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This study was conducted to compare structural development and biochemical accumula-

tion of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy

wheat (WW) and NW cultivars at different developmental stages were observed under light,

fluorescence, and scanning electron microscope. The results were as follows: Compared with

NW, WW had a shorter maturation duration, which was reflected in several following charac-

teristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing

layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at dif-

ferent developmental stages. Starch granules and protein bodies in the endosperm showed a

higher accumulation level in developing caryopses, and aleurone cells were larger in size with

larger numbers of aleurone grains. An analysis of the element content indicated that the min-

eral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd,

and Pb exhibited a lower content in the aleurone layer.

Keywords: waxy, non-waxy, wheat, microstructure, biochemical accumulation

Abbreviations: DAF, days after fertilization; EDS, energy dispersive X-ray spectroscope;

NW, non-waxy wheat; FM, fluorescence microscope; LM, light microscope; SEM, scanning

electron microscope; WW, waxy wheat

Introduction

Wheat (Triticum aestivum L.) is one of the oldest, most extensively cultivated, and nutri-

tionally high valued crops in the world. Wheat from different regions has distinctive prop-

erties, which make it suitable for particular uses, such as bread or noodles (Zhao et al.

2013). Wheat is stable food in 43 countries, accounting for 35% of the total world popula-

tion (Zhang et al. 2013). Commercial wheat cultivars are generally classified into four

0133-3720/$20.00 © 2015 Akadémiai Kiadó, Budapest

* Corresponding author. E-mail: feixiong@yzu.edu.cn

Cereal Research Communications 43(2), pp. 307–317 (2015)
DOI: 10.1556/CRC.2014.0038

First published online 4 February, 2015



types: soft red winter, hard red winter, hard red spring, and durum wheat. In cereals, such

as rice, barley, maize, and sorghum, many natural waxy mutants have been reported.

These mutations, which lead to amylose-free varieties, are considered unlikely in wheat

due to its hexaploid genome (Yoo and Jane 2002).

Starch, which accounts for approximately 63–72% of endosperm dry weight in mature

caryopses, is the most abundant storage component, and is composed of two D-glucose

homopolymers, amylose and amylopectin. Amylose is synthesized by granule-bound

starch synthase (GBSS), also known as waxy protein. There are three genes encoding

isoforms of GBSS. Common wheat, a hexaploid plant, has three waxy loci, Wx-A1, Wx-B1

and Wx-D1, located on homoeologous genomes, A, B and D, respectively (Yasui and

Ashida 2011). When the three waxy loci are functional, the lines are considered to be

wild-type. When one or two waxy loci are nonfunctional, they are called partially waxy.

Wild-type and partially waxy wheat are collectively known as NW. Genotypes with null

alleles at all three waxy loci, which results in amylose not being synthesized, are called

WW (Hansen et al. 2010). Several nonfunctional and partially functional waxy alleles

have been identified in bread wheat (Yasui 2006). Based on X-ray microtomography and

scanning electron microscopy (SEM), Zhu et al. (2012) studied the kernel structure of

high-amylose and wild-type (low-amylose) rice. High amylose rice had elongated and

smaller starch granules with more air spaces inside the kernels resulting in an opaque

grain, whereas wild-type rice had a tight endosperm with little air space and polygonal

starch granules. One of two near-isogenic waxy wheat lines showed an increased

arabinoxylan content in the wheat caryopses (Takata et al. 2007). Yasui et al. (1999) also

demonstrated that in the kernel of waxy wheat mutant total starch content was lower and

fat and (1 ® 3), (1 ® 4)-beta-D-glucan content were higher compared with its parent.

Previous studies focused on the qualities, properties and potential use of starch in bread

and noodle production, and the grain protein content, flour yield, starch crystallinity, and

starch pasting and thermal properties between WW and NW (Jonnala et al. 2010; Ma et al.

2013). However, no systematic comparison of the caryopsis microstructure and biochemi-

cal accumulation between WW and NW has been reported. To further understand the dif-

ferences in functional and nutritional properties of the newly developed WW and NW,

studying the ultrastructure of the caryopsis is imperative since it is associated with the

quality and uses of different wheat. In this study, we investigated the differences in struc-

tural development and biochemical accumulation between WW and NW caryopses.

Materials and Methods

Materials

The plant materials used in this study, the WW cultivar Yang 05G68 with three null wx

loci, wx-A1, wx-B1, and wx-D1 and NW cultivar Yangmai 15 with three functional alleles

at the wx loci were courteously provided by Derong Gao, a research scientist from Lixiahe

Regional Agricultural Research Institute of Jiangsu Province, China. They were grown

from October 2012 to June 2013 in the experimental field of the Agricultural College,
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Yangzhou University, Yangzhou, China. To determine the date of anthesis, individual flo-

rets were marked with a pen and the plants were tagged.

Histochemical observation of developing caryopses

Fresh caryopses from different days after fertilization (DAF) were collected, cut breadth-

wise from the center, and stained by I2/KI solution (0.3% iodine and 1% potassium iodide)

at room temperature (25 °C) for 30 s. The samples were photographed under a stereo-

microscope (MZ6, Leica, Germany) equipped with a digital camera (Powershot S70,

Canon, Japan).

