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Introduction 
 

In agriculturally cultivated areas, water and nutrient movement through the soil 

matrices has a crucial role for achieving good crop growth and yield. Soil structure 

can be very vulnerable in terms of climatic conditions. As most climate change 

scenarios predict an increase in the frequency of intensive rainfall events, cultivated 

land may be extremely susceptible for soil erosion or flooding (ZIADAT & TAIMEH 

2013). Many agriculturally cultivated areas might experience changes in the fre-

quency and intensity of rains, which might be followed by extensive dry periods 

(FARKAS et al., 2014; FAŠKO et al., 2008; HARDY, 2003).  

Rain events that have different time scales also have different effects on the soil 

crust and can influence the rate of local erosion or flooding (HAERTER et al., 2010); 

consequently the increased intensity and duration of local rain events may promote 

soil degradation and solute leaching to below the root zone. Irrigation intensities 

can influence overall soil health by changing the rate of oxygen flux, which is very 

important for crop growth in the root zone. For example, high irrigation intensity, 

such as 18 mm·h
-1

 may lead to a rapid decrease in oxygen flux, causing possible 

delays in root growth (GORNAT et al., 1971; SILBERBUSH et al., 1979), while at 

much lower irrigation intensity, e.g. 3 mm·h
-1

, the change in oxygen flux might be 

less noteworthy (GORNAT et al., 1971).   

Investigating water and solute movement through the subsurface can be vital to 

mitigating any negative effects in agricultural applications, such as fertilizer addi-

tion. Too much fertilizer can result in nitrogen leaching, ultimately degrading the 

quality of nearby waters and having impact on soil biology (MORTAZAVI et al., 

2013).  
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Nutrient leaching can be a cause of surface and/or groundwater contamination, 

which could result in non-potable water (SMITH et al., 1999), eutrophication, or 

algal blooms (FARKAS et al., 2013; LICHNER et al., 2013; ONDERKA & PEKÁROVÁ, 

2008; RABALAIS et al., 2009). Therefore, enhanced knowledge about the soil matri-

ces of cultivated lands can be a very important element of decision-making in agri-

cultural management.  

Most soil matrices are representing non-homogeneous soil structures having 

pores and macropores, such as roots, voids, tunnels made by small animals, result-

ing in non-equilibrium water flow through the subsurface (BEVEN & GERMANN, 

2013; JARVIS, 2007). In terms of preferential flow, it cannot be limited by 

macropores as irregular wetting patterns within the soil matrices can also affect 

water flow (DEKKER & RITSEMA, 1996). Water and solute transport in heterogene-

ous and variably saturated soil matrices have been studied in the past several dec-

ades by numerous researchers (BALASHOV et al., 2014; HARDELAUF et al., 2007; 

HARTER & ZHANG, 1999; HOREL et al., 2015; TWARAKAVI et al., 2010). Preferen-

tial flow can greatly influence both water and solute movement through the soil, as 

it was found by several studies (e.g. DOHNAL et al., 2009; KODESOVA et al., 2009; 

VOGEL et al., 2007, 2010). Vertical soil water movement also can significantly 

differ under different vegetation or crop lands and cultivation methods (GOVAERTS 

et al., 2007).  

The aim of this study was to analyze solute transport using radioactive iodide 

through clay loam soil under either maize or grasslands during four adjacent irriga-

tion experiments. The objective of the study was to obtain a better understanding of 

how water movement might affect nutrients and minerals leaching to and below the 

root zones. The present study was a part of a series of experiments with different 

agricultural crops of interest (ALAOUI et al., 1997; DUŠEK et al., 2013; LICHNER et 

al., 2013).  

The results could help to understand the leaching of water, solutes or pollutants 

such as nutrient or pesticides to the root growth zone and below the root zone under 

different agricultural land uses. These findings could promote decision-making 

aimed at mitigating any negative effects associated with the water/solute transporta-

tion process.  

