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Dispersal plays a key role in the adaptation of species. It has been suggested that even in a

stable and predictable environment, it is essential for any given population to “send” a certain

portion of its offspring to disperse (referred as evolutionary stable dispersal rate). Although the

literature on the flight behaviour of one of the major maize pests, the western corn rootworm,

is rich, relatively little is known about its inter-field movements under field conditions. In the

present study, inter-field movement of adult beetles was observed in Central-Europe under

quasi-isolated conditions of infested continuous and un-infested first year maize fields, and re-

lated to candidate predictor variables. Percent of immigrants (net percent of adults within a

given population leaving their natal maize field and arriving in first-year maize) varied greatly

across years and locations (0.4–93.3%, mean = 38.7%). Results of the study provided field evi-

dence of the assumption that western corn rootworm performs density dependent inter-field

movement. Independent from pest densities, it appeared that about 1/3 of an adult beetle popu-

lation always leaves its natal maize field, which likely allows the species to find new food

sources and oviposition sites. The distance between maize fields and the phenological status of

maize influenced inter-field movements but at a much less extent than it could have been ex-

pected from laboratory research findings.

Keywords: Zea mays, inter-field movement, dispersal, migration, continuous maize, first-

year maize, western corn rootworm, Diabrotica virgifera virgifera

Introduction

The western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera:

Chrysomelidae) is often quoted as “a human made pest”. This frequently cited expression

of Krysan (1993) refers to its economic importance and its remarkable capacity of behav-

ioural adaptation to changing agricultural environments. Adaptation, in the biological

sense, is “the process of change by which an organism or species becomes better suited to
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its environment” (oxforddictionaries.com/definition/english/adaptation). The western

corn rootworm performed such a change multiple times during its human-recorded his-

tory. Being native to subtropical America, it has spread northward to temperate climates

whilst becoming a specialist for cultivated maize. This process of adaptation to maize is

assumed to have taken place about a thousand year ago (Smith 1966; Branson and Krysan

1981). In the mid-20th century, parallel with the intensification of maize cultivation, west-

ern corn rootworm performed further spatial expansion from Nebraska, Colorado and

Kansas towards the East Coast of the USA (Chiang 1973). First European report of this

pest dates back to 1992 (Baca 1994), however, western corn rootworm is assumed to have

arrived 8–13 years earlier (Szalai et al. 2011). Genetic variability studies indicated that

multiple independent introduction events occurred in Europe (Miller et al. 2005).

The western corn rootworm is a univoltine insect pest, laying eggs from mid-summer

until the first frosts in autumn, under temperate climate. After overwintering as eggs, larva

hatch during the spring of the following year. The larva can successfully end its develop-

ment almost exclusively on the roots of maize (Chiang 1973). From the view point of pest

population survival, the most important question is whether or not there will be maize

grown in the following growing season in that field where females laid their eggs in the

previous year. Therefore, crop rotation is the most effective non-chemical control tool for

this pest. Despite being an effective control option, farmers in Europe are often reluctant

to accept rotation, since maize is one of the most profitable field crops in many regions

(Fall and Wesseler 2008). Moreover, annual rotation of all maize fields seems unneces-

sary both from theoretical viewpoint (Szalai et al. 2014) and based on field observations

(Kiss 2005; Ripka 2008). In their computer simulation, Szalai et al. (2014) showed that

keeping 20–30% continuous maize in the area-wide rotation scheme can sustain the pest

population level under economic threshold. The essence of this phenomenon lays in the

inter-field movements of western corn rootworm, i.e. continuous maize fields act as reser-

voirs of emigrating adults resulting in a dilution of population at the landscape level.

