); (c) update of soil water flow model-
ing results for two cases of relative difference between uncertainty in modeling results and 

uncertainty in measurement results; the update brings soil water contents much closer to the 
average measured values if the uncertainty in measured values is less than the uncertainty in 

simulation results; (d) two possible uses of data on variability in hydraulic properties in 
upscaling soil water flow; multiple simulations with subsequent averaging of results or  

averaging of multiple parameter sets and subsequent simulation 

Using PTFs developed at other sites to estimate variability 

The reliability of PTFs outside the site of their development is essentially un-

known. This, however, does not preclude using PTFs developed at various other 

sites to represent possible variability within a single site.  
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Fig. 2 
Measured and estimated soil water retention of a loamy soil. 

Notes:  field measurements;  95% tolerance interval of laboratory water  
retention;  95% tolerance interval of ensemble-estimated water retention 

 

Fig. 2 presents an example of using 19 soil water retention PTFs to represent the 

water retention of a loam soil for a trench in Belgium. The PTF calculator can be 

found at the website http://www.ars.usda.gov/Research/docs.htm?docid=21211. 

The soil water retention variability envelope for water retention measured in the 

field was represented by PTFs much better than by the laboratory water retention 

measurements (PACHEPSKY et al., 2011). 

When variability estimates are used to generate ensembles of models, finding 

the best way of combining predictions from individual models remains a topic of 

research. GUBER et al. (2009) compared different methods of combining the simula-

tion results from 19 individual models by (i) using only the best model, (ii) using 

equal weights, (iii) regressing measured values to the results of the individual mo-

dels, (iv) using singular-value decomposition (SVD) in the regression, (v) using 

Bayesian model averaging, and (vi) using weights derived from the Akaike Infor-

mation Criterion. The SVD multimodel was the best method, with an accuracy of 

about 0.01 m
3
·m

-3
 at the 35 cm depth and about 0.005 m

3
·m

-3
 at greater depths for 

30 days of monitoring and 13 months of testing. Nevertheless, Bayesian averaging 

continues to be popular (WANG et al., 2015). 

Data assimilation with variability estimates from PTFs was demonstrated by 

PAN et al. (2012), who generated an ensemble of Richards' equation-based models 

for the EnKF application to the assimilation of soil water content data. They re-

searched how effective the assimilation of soil moisture sensor data can be in cor-

recting simulated soil water content profiles in a field soil. Data from a field expe-

riment were used, in which 60 two-rod time domain reflectometry (TDR) probes 

were installed in a loamy soil at five depths to monitor the soil water content.  

An ensemble of models was developed with six PTFs for water retention and 

four PTFs for the saturated hydraulic conductivity (Ksat). Measurements at all five 
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depths and at one or two depths were assimilated. Accounting for the temporal sta-

bility of water contents substantially decreased the estimated noise in the data. Ap-

plicability of the Richards' equation was confirmed by the satisfactory calibration 

results. In the absence of calibration and data assimilation, simulations developed a 

strong bias caused by the overestimation of Ksat from PTFs. Assimilating meas-

urements from a single depth of 15 cm or 35 cm provided substantial improvements 

at all other observation depths. An increase in data assimilation frequency improved 

model performance between the assimilation times. Overall, bringing together de-

velopments in pedotransfer functions, including the temporal stability of soil water 

patterns – the mean relative differences of soil water content –, and soil water con-

tent sensors has a potential to create a new source of data to improve modeling 

results in soil hydrology and related fields.  

“Big data” and spatial variability patterns in soil hydrology 

The advent of geophysical methods, proximal soil sensing, and sensor networks 

substantially changed the landscape of PTF development by making available mil-

lions of measurements at a reasonably low cost (e.g. BABAEIAN et al., 2015). Most 

of such “big data” do not provide direct measurements of soil variables that are of 

interest in pedotransfer work (soil water contents at desirable ranges of depths, soil 

water retention, and soil hydraulic conductivity).  