  

 

Material  and methods  

Field experiment and soil characteristics  

The present study embraces the second of four experiments performed in the 

Experimental Station of the Research Institute of Irrigation Bratislava in 1993–

1996. The study area is located in Most pri Bratislave village (48°08’27’’ N, 

17°14’41’’ E), and it is about 133 m above sea level. The study site has an average 

annual air temperature of 9.7 °C and the average annual precipitation amount of 554 

mm. The soil is classified as a Chernozem (WRB 2006) and has a clay loam texture 

(SOIL SURVEY DIVISION STAFF, 1993).  
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The soil profile consists of three relatively homogeneous horizons. The physical 

and chemical properties of the surface horizon were as follows: clay, loam and sand 

contents were 53, 46 and 1%; CaCO3 content 11.2%; Corg content 1.9%; pH(H2O) 

8.2 and pH(KCl) 7.8.  

Particle size distribution, bulk density and saturated hydraulic conductivity in 

lower depths were presented for 0.1 m depth increments in ALAOUI et al., (1997). 

The experiment was performed at four 3 m × 3 m plots. Two of them (Plots 1 

and 2) were cultivated and covered by maize (Zea mays L.) in an early phase of 

ontogenesis, while the other two plots (Plots 3 and 4) were uncultivated and co-

vered by grass. The experimental conditions were similar to those described by 

DUŠEK et al. (2013). Briefly, a radioactive tracer technique developed by LICHNER 

(1992) was used to measure the tracer distribution in the soil profile.  

The measuring probe, used to determine tracer concentrations, consisted of a du-

ralumin access tube (inner diameter 8 mm, outer diameter 12 mm), in which the 

Geiger–Müller detector (length 21 mm, diameter 6.3 mm) and the analog interface 

unit are connected to a nuclear analyzer with a coaxial cable. The counting rate 

recorded by the detector is directly proportional to the activity of the radioactive 

tracer (IAEA, 1975), in the present case to the mass of radioactive iodine occurring 

in a cylindrical volume with the radius of a few centimeters (the half-thickness of 

the contributing volume for the clay loam soil and 
131

I
 –

 is about 1 cm). It was as-

sumed that the change in 
131

I
 –

 activity is proportional to the change in soil water 

content.  

The schematic arrangement of the probes in each plot can be seen on Fig. 1.  

 

 

Fig. 1  

The schematic arrangement of the Geiger-Müller detector probes in each plot 
(GM-1, 2, … 9 – probes with G-M tubes. Dimensions are in cm.) 
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Thirty six probes, nine per plot, were placed uniformly at 2 m×2 m squares at a 

distance of 1 m and inserted into the soil to a depth of 1.5 m. 

Around each probe, the narrow pulse of Na
131

I solution with the activity of 

about 10 MBq (0.27 mCi) was trickled by syringe into the annulus with a diameter 

of about 10 cm. Then the plots 1 and 3 were irrigated with water at a rate of 2 

mm·hr
-1 for 50 hours, and the plots 2 and 4 at a rate of 4 mm·hr

-1for 25 hours, to get a 

cumulative infiltration of 100 mm in all the plots (Fig. 2).  

 

  

 

Fig. 2  
Irrigation amounts, time of application and rain events during the course of the study. “Low” 

and “High” represents low (2 mm·h
-1
) and high (4 mm·h

-1
) irrigation intensities  

The counting rates nm were then measured as a function of depth z (with N in-

crements of 10 cm) in all the probes for a cumulative water input of 100 mm. The 

depth of infiltration front zm was also measured in all the probes for the above-

mentioned cumulative water inputs. Finally, true counting rates (nti) and relative 

counting rates (nri) in the probe i were calculated as:  

 

 )/)( 693.0exp( Ttnnn bmiti   (1) 


Zn

Z

titiri nnn
1

/  (2) 

where: nb is the counting rate of the background, t is the time elapsed after the start of tracer 
application, and T is the tracer half-time. 

Time (h) 
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Statistical analysis 

Differences between site parameters were evaluated using paired, two-tailed t-

test. Differences between solute transports in the study plots over time and solute 

amount versus depth in plots were evaluated using two-way ANOVA. Five time 

periods were investigated, when the total irrigation amounts reached 2, 4, 6, 8, and 

10 mm. The statistical significance in the analysis was defined at p < 0.05. 

 

 

Results  and Discuss ion 

Effects of land use on water and solute movement through the subsurface 

131
I

 –
 activity and water movement through soil profile – In all four plots most of 

the solute moved through the soil profile, reaching a depth of 120 cm during the 

time period investigated (Fig. 3 and 4). The most concentrated average 
131

I
 –

 activity 

was observed in the top 30–40 cm of the soil profile, with the most pronounced 

activity seen at 10 cm below ground. These findings were relatively similar in all 

the plots, regardless of the type of vegetation or irrigation intensity.  