Fluorescence microscope (FM) observations of caryopsis

Flesh caryopses were cut breadthwise by hand with a clean blade and 2 mm-thick slices

were placed on glass slides. The samples were observed and photographed under FM

(DMLB, Leica, Germany) equipped with a digital camera (PowerShot S50, Canon,

Japan).

Microstructural observations of caryopses

Caryopses at different DAF were collected. A transverse slice 2 mm thick was cut from the

center of each caryopsis and immediately soaked in a fixative containing 2.5% glutar-

aldehyde in phosphate buffer (pH 7.2) at 4 °C for 4 h. Then, samples were rinsed three

times (10 min each) with 0.1 M phosphate buffer (pH 7.2) and dehydrated in an ethanol se-

ries of 20, 40, 60, 80, 90 and 95% (10 min each) and 100% (three times, 10 min each). The

ethanol was then replaced by propylene oxide, and low glutinosity Spurr resin was used to

infiltrate and embed materials. Finally, samples were polymerized at 70 °C for 12 h in an

oven, then cut into 1ìm slices using anultramicrotome (Ultracut R, Leica, Germany),

stained with toluidine blue (1%) for 5 min, and photographed under a Leica DMLS light

microscope (LM) equipped with a digital camera (E520, Olympus, Japan).

Ultrastructure observation and relative element content determination in the caryopses

Mature wheat grains were selected and fractured breadthwise in the center of the caryopses

by hand using two pairs of pliers. The fractured caryopses, with the fractured surfaces up-

ward, were stuck to the sample stage and sprinkled with gold at the fractured region. The

structures of the caryopses were observed and photographed using SEM (XL-30 ESEM,

Philips, Holland) equipped with a Charge Coupled Device (CCD) camera. The tempera-

ture of the frozen platform was 5 ºC and the accelerating voltage was 20 kV. At the same

time, the relative contents of mineral elements at different positions of the caryopses were

determined using energy dispersive X-ray spectroscope (EDS) attached to the SEM. The

relative contents were shown as atomic contents.

Determination of amylose, amylopectin and protein content

Mature wheat caryopses were harvested at 45 DAF. Wheat kernels were tempered to

15.5% moisture for 20 h and milled into flour in a mortar. Total protein content in wheat
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grain was calculated by the N concentration multiplied by the factor 5.7 (National Stan-

dard of the People’s Republic of China, GB 5009.5-2010). N concentration was deter-

mined by using the Kjeldahl method (Yao et al. 2014). The protein content was expressed

in % on a dry matter basis.

Amylose content, amylopectin content and total starch content were determined ac-

cording to the method described by Zhu et al. (2007) with some modifications. Starch was

first degreased by anhydrous ether and then 100 mg of starch was added into 10 mL of

0.05 molL–1 KOH solution. Sample was diluted to 50 mL with distilled water and placed

in water bath at 75 ºC for 10 min. A total of 2.5 mL of solution and 0.5 mL I2-KI (0.2% io-

dine and 2% potassium iodide) were mixed and diluted to 50 mL with distilled water. At

last, sample was used to determine amylose content and amylopectin content at wave-

length 495–565 nm and 530–654 nm, respectively. The recorded values were converted to

percent of amylose by reference to a standard curve prepared with amylose from potato

and amylopectin from corn (Sigma-Aldrich). Total starch content equals to amylose con-

tent plus amylopectin content.

Statistical analyses

The statistical analyses of the data were conducted using SPSS Statistics (version 19.0, In-

ternational Business Machines Corporation, USA). The means were compared using

Fisher’s Protected Least Significant Difference (LSD) test at a 0.05 significance level. Or-

igin 8.0 and Adobe Photoshop CS5 software packages were used to draw the figures.

Results

Development of caryopses

The morphological features of our two wheat cultivar caryopses, from fertilization to mat-

uration, are shown in Fig. 1a. During caryopsis development, the caryopsis color changes

from white to green, then from green to a yellowish green, and finally to yellow. At 12

DAF, the caryopses color of WW turned from white to green while the caryopsis color of

NW was still white. NW caryopses did not undergo the initial color change until 18 DAF.

Nevertheless, no remarkable difference was observed in the size of the caryopses between

WW and NW.

The wheat tissues that do not contain amylose stained red-brown by iodine. When

amylose was present, the tissues stained blue-black. Figure 1b shows the transverse sec-

tions of caryopses stained by I2/KI. The area where starch accumulated included the

pericarp and endosperm tissues. The pericarp in the caryopses of WW and NW both dis-

played the blue-black color from three DAF to 15 DAF. From 15 to 33 DAF, the endo-

sperm tissues of WW stained red-brown while NW stained blue-black, and the colors

gradually deepened as the caryopses developed. In plant organs, amylose is synthesized

by a protein named granule-bound starch synthase (GBSS) which can be classified into

two categories, GBSS I and GBSS II. The GBSS I gene is mainly expressed in storage or-

gans, for example, seed endosperm of Gramineae crops and potato tubers, while the
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GBSS II gene is mainly expressed in non-storage tissues, for example leaves and pericarp.