Dispersal strategies of species play a key role in the adaptation to the changing environ-

ment. It is an energy-demanding process and a behaviour that is subject to increased mor-

tality. If conditions are too feeble to be worthwhile to stay in a particular habitat patch,

clearly the risk of dispersal must be taken. However, dispersal is much more than merely

avoiding unfavourable biotic or abiotic conditions. It has been mathematically proven that

even in stable, uniform and predictable environment it is essential for any given popula-

tion that a certain percentage of its offspring take the risk of dispersal (referred as evolu-

tionary stable dispersal rate) (Hamilton and May 1977; Comins et al. 1980). Analyzing the

evolution of dispersal rates in spatially and temporally varying environments, McPeek

and Holt (1992) concluded that some level of dispersal evolves under “almost all regimes

of habitat variability”. The evolution of dispersal strategies has been in the forefront of be-

havioural ecology studies for a long time. According to our present knowledge both exter-

nal (habitat carrying capacity, patch quality, local catastrophes) and internal (chaotic pop-

ulation dynamics, demographic stochasticity) factors act as driving forces in the selection

for different dispersal strategies (Comins et al. 1980; Cohen and Levine 1991; McPeek

and Holt 1992; Olivieri et al. 1995; Holt and McPeek 1996; Cadet et al. 2003). In reflec-
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tion to this complex issue, it is particularly challenging to gain deeper insight into the dif-

ferent selection pressures dynamically forming dispersal rates in the spatiotemporally

varying agricultural landscapes. As for western corn rootworm, the survival of the subse-

quent generation depends on the fact whether there is maize grown in the following grow-

ing season in that location where females laid their eggs previously. Intuitively one would

expect a certain rate of dispersal in order to maximize the likelihood of the population’s

survival. Experimental data are available on the percent of beetles performing sustained

flight under laboratory conditions (Coats et al. 1986; Naranjo 1990). Field studies identi-

fied some external environmental factors as driving forces beyond inter-field movements

of adult beetles (Naranjo 1991, 1994; Darnell et al. 2000; Campbell and Meinke 2006).

Nevertheless, the question naturally arises: is there any evidence for the existence of a dis-

persal that is independent from stress factors? How do different (environmental and

non-environmental, external vs. internal) factors act together resulting in such inter-field

movements that we might call “a dispersal strategy” of the western corn rootworm? The

aim of this study was to investigate these questions. Field experiments were conducted in

order to quantify the rate of immigration from infested continuous into first-year maize

fields in a quasi-isolated field pair setup. Percent of immigrants was then related to exter-

nal and internal factors as candidate predictor variables of inter-field movement.

Materials and Methods

Experimental sites

The field setup was the key concept in this study since the setup itself made it possible to

quantify the magnitude of inter-field movements of adult beetles. An elaborate search for

suitable pairs of maize fields was conducted; one pair of fields consisted of a continuous

maize field and a first-year maize field at a given distance from each other. The field pairs

were “quasi-isolated”, i.e. within a 3 km radius circle around the first year maize field, the

only other maize field was the corresponding continuous maize field. Therefore, within a

given field pair, the corresponding continuous maize field was supposed to be the only

source of immigrant adults into the first-year maize field. In total, 20 pairs of such maize

fields were found and studied in southern Hungary (Tolna and Csongrád Counties) in

2006 and 2007. Non-baited yellow sticky traps (Pherocon AM, Trece Inc., USA) were as-

sessed to quantify adult movements. Three traps were placed in each field, the first one be-

ing placed 20 m from the field edge then 40 m distance between each trap. Traps were

fixed on maize plants at ear height and were changed on weekly basis. Traps were located

in that part of the fields that was closest to their corresponding field pair.

Distances were measured between the closest points of the fields within a pair. Dis-

tances within pairs varied between 0.7 m (the two fields were ploughed into one unit) and

1380 m (GPS Garmin, USA). In 38 fields of the total, maize was grown for grain fodder

production and in 2 fields for seed production. In four fields there was aerial insecticide

application against western corn rootworm adults in 2007. In all four cases pyrethroid

(Karate Zeon, active ingredient: lambda-cyhalothrin, Syngenta) was applied. Dates were
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recorded and capture data of that week following the date of insecticide application, were

ignored in the statistical analysis. Eight fields were properties of agricultural corporations,

whereas 32 fields were properties of private farmers. All fields were managed according

to the agronomic practices typical in the region. There was no irrigation in any of the

fields. Sizes of fields varied between 0.5 and 122 hectares (mean = 23.7, s.d. = 35.6).