Statistical analysis showed that the main effects of both depth and plots were 

significant (p > 0.05; two-way ANOVA with replication, n = 9); however the inter-

action between them was not (p = 0.173; two-way ANOVA with replication, n = 9).  

 

 
 

Fig. 3 

Vertical iodide distributions in the soil profiles of Plot 1 (a), Plot 2 (b) with mean measured 
distribution (continuous line) and minimum and maximum values (dashed lines) represent-

ing measurement variability among the nine probes. The measured iodide profiles along the 
individual probes were determined after infiltration of 100 mm of water at t = 216, 125.5, 

198, and 123 h for Plot 1, 2, 3, and 4, respectively. “Low” and “High” represents low 
(2 mm·h

-1
) and high (4 mm·h

-1
) irrigation intensities. 
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Fig. 4 
Vertical iodide distributions in the soil profiles of Plot 3 (c), and Plot 4 (d) with mean meas-

ured distribution (continuous line) and minimum and maximum values (dashed lines) repre-
senting measurement variability between the nine probes. The iodide profiles measured 

along the individual probes were determined after the infiltration of 100 mm of water at 

t = 216, 125.5, 198, and 123 h for Plot 1, 2, 3, and 4, respectively. “Low” and “High” repre-
sents low (2 mm·h

-1
) and high (4 mm·h

-1
) irrigation intensities.  

Maize with high irrigation intensity (plot 2) and grass with low irrigation inten-

sity (plot 3) had the most distinguishable maximum values compared to each other 

(p = 0.007; t-test). When the minimum values were compared, only the different 

irrigation intensities on grassland (plots 3 and 4) showed significant changes (p = 

0.031; t-test).  

The 
131

I
–
 activity decreased continuously with depth below the first 10 cm of the 

soil profile until reaching at approximately 80 cm, after which, however, the 
131

I
 –

 

activity started to increase, and at most study sites the counting rates (nm) changed 

most noticeably in their maximum values, as shown on Fig. 3 and 4. On grassland 

with high irrigation intensities, the average and maximum values of 
131

I
 –

 activity 

increased considerably compared to data attained at a depth of 80 cm (with increas-

es of 92% and an additional 27%, respectively; Fig. 4d). These changes in nm values 

distinguished the plot four soil matrices from those of the other three plots. These 

differences in 
131

I
 –

 activity with depth and the large differences in minimum and 

maximum values over the course of the study indicate the preferential flow of 
131

I
 –

through the subsurface. 

Effects of infiltration rates on solute concentration changes 

At the end of the experiment the largest 
131

I
 –

 activity was observed for maize 

with an irrigation rate of i = 2 mm·h
-1. Especially high iodide activity was measured 

in the root zone, which is important for crop growth, highlights the benefit of the 

slower rate irrigation versus the higher one in the present study. For example, the 
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activity 10 cm below the ground was almost 41% higher in plot 1 than in plot 2 

(maize with 4 mm·h
-1 irrigation rate). 

Grassland with lower irrigation intensity had relatively high 
131

I
 –

 activity be-

tween 20 cm and 50 cm below the soil surface, which was the largest among all 

study sites. Nevertheless, the lowest average values were measured for plot 3 at 

depths of 10 cm and 20 cm. These results suggested faster solute movement deeper 

into the soil profile on grassland at lower irrigation intensity compared to faster one 

(Fig. 4c and 4d). The opposite was for maize, where higher irrigation rates resulted 

in faster vertical movement through the soil matrix (Fig. 3a and 3b).  

Maize land with slower irrigation rates (i = 2 mm·h
-1) compared with the higher 

(i = 4 mm·h
-1) showed that the slower irrigation rates saturated more the upper 

20 cm, especially at 0 and 10 cm below surface with 2.25 and 1.40 times higher 
131

I
–
 activity measured, respectively. The faster irrigation rate, however, had over 

four times higher 
131

I
 –

 activity at 60 and 70 cm below the surface, demonstrating 

faster water movement through the soil matrix.  