Spatio-temporal variations of soil water contents from sensor networks may 

serve as a potential source of data on the spatial variation of soil hydraulic proper-

ties. This was demonstrated by MARTINEZ et al. (2013), who simulated one-

dimensional water flow with the HYDRUS code for bare and grassed sandy loam, 

loam and clay soils at different levels of variability in the saturated hydraulic con-

ductivity Ksat. Soil water content at 0.05 and 0.60 m and the average water content 

of the top 1 m were analyzed. Results were presented using the metric of soil water 

temporal stability in 100 soil columns used for each combination of soil and season. 

Using log-normal distributions of Ksat resulted in mean relative differences distribu-

tions that were commonly observed in experimental studies of soil water content 

variability. Linear relationships were observed between the scaling factor of ln Ksat 

and the spread of the mean relative differences distributions. Variation in mean 

relative differences was higher in coarser textures than in finer ones and more vari-

ability was seen in the topsoil than in the subsoil. Root water uptake decreased the 

mean relative differences variability in the root zone and increased the variability 

below it. Water flow simulations indicated the possibility of estimating the spatial 

variability of Ksat from soil water content monitoring with a sensor network. 

Spatial variability in soil water contents can be derived from temporal variabil-

ity. MARTINEZ et al. (2012) tested the hypothesis that regression relationships be-

tween soil water content (θ) and collocated apparent electrical conductivity (ECa) 

can become more accurate if several time-lapse ECa surveys rather than a single 

ECa survey are used. Vertisol plots under conventional tillage and direct drilling 

were surveyed for gravimetric θ (θg) in the top 0.3 m layer at 17 times and for top-

soil ECa at 13 times in 2008 through 2010. Only weak correlations (with R < 0.21) 
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were found between ECa and θg measured on the same day. The accuracy of regres-

sion predictions of θ substantially improved when data of several ECa surveys, ra-

ther than a single survey, were used. Therefore, knowledge about the temporal vari-

ability in soil properties, as captured by the time-lapse ECa data, improved the esti-

mation of spatial variability of soil water contents without determining soil proper-

ties that affect soil-water content.  

Estimating parameter correlation 

Statistical distributions of soil hydraulic parameters have to be known in the 

generation of synthetic fields of soil hydraulic properties used in ensemble model-

ing of soil water dynamics and soil water content data assimilation. Pedotransfer 

functions that provide statistical distributions of water retention and hydraulic con-

ductivity parameters for textural classes are most often used in parameter field gen-

eration. The presence of strong correlations can substantially influence the parame-

ter generation results. QU et al. (2015) found that assuming correlations between 

parameters of the van Genuchten-Mualem (VGM) equation strongly affects the 

results of inverse modeling, and makes these results more interpretable.  

The most commonly used set of functions to describe soil hydraulic properties 

include the van Genuchten equation for water retention (VAN GENUCHTEN, 1980): 

 

   
       

     
                   (1) 

 

Eq (1) coupled with the MUALEM model (1976) describing the hydraulic con-

ductivity curve: 

 

                   
        

     
 
 

   (2) 

 
where    is effective saturation (dimensionless);      is water retention at given   pressure 

head (cm of water column),   is considered here to be positive under unsaturated conditions, 

  and    are the residual and saturated moisture content (cm
3
·cm

-3
),   is a parameter corres-

ponding approximately to the inverse of the air-entry value (cm
−1

), and   is a shape parame-
ter (dimensionless) 

  

Parameter   is a shape parameter (dimensionless) which is usually assumed to be 

close to -0.5, although in reality it may vary from -10 to 10 and beyond.       is 

the soil hydraulic conductivity (cm·day
-1

) at given saturation and    is the hydraulic 

conductivity acting as a matching point at saturation (cm·day
-1

). Thus, correlations 

have to be established between parameters   ,   ,  ,  ,   and   . So far two differ-

rent approaches have been developed to estimate these correlations.  

The first approach uses pedotransfer functions to generate VGM parameters for 

a large number of soil compositions within a textural class, and then computes pa-

rameter correlations for each of the textural classes. The second approach computes 
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the VGM parameter correlations directly from parameter values obtained by fitting 

the VGM model to the water retention and hydraulic conductivity of soil samples 

belonging to a textural class. CARSEL and PARISH (1988) used the RAWLS et al. 