Dates of trap changes and the length of sampling period varied between years and among

field pairs. In 2007 maize was typically harvested earlier due to spring and summer

drought in Hungary, so the sampling periods were sometimes shorter compared to 2006.

Altogether 4 weeks capture data for all 20 pairs of fields (n = 80 data) were considered

in statistical analysis between 1st of July and 19th of August. The reason for using 4 weeks

data was (a) that this is the period when populations have still not largely declined due to

natural mortality factors, and (b) that different types of disturbances occurred in the exper-

imental sites during the growing season (early harvest, early senescence of plants due to

heavy drought). Further on, time was expressed as Julian Days. In case of seven pairs of

fields, phenological stages of both first-year and corresponding continuous maize fields

were recorded weekly in 2007 (n = 28 data). Data collectors recorded the estimated (i) per-

centage of pollinating maize plants within fields, (ii) percentage of maize plants with fresh

silks within fields and (iii) percentage of green leaf surface within fields, at each trap

change event. The arithmetic mean of these three ratios represented the phenological at-

tractiveness of the given maize field, where value of 1 was given for a green maize field in

full pollination and with all plants offering fresh silks. In contrast, value of 0 meant a com-

pletely dry, senescent maize field. In practice, none of the fields got the value of zero since

data recording was terminated before reaching this stage. Relative phenological attractive-

ness was calculated as follows: the phenological index of first year maize field minus the

phenological index of the corresponding continuous maize field. This value was positive

if the first year maize field was more attractive than its corresponding continuous maize

field.

Data transformation and statistical analysis

Captured adult western corn rootworms were counted and males/females separated based

on antenna length and elytra colouring (Staetz et al. 1976; Kuhar and Youngman 1995).

Captures were expressed as adults/trap/day, which was, in all cases, the mean of the 3

traps/field. Since in most cases the sizes of fields within pairs were different, capture data

of all first year maize fields were corrected to the size of their corresponding continuous

maize fields, setting the raw capture data to a 1:1 ratio of field sizes. Therefore, raw cap-

ture data (adults/trap/day) of first year maize fields were divided by a correction factor

(CF), where CF = size of continuous maize field/size of corresponding first year maize

field.

This correction of raw capture data has been justified by the fact that the same popula-

tion density (adults/trap/day) in a bigger field means greater absolute number of immi-

grant adults than the same density in a smaller field. The percent of immigrants (dependent

variable) was derived from the size-corrected capture data as follows. The weekly total

capture of the given field pair was taken as 100% of the continuous maize field’s naturally
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emerged population. The ‘percent of immigrants’ was then expressed as the ratio of first-

year maize field’s captured adults out of the total capture. Sex ratio of captured western

corn rootworm adults was expressed as [male : female] whenever there were captures of

both sexes. Statistical analysis was run in the R language (R Development Core Team

2008). The following statistical procedures were conducted: Pearson product-moment

correlation, null hypothesis significance testing, simple and multiple regression analysis

with calculation of confidence intervals, Levene’s procedure, Tukey’s test and Student’s

independent t-test.

Results

All of the studied first-year maize fields were successfully colonized by immigrating

western corn rootworm adults. Mean percent of immigrants was 38.7% ± 29.4 (n = 20

field pairs). This number represents the percent of adults in a given population leaving its

natal maize field for a new habitat patch. However, percent of immigrants varied greatly

across years and study locations, ranging from 0.4% to 93.3% (Table 1). The mean percent

of immigrants was significantly higher in 2007 than in 2006 (independent t-test, p < 0.05).