Compared with maize, the trend of water movement through the subsurface in 

grassland showed a reverse response to irrigation rates. The slower irrigation inten-

sity led to much lower 
131

I
 –

 activity closer to the soil surface, up to a depth of 30 

cm, after which the measurements started to increase compared to plot 4, which had 

higher irrigation intensity, and remained relatively high (up to 4.1 times higher) up 

to a depth of 90 cm.  

Fig. 5 shows changes in soil moisture content over time for the four study sites. 

It is clear that the most varied responses to the different irrigation rates and plant 

types were recorded during the first few days of the experiment.   

 

Fig. 5 
Measured mean volumetric water content (%) for the four study sites over time at a depth 

of 0–60 cm. “Low” and “High” represents low (2 mm·h
-1

) and high(4 mm·h
-1
) irrigation 

intensities.  

Time (h) 
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Overall, there was a significant difference in the 
131

I
 –

 activity with depth on the 

two maize plots (p = 0.038; t-test), while no significant difference (p = 0.053; t-test) 

was found for the grass plots.  

131
I

 –
 counting rates over time among study sites – As the amount of water flow-

ing through the subsurface increased, the changes in soil matrix parameters are 

more pronounced. As shown on Fig. 5, the most noticeable difference between the 

study sites at 30 cm below the soil surface could be observed for grassland given 

low intensity irrigation. The average 
131

I
 –

 activity at I = 4 cm was 1.74–2.01 times 

higher than for the other sites. This trend continued throughout the entire experi-

ment as the total amount of I reached at 10 cm (Fig. 6).  

 

 

Fig. 6 

Measured counting rate (cpm) for the four study sites at different cumulative amounts of 
irrigation water (I = 2 cm, 4 cm, 6 cm, 8 cm, and 10 cm) at a depth of 30 cm. Symbols repre-

sent mean values (n = 9) and error bars represent the minimum and maximum values meas-
ured among the nine probes. “Low” and “High” represents low (2 mm·h

-1
) and high 

(4 mm·h
-1

) irrigation intensities.  

Statistical analysis revealed significant difference (p < 0.001; two-way ANOVA) 

both between plots and between the data recorded for different irrigation amounts. 

A previous study at a nearby location showed that the top 30 cm of the soil column 

is the most important layer for maize, as its root density and most root lengths can 

be found in this interval (HOREL et al., 2014). 

Grasses with high root density can improve infiltration by enhancing soil porosi-

ty (PRIHAR et al., 2000); consequently grasslands can be expected to have higher 

infiltration rates compared to maize. However it has also been found that actively 

growing roots can reduce infiltration (ANGERS & CARON, 1998).  

In the present study the cumulative irrigation water (I = 10 cm) was 1.18, 1.49 

and 1.58 times higher on average for grass with low irrigation intensity than for 
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grass with high irrigation intensity, and for maize with low and high irrigation in-

tensities, respectively (Fig. 6), indicating that the grassland already had a developed 

root structure. 

 

 

Conclusions  

 

It was observed in the present experiment that the top 30 cm of the soil profile 

had the highest 
131

I
–
 activity, regardless of the type of vegetation or the irrigation 

intensity. In general, In general, the soil 10 cm below the surface had the high-

est
131

I
–
 activity, making up between 27 and 40% of total 

131
I
–
 measurements (on 

plot 3 and 1, respectively) at the end of the investigated period. This 10 cm depth is 

crucial for good vegetation growth and crop yield, as the highest root density can be 

found here. It was concluded that the 2 mm·h
-1 

and 4 mm·h
-1 

irrigation intensities 

applied in the present study led to relatively small differences in soil water move-

ments between maize and grassland, with somewhat more beneficial results ob-

served when lower irrigation rate was applied in the case of maize.  

 

 

Summary  

 
The present study investigated changes in soil moisture content in fields of 

maize and grassland using infiltration experiments. The study explored the effects 

of different infiltration rates (i = 2 mm·h
-1 or i = 4 mm·h

-1) on soil moisture and so-

lute (
131

I
-
) movement at different depths. The transport of radioactive iodide 

131
I
–
 in 

the structured clay loam soil was monitored during four irrigation experiments in 

adjacent plots. Cumulatively, 100 mm of water was applied. The activity of the 
131

I
–
 

tracer was monitored as function of depth and time by Geiger–Müller (G–M) detec-

tors in nine vertically installed access tubes per plot.  

 

Keywords: infiltration, irrigation, structured clay loam soil, field tracer experiment, 

land use 
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