(1982) pedotransfer functions, and FAULKNER et al. (2003) used the Rosetta 

pedotransfer algorithm (SCHAAP et al., 2001) to develop correlations according to 

the first approach. The second approach was applied with the UNSODA database 

(NEMES et al., 2001), the US Southern Plains database (TIMLIN et al., 1999), and the 

Belgian database (VEREECKEN et al., 1989, 1990). A substantial number of consid-

erable (>0.7) correlation coefficients were found. Large differences were encoun-

tered between parameter correlations obtained with different approaches and differ-

rent databases for the same textural classes (FAULKNER et al., 2003). The first of the 

two approaches generally resulted in higher values of correlation coefficients be-

tween VGM parameters. One feature of this approach is that results depend on 

pedotransfer relationships not only within a given textural class but also on 

pedotransfer relationships within other textural classes, since the pedotransfer rela-

tionships are developed across the database containing data for several textural 

classes. Therefore, joint multivariate parameter distributions for a specific class 

may not be sufficiently accurate if developed with the first approach. 

 

 
Pedotransfer and scale  

 

The need for Ksat and water retention values at different scales is related to the 

suggestion to match the scale of measurement with the scale of model resolution 

(NEUMAN & WIERENGA, 2003). The latter is defined by the size of computational 

grid cells, which may be quite large in field projects. The overwhelming majority of 

data on soil hydraulic properties is obtained on relatively small samples with diame-

ters and heights between 5 and 10 cm. Computational cells in realistic modeling 

projects can be of several meters. Therefore, the use of pedotransfer to estimate 

hydraulic properties has to be accompanied by a scaling relationship. 

Upscaling pedotransfer results 

Both saturated hydraulic conductivity and soil water retention were shown to 

depend on the support area or volume. Some dependencies of Ksat on the support 

area are shown in Fig. 3. As the characteristic support size increases, Ksat values 

first increase by one to two orders of magnitude and then stabilize. Data in the 

range of scales where Ksat increases are rarely available, and it is usually assumed 

that the increase is log linear, i.e. Ksat increases with test volume, area, or radius 

according to a power law. 
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Fig. 3 

Dependencies of measured saturated hydraulic conductivity on test radius in soils 

Notes:  quartz-diorite saprolite at 200 cm depth, loamy texture – Ksat measurements on 

cores, soil columns, and drainfield (VEPRASKAS & WILLIAMS, 1995);  Groseclose soil, Ap 

horizon, loam and  Groseclose Bt clay cores of three sizes (KOOL et al. 1986); 

 Kokomo soil, mixed mineralogy silty clay loam at 50 cm, and  -Hoytville illitic clay 

from 23 cm – Ksat measurements with permeameter, on soil cores, and soil blocks (ZOBECK 

et al., 1986);  silt loam soil – Ksat measurements at the surface with double ring 
infiltrometers of different sizes (LAI & REN, 2007) 

 

An example of combining the pedotransfer with upscaling was recently present-

ed by PACHEPSKY et al. (2014). A 4-month-long experiment was conducted at the 

USDA–ARS experimental site where Cl
−
 was applied as a tracer with a pulse of 

irrigation water and its transport in groundwater and variably saturated shallow 

coarse-textured soils was monitored in two rows of wells on a daily basis. The 

HYDRUS-3D software (PC-PROGRESS, Prague) was used to set and calibrate the 

Richards model for flow simulations and the convective–dispersive equation for 

transport simulations. Saturated hydraulic conductivity values were estimated with 

class pedotransfer functions derived from the USDA database (RAWLS et al., 1998) 

containing results of about 1000 measurements in soils of different textures and 

bulk densities. A power law scaling for the saturated hydraulic conductivity was 

applied. When only two parameters of the scaling law rather than nine values of 

hydraulic conductivity from nine soil materials were calibrated, using the scaled 

saturated hydraulic conductivity values, resulted in an accuracy of simulations that 

was similar to the accuracy of the calibrated model results. Thus, scaling of 

pedotransfer-estimated saturated hydraulic conductivities can provide reasonable 

estimates for numerical flow and transport modeling in variably saturated soils. 
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Pedotransfer at coarse scales 

Scales coarser than the plot scale present unique challenges for pedotransfer re-

search. These scales are societally important and therefore the scrutiny of results is 

different compared with small scales. Management becomes a factor and an effi-

cient input, land use being an example. Often class inputs replace the continuous 

inputs. Accordingly, estimates based on classifications rather than on regressions 

become of interest, for example when input information of the PTF is of the cate-

gorical type, as in the case of soil maps (TÓTH et al., 2012) or soil survey infor-

mation (LILLY et al., 2008). 