Mean population density was 7.0 ± 9.4 adults/trap/day on average for the two years and

20 field pairs. The average population density did not differ between the two years (inde-

pendent t-test, p = 0.43). Densities ranged from 0.09 to 15.06 in continuous maize fields

and from 0.05 to 11.4 in first-year maize fields (adults/trap/day). There was a moderate,

significant positive correlation between total population density and percent of immi-

grants (r = 0.43, p < 0.05) but no other variable proved to be significantly correlated with

percent of immigrants, i.e. neither the time period of the growing season (Julian Days), nor

the distance between fields and none of the phenological indices (Table 2).
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Figure 1. Percent of immigrants of adult western corn rootworm beetles in response to the total population

density presented through a simple regression model on the pooled dataset, the dark shaded region represents

confidence interval. Y = 29.25 + 1.34X where Y is percent of immigrants [%] and X is the total population

density [adults/trap/day] (R2 = 0.1835, p < 0.05, df = 78, conf95 for the regression coefficient: 0.70–1.98 and

for the intercept: 21.81–36.69)
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The scatter plot of percent of immigrants in response to total population density implied

the existence of two different patterns: at low population densities there seemed to be no

clear pattern of any relationship between percent of immigrants and total population den-

sity, whereas at high population densities a strong positive correlation seemed to be pres-

ent (Fig. 1). Thus, the original dataset was divided into two groups, i.e. low density group

(total population density <8 adults/trap/day) and high density group (total population den-

sity >8 adults/trap/day). Although mean percent of immigrants in the low density group

was slightly lower than the pooled average, whereas it increased in the high population

density group, the differences were not significant (Tukey’s test) (Table 1). Correlation

analysis showed that in the low population density group none of the candidate predictor

variables had significant correlation with percent of immigrants. In contrast, the correla-

tion between percent of immigrants and total population density became particularly

strong in the high population density group (Table 2).

Simple regression analysis on the pooled dataset, with the independent variable total

population density (X), explained 18% of the variance in percent of immigrants (Fig. 1).

Multiple linear regression model with two independent variables total population density

(X1) and distance between fields (X2) explained 24% of the variance (pooled dataset, Y =

23.98 + 1.51X1 + 0.02X2, R2 = 24%, p < 0.05, df = 77). Analysis of variances justified the

better fit of the multiple regression model on the data (F = 0.02). Inclusion of relative
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Table 2. Factors influencing percent of immigrants of adult western corn rootworm beetles between infested

continuous and un-infested first year maize fields (Hungary, 2006–2007)

Factors Percent of immigrants

Pooled dataset Pearson’s correlation (r) df

Total population density [adults/trap/day] +0.43 (p < 0.05) 78

Distance between fields –0.09 (p = 0.24) 78

Julian Days +0.09 (p = 0.41) 78

Phenological index of continuous maize fields (=C) –0.09 (p = 0.64) 26

Phenological index of first-year maize fields (=F) –0.08 (p = 0.69) 26

Relative phenological attractiveness (=F-C) +0.30 (p = 0.12) 26

Low population density subgroup (<8 [adults/trap/day]) Pearson’s correlation (r) df

Total population density [adults/trap/day] –0.09 (p = 0.51) 58

Distance between fields +0.25 (p = 0.05) 58

Julian Days +0.11 (p = 0.40) 58

Phenological index of continuous maize fields (=C) –0.27 (p = 0.27) 17

Phenological index of first-year maize fields (=F) –0.02 (p = 0.91) 17

Relative phenological attractiveness (=F-C) +0.44 (p = 0.06) 17

High population density subgroup(>8 [adults/trap/day]) Pearson’s correlation (r) df

Total population density [adults/trap/day] +0.84 (p < 0.05) 18

Distance between fields –0.31 (p = 0.18) 18

Julian Days 0.00 (p = 0.99) 18

Phenological index of continuous maize fields (= C) +0.22 (p = 0.56) 7

Phenological index of first-year maize fields (= F) +0.28 (p = 0.48) 7

Relative phenological attractiveness (= F–C) +0.08 (p = 0.84) 7



phenological attractiveness as independent variable in the linear multiple regression

model, did not result in significantly better prediction of percent of immigrants. Regres-

sion models were fitted and tested on the two subsets of data as well. In the low population

density group none of the tested regression models gave significant result. In the high pop-

ulation density group, simple regression analysis with total population density as inde-

pendent variable explained 70% of variance (Y = 4.38 + 2.32X, R2 = 0.7019, p < 0.05, df =

18). However, the best fit to the data was obtained if three independent variables were in-

cluded in the regression model: total population density (X1), distance between fields (X2)

and relative phenological attractiveness (X3). This multiple linear model explained 78% of

variance despite the fact that as stand-alone variables, neither distance, nor phenological

attractiveness was significant predictor of percent of immigrants (Y = 51.21 + 1.14X1 –

0.41X2 – 45.37X3, R2 = 0.7756, p < 0.05, df = 5).