An example of database analysis to build class-based pedotransfer functions was 

developed on 216 soil pedons for soils of moderate and large extent from the USDA 

Natural Resources Conservation Service (NRCS) soil characterization database 

(RAWLS & PACHEPSKY, 2002). Textural classes, genetic horizon numbers, slopes, 

position on the slope classes, and land surface shape classes were the field de-

scriptors to estimate water retention at -33 and -1500 kPa potentials for each hori-

zon in each pedon. Because the input variables were both categorical and continu-

ous, regression trees were used for subdividing the samples into the smallest num-

ber of the most homogeneous groups, which we tentatively called topotextural 

groups (TTG). Ten or fewer TTGs were defined for both the -33 and the -1500 kPa 

retention. The TTGs were different for the two matric potential levels. For the A 

horizon, the topotextural grouping resulted in estimates that were more accurate 

than those using laboratory textures only. Although most of the topographic varia-

bles were categorical in this work, those variables seemed to be useful for obtaining 

estimates of water retention. 

One important reason to combine topographic and texture information to esti-

mate water retention in field-, watershed-, and regional-scale projects is that soil 

textural classes are relatively broad, often only the dominating textural class is 

shown in soil maps, cartographers routinely use error-prone field judgments of soil 

texture, and soil texture is known to vary along slopes and to depend on the land 

surface shape.  

Another scale-related matter is pedotransfer for coarse-scale soil modeling, for 

example, in weather or climate models. At coarse scales, parameterization of soil 

hydrology uses parameters other than (1) and (2), e.g. field capacity, thick layer 

conductance, etc. The specific of these parameters is that they cannot be measured 

and the efficiency of the pedotransfer can be evaluated only in terms of the land-

atmosphere model performance. There is a pressing need to determine combinations 

of pedotransfer and upscaling procedures that can lead to the derivation of suitable 

coarse-scale soil model parameters. The spatial coarse scale often assumes a coarse 

temporal support, and that may lead to including in PTFs other environmental vari-

ables such as topographic, weather, and management attributes. Adding land use 

categories to the list of inputs presents an interesting and very much underused 

avenue to explore. However, this approach faces difficulties, because land use in-

formation is lacking from most of the hydropedological datasets or the variability of 

land use types is not sufficient for the analysis. 



Pedotransfer in soil physics: trends and outlook    349 

Techniques to develop and evaluate PTFs  
 

There has been a substantial evolution in techniques used to relate inputs and 

outputs of pedotransfer relationships. Linear regressions were replaced with non-

linear regressions. Then k-nearest neighbor algorithms (e.g. NEMES et al., 2006; 

BOTULA et al., 2015), artificial neural networks (e.g. MINASNY et al., 1999), classi-

fication and regression trees (e.g. LILLY et al., 2008; MARTIN et al.,2009; TÓTH et 

al., 2015), random forests (e.g. SEQUEIRA, 2014; TÓTH et al., 2014), support vector 

machines (e.g. LAMORSKI et al., 2008; HAGHVERDI et al., 2014), and Bayesian net-

works became popular (e.g. GHANBARIAN et al., 2015). The ensemble methodology 

was introduced, which relies on a number of simple, not very accurate models that 

appear to provide better predictors than raw soil basic property values. It includes a 

number of individual models and provides more robust predictions (BAKER & 

ELISON, 2008). Each of these techniques has both advantages and disadvantages, 

some of which are characterized in MINASNY and HARTEMINK (2011). 

Evaluation of PTFs is an essential element of their development and use. 

PACHEPSKY et al. (1999) broadly defined the accuracy of a PTF as the degree of 

correspondence between measured and estimated data for the data set from which 
the PTF was developed. The reliability of a PTF was assessed in terms of the corre-

spondence between measured and estimated data for data set(s) other than the one 

used to develop the PTF. Finally, the utility of a PTF in modeling was viewed as the 

degree of correspondence between measured and simulated environmental varia-
bles.  

The concept of PTF uncertainty (SCHAAP & LEIJ, 1998) encompasses the ambi-

guity in PTF predictions and parameters caused by input data variability and uneven 

representation of soils with different properties in the database. The uncertainty in 

PTF estimates may be evaluated using replicated PTF development with data re-

sampling by either the bootstrap (SCHAAP et al., 1998) or jackknife (PACHEPSKY & 

RAWLS, 1999) methods. Another technique to reduce over-fitting of PTFs is using 

cross validation (MARTIN et al., 2009; LAMORSKI et al., 2014; TÓTH et al., 2015). 

The reliability of a PTF is not directly related to its utility (PACHEPSKY et al., 

1999). The latter is affected by the sensitivity of the model to PTF predictions, and 

also by the uncertainty in other model inputs (LEENHARDT, 1995). The functional 

evaluation of PTFs considers the evaluation of PTFs on the basis of their utility and 

uses criteria directly related to specific applications rather than statistics to charac-

terize the accuracy. PTF accuracy may not be an issue since at least four factors 

affect the performance of a PTF in simulations. These are the accuracy of basic soil 

data used as inputs in the PTFs, the accuracy of the PTF itself, specific features of 

the simulation model, and the output used in the functional criteria (WÖSTEN & 

VAN GENUCHTEN, 1988).  

CHIRICO et al. (2010) found that PTF model error influences the uncertainty of 

hydrological models fed by the output of the PTFs to a greater extent, while input 

data error is less important. 
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Persistent knowledge  gaps in pedotransfer developments  
 

Burgeoning PTF development has not so far affected several persisting regional 

knowledge gaps. Remarkably little effort was put so far into PTF development for 

saline soils (RAJKAI, 1988; TÓTH et al., 2012), calcareous (KHODAVERDILOO, 2011) 

and gypsiferous soils, peat soils, paddy soils (AIMRUN & AMIN, 2009), soils with 

well-expressed shrink-swell behavior, and soils affected by freeze-thaw cycles. 

Soils from tropical regions are quite often considered as a pseudo-entity for which a 

single PTF can be applied (e.g. MINASNY & HARTEMINK, 2011). This assumption 

will not be needed later, as more regional data is accumulated and analyzed. Other 

advances in regional PTFs may be possible due to the presence of large databases 

on region-specific useful PTF inputs such as moisture equivalent (Brazil), laser 

diffractometry data (Poland), or soil specific surface (Iran). 

Seasonal changes in pedotransfer inputs and outputs may be substantial, espe-

cially in the topsoil. For example, WUEST (2015) reported up to 33% variation in 

soil bulk density in the topsoil during 39 months of observations. In most cases, 

more than one-third of the range in monthly means could be assigned to a seasonal 

component; that is, the means of a particular calendar month tended to be greater or 

less than the overall average. PACHEPSKY et al. (1992) saw more than 20% of sea-

sonal variation in water retention. Ignoring the temporal dynamics of soil hydraulic 

properties creates several hurdles. First, the reliability of derived pedotransfer equa-

tions can be hindered by the mismatch in measurements of inputs and outputs. Se-

cond the utility of PTFs can be compromised by the mismatch in measurement 

times of hydraulic properties and soil water and/or flux time series. The magnitude 

of possible errors has never been assessed. 

Spatial correlations in soil hydraulic properties are of special interest for interpo-

lation purposes. So far no support was found for the hypothesis that spatial correla-

tions in PTF-estimated and measured values are not significantly different (i.e. 

SINOWSKI et al., 1997). It remains to be learned whether this is a common situation 

and how this affects the accuracy of spatial mapping based on PTFs. 

Pedotransfer is widely used to simulate overland flow, but the scale effects on 

overland flow model parameters have not been studied widely. In particular, it is 

not known whether scale effects are the reason for the mixed results achieved in the 

use of curve numbers. Hierarchically organized surface heterogeneities can speed 

preferential flow and transport up but they can also slow transport down (VAN DE 

GIESEN, 2011). 