The difference in sex ratios of adult beetles between continuous and first-year maize

fields was not significant: neither in the pooled dataset, nor when being separated by

years. Sex ratio of both continuous and first-year maize fields was skewed towards males,

which is a result of the capture characteristics of the traps (see discussion). Mean sex ratio

was 10.28 [males/females] (s.d. = 14.13, n = 55) and 7.34 [males/females] (s.d. = 12.30,

n = 55) in continuous and first-year maize fields, respectively. Although relatively more

females were captured in first-year maize (dispersing adults) than in continuous maize

(non-dispersing adults), the difference was not significant (independent t-test, p = 0.247,

p = 0.227 and p = 0.587 for the pooled dataset, 2006 and 2007, respectively). Interestingly,

the difference between years was significant, i.e. relatively more females were trapped in

2007 compared to 2006 in both continuous and first year maize fields (independent t-test,

p < 0.05), however, still more males were present in the traps.

Discussion

All of the first-year maize fields were successfully colonized within the 4 weeks period in

July and August each year, indicating that distance between maize fields up to 1.38 km

was not a barrier for western corn rootworm adults. Percent of immigrants varied greatly

over time (between years, among field pairs), however, a “baseline movement pattern”

was observed that seemed to be independent from all the studied potentially influencing

factors and varied around one third of the population (depending on which regression

model was taken into account). These findings are in line with Coats et al. (1986) reporting

that 31% of mated western corn rootworm females performed sustained migratory flight

in a flight mill experiment. Similarly, Naranjo (1990) reported that 24% of mated, 2–7

days old females engaged in sustained flight (longer than 20 min) under laboratory condi-

tions. In our study, western corn rootworm adults exhibited two different inter-field move-

ment patterns under field conditions. Below a population density of 8 adults/trap/day, the

“baseline movement pattern” was expressed. Percent of immigrants fluctuated around one

third of the population and it was impossible to build any statistical model which could

predict this fluctuation. On the contrary, above the threshold, inter-field movement be-

came density dependent. The population density factor alone could reliably predict per-
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cent of immigrants in simple regression analysis. This fact, i.e. that western corn

rootworm exhibits different inter-field movement patterns under different population den-

sities, is one of the numerous examples of density dependence in behavioural ecology

(Campbell et al. 2005).

Both field observations and laboratory studies confirm that western corn rootworm has

a preference for maize at habitat interfaces (Naranjo 1994; Spencer et al. 1999; Campbell

and Meinke 2006), and is capable of actively orienting its flight towards maize fields

(Naranjo 1994; Toepfer et al. 2006). Moreover it prefers phenologically less mature maize

(Naranjo 1991, 1994), which was also found in the present study. Once an adult initiates a

sustained flight, it prefers longer distances and is capable of covering 3.6 km on average

under laboratory conditions (Coats et al. 1986). Although the influence of distance and

crop phenology on inter-field movement was statistically detectable in our field study as

well, the impact of these variables was far weaker than expected based on previous labora-

tory research findings. As a stand-alone factor, neither of them was good enough predictor

of inter-field movement. Only in combination with population density, could these two

variables contribute to a regression equation of strong predictive power.

Although, relatively more females were present in first year maize compared to contin-

uous maize field, indicating and increased percentage of females being engaged in

inter-field movements, this difference was statistically not significant. The relative domi-

nance of males in the trap captures was probably due to the fact that Pherocon AM yellow

sticky traps attract males stronger than females (Kuhar and Youngman 1995).

Results of this study provide field evidence of a long-standing assumption that western

corn rootworm performs density dependent inter-field movement. Moreover, regression

models of inter-field movement can be used in landscape level population dynamic mod-

elling. Therefore, it can be used for simulating area-wide population dilution process over

a fragmented agricultural landscape where both continuous and first-year maize fields are

present in the rotation scheme.
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