 

 

Pedotransfer and grand chal lenges of  the twenty -f irst  century  

 

As instruments for packaging and dissemination of the soil information essential 

for environmental predictions and risk assessment, pedotransfer functions are in-

creasingly in demand in research related to global change. In fact, pedotransfer 

functions are indispensable in utility in data-poor environments and large scale 

projects. 
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A large role is played by PTFs in carbon stock assessments and carbon seques-

tration forecasts. Pedotransfer functions for bulk density are needed to convert gra-

vimetric soil organic carbon contents into the volumetric values used in carbon 

accounting. SCHRUMPF et al. (2011) noted that the application of PTFs for the esti-

mation of bulk densities caused considerable underestimation of total variances of 

OC stocks if the error associated with the PTF was not accounted for. Global esti-

mates of soil nitrogen stock were obtained using pedotransfer relationships 

(GLENDINING et al., 2011). In this work, the most important predictor was found to 

be soil organic carbon (SOC). Other helpful soil and site properties for predicting 

TN included distance from the equator, soil texture class, soil group C:N ratio, pH, 

and % clay. Modeling soil carbon stock evolution with the popular RothC model 

can rely on PTFs that provide an estimation of all active carbon pools. As inde-

pendent variables, only total organic carbon (TOC) and clay content are used, 

which are easily available at most scales (WEIHERMUELLER et al., 2013). Soil ag-

gregation as an essential factor of soil carbon change affected by future climate 

forcing has also been addressed in a pedotransfer context (KLOPFENSTEIN et al., 

2015). Parameterization of the nitrate emission model DNDC with PTFs resulted in 

a clear improvement of the simulated variables at experimental sites in Belgium 

(BEHEYDT et al., 2007). 

Climate change and related hydrological weather events impose the need for 

better parameterization of soil properties in weather and climate models at different 

scales. This translates into the need for selection, improvement, and evaluation of 

PTFs. BREUER et al. (2012) compared results of planetary boundary layer (PBL) 

height simulations obtained over the Carpathian Basin with soil hydraulic property 

estimates from two databases – the local, Hungarian HUNSODA (NEMES, 2002) 

and a database from the US (COSBY et al., 1984). Some soil hydraulic parameter 

values in the two datasets differed by 5% to 50%. These differences resulted in 10% 

deviations in averaged PBL heights over Hungary and in differences up to 25% 

over smaller subareas. LIVNEH et al. (2015) noted that soil textural assumptions 

present an often overlooked source of hydrologic modelling uncertainty in hydro-

logic states and fluxes. Mesoscale hydrologic model simulations driven by the digi-

tal general soil map of the USA (STATSGO2) soil database (1:250000) were com-

pared with those using the Food and Agriculture Organization (FAO)-based harmo-

nized world soil database (1:5000000) over the Mississippi river basin.  

Model simulations using STATSGO2 consistently led to greater separation be-

tween fast and slow runoff responses (by approximately 24–39%) and, generally, 

more extreme responses to historic flood and drought events. The choice of soil 

database altered the partitioning of precipitation between evapotranspiration and 

runoff, and affected the correlation structure between forcing and modelled fluxes 

by up to 0.2 points. DE LANNOY (2015) pointed out that the advent of new data sets 

describing soil texture and associated soil properties offers the promise of improved 

hydrological simulations. The Catchment land surface model (LSM) of the NASA 

Goddard Earth Observing System version 5 (GEOS-5) was upgraded using new 

texture data, with hydraulic parameters derived for a more extensive set of texture 

classes using pedotransfer functions.  
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A suite of simulations with the original and new parameter versions showed 

modest, yet significant improvements in the Catchment LSM's simulation of soil 

moisture and surface hydrological fluxes.  

Deciphering changes in hydrological conditions and extreme events is of para-

mount importance as climate change manifestations become more profound.  

MILLER et al. (2008) demonstrated the use of pedotransfer functions to accurate-

ly assign curve numbers in hydrologic models used for the design of flood hazard 

mitigation structures.  

Contributions of the soil to the delivery of ecosystem services are manifold. 

CALZOLARI et al. (2016) researched the composition and interrelation of multiple 

soil functions and potential services based on soil functions as derived from avai-

lable soil data for a reference depth of 100 cm. The methodology included locally 

calibrated pedotransfer functions.  

PALM et al. (2007) assumed that the natural capital of soils that underlies eco-

system services is primarily determined by three core soil properties: texture, min-

eralogy, and soil organic matter. They proposed an approach combining digital soil 

maps, pedotransfer functions, remote sensing, spectral analysis, and soil inference 

systems for the simultaneous characterization of various chemical, physical, and 

biological properties to overcome the great limitations and costs of conventional 

methods of soil assessments. 

Overall, pedotransfer functions currently serve as integral and essential instru-

ments in the science-based toolbox for diagnostics, monitoring, predictions, and 

management of the changing Earth. The interest in Earth observations results in the 

appearance of new observation products, survey methods, and data analysis tech-

niques that also benefit PTF development and use. 

 

 

Conclusions  
 

Pedotransfer functions (PTFs) are empirical relationships between parameters of 

soil models and more easily obtainable data on soil properties. PTFs have become 

an indispensable tool in modeling soil processes. As alternative methods to direct 

measurements, they bridge the data we have and data we need by using soil survey 

and monitoring data to enable modeling for real-world applications. Pedotransfer is 

extensively used in soil models addressing the most pressing environmental issues. 

Some critical problems that are faced by PTF development and applications can be 

summarized as follows. As more intricate biogeochemical processes are being mod-

eled, development of PTFs for parameters of those processes becomes essential. 

Emergence of a small number of well accepted models will be helpful and PTF 

development can be focused on the parameters of these models. 

Since any generally suitable forms of equations to express PTF relationships are 

essentially unknown, there has been a trend to employ highly nonlinear models 

using so-called pattern recognition techniques, e.g. neural networks, decision trees, 

support vector machines, random forests, which in theory are flexible enough to 

simulate any dependence. This, however, comes with the penalty of a large number 
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of coefficients that are difficult to estimate reliably and are usually more data-

hungry.  

The multiplicity of models, i.e. presence of several models producing the same 

output variables, is commonly found in soil modeling, and is a typical feature in the 

PTF research field as well. However, PTF intercomparisons are lagging behind PTF 

development. This is aggravated by the fact that the coefficients of PTFs based on 

machine-learning methods are usually not reported.  

Estimating the variability of soil model parameters becomes increasingly im-

portant, as newer modeling technologies such as data assimilation, ensemble model-

ing, and model abstraction, become progressively more popular. The variability of 

soil properties can be derived from the spatio-temporal dynamics of soil variables, 

and that opens new sources of PTF inputs stemming from technology advances 

such as monitoring networks, remote and proximal sensing, and omics.  

PTF development has not so far affected several persisting regional knowledge 

gaps. Soils with specific hydraulic properties do not have reliable PTFs. Most flux 

models in soils, be it water, solutes, gas, or heat, involve parameters that are scale-

dependent. Including scale dependencies in PTFs will be critical to improve PTF 

usability. Another scale-related matter is pedotransfer for coarse-scale soil model-

ing, for example, in weather or climate models.  

Some PTF inputs are time- or space-dependent, and yet little is known about 

whether the spatial or temporal structure of PTF outputs is properly predicted from 

such inputs.  

Further exploration is needed to use PTFs as a source of hypotheses on and in-

sights into relationships between soil processes and soil composition as well as 

between soil structure and soil functioning. Using models of soil-forming processes 

to generate PTFs, and in general, developing physics-based PTFs, remains to be 

explored. The use of geophysical data and soil proximal sensing data in PTFs will 

increase as the measurement techniques become available; physics-based interpreta-

tion of such PTFs is expected to be in demand.  

The use of PTFs is prone to encounter the “sorcerer’s apprentice” problem. 

Availability and ease of use may preclude proper PTF evaluation and PTF selection. 

An effort needs to be made to inform PTF users about limitations and pitfalls of 

using an arbitrary PTF “from the shelf”.  

PTFs are empirical relationships and their accuracy outside the database used for 

the PTF development is essentially unknown. Therefore, they should never be con-

sidered as an ultimate source of parameters in soil modeling. Rather, PTF develop-

ers strive to provide a balance between accuracy and availability. The primary role 

of PTF is to assist in modeling for screening and comparative purposes, establishing 

ranges and/or probability distributions of model parameters, and creating realistic 

synthetic soil datasets and scenarios. Developing and improving PTFs will remain 

the mainstream way of packaging data and knowledge for applications of soil mo-

deling. 
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