GBSS II was only detected in wheat pericarp but not in endosperm (Nakaruma et al.

1998). This may explain our results that WW only contained higher amylopectin content

in the endosperm and no remarkably difference was found for amylose synthesis in the

pericarp.

Development of the pericarp

The wheat pericarp, which lies outside the caryopsis, develops from the ovary wall and is

considered to be composed of three parts: epicarp, mesocarp and endocarp. During wheat

caryopsis development, the pericarp undergoes programmed cell death (Zhou et al. 2009),

and different wheat cultivars display distinctive characteristics (Xiong et al. 2012). The
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Figure 1. Wheat caryopsis growth. (a) Developing caryopsis profile. (b) Transverse sections of caryopses

stained by I2/KI solution. The numbers below the images represent DAF of the caryopses.

En, endosperm; Pe, pericarp



physiological and anatomical functions of the pericarp are similar to those of leaves and

also resemble those of storage organs (Müntz et al. 1978).

At five DAF, the pericarp of WW presented a stronger fluorescence signal and then be-

gan to degenerate. The space that formed by degeneration of the mesocarp (Sp) was

clearly observed in WW, whereas no Sp could be found in the pericarp of NW (Figs 2a

and 2e).

At eight DAF, the pericarp of WW largely degenerated and cells decreased in compari-

son with those at five DAF (Fig. 2b). At this time, the pericarp of NW began to degenerate

and some small Sps were detected (Fig. 2f). From 16 to 22 DAF, the mesocarp cells of

WW had almost completely degenerated, and one or two epicarp remained (Figs 2c and

2d). In the pericarp of NW, by comparison, Sp can also be observed at 16 DAF (Fig. 2g),

and the epicarp was thicker than that of WW (Fig. 2h).

Endocarp, the chlorophyll-containing layer where photosynthesis occurs, emits a red

fluorescence under FM, and it is composed of tube and cross cells (Xiong et al. 2012). At

five and eight DAF, the red fluorescence region in the pericarp of NW was significantly

larger than that in WW (Figs 2a, 2b, 2e and 2f). From 16 to 22 DAF, the red fluorescence

in the pericarp of WW gradually disappeared (Figs 2c and 2d). Compared with WW,
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Figure 2. Fluorescence microscope images of the pericarp. (a) WW, 5 DAF; (b) WW, 8 DAF;

(c) WW, 16 DAF; (d) WW, 22 DAF; (e) NW, 5 DAF; (f) NW, 8 DAF; (g) NW, 16DAF; and

(h) NW, 22 DAF. En, endosperm; Ep, Epicarp; Me, mesocarp; and Sp, space formed by degeneration of

pericarp cells. Black arrows indicate chloroplasts



a more obvious red fluorescence region was found in the pericarp of NW (Figs 2g and 2h).

The results indicated that the programmed cell death of the pericarp of WW was more

rapid and the chlorophyll-containing layer was smaller than in NW.

Development of the chalaza

The chalaza, which is located between the vascular bundle and nucellar projection, plays

an important role in assimilate translocation during the development of wheat endosperm

(Cochrane 1983). Assimilates are imported into the developing endosperm first via a

phloem pathway and then via a post-phloem pathway (Wang and Fisher 1994), in which

the assimilates pass through the vascular parenchyma and several other parenchymal lay-

ers, the chalaza, the nucellar projection, the endosperm cavity, and the aleurone layer

(Wang et al. 1998). The release of tannins, which accumulates in vacuoles of the chalazal

cells, occurs 10 to 12 DAF after the cessation of dry matter accumulation in the wheat

caryopses (Cochrane 1983). Later in caryopsis development, the cell wall thickened and

stained a pale blue-green in a toluidine blue O solution (Zee and O’Brien 1970). Assimi-

lates transported into the endosperm are considered to follow apoplastic and symplastic

pathways until the chalazal cell walls thicken with lignin and suberin. At later stages of

caryopsis development, the symplastic pathway is reduced by the thickened cell walls, and

it is finally eliminated by the release of tannins from the vacuoles (Cochrane 1983).

At 12 DAF, vacuoles in the chalazal cells of WW accumulated brown-staining tannins

but no tannins were found in NW (Figs S1a and S1b*). At 20 DAF, tannins had largely ac-

cumulated in the vacuoles of WW, much more so than in NW (Figs S1c and S1d). At 26

DAF, in the chalazal cells of WW, the vacuoles were filled with tannins that stained dark

brown with a high intensity (Fig. S1e). Compared with 20 DAF, the cell walls had thick-

ened and stained pale blue-green in a toluidine blue O solution. In the chalazal cells of

NW, the cell wall had also thickened, but only little tannin vacuoles were found (Fig. S1f).

The result indicated that the total amount of tannin was much lower in NW. As tannin was

the substance impeding assimilate transport from the vascular bundle to the endosperm

cavities, so this phenomenon might make NW being able to absorb more assimilate trans-

ported from vascular bundle.

Development of the endosperm and aleurone layer

During double fertilization, the triploid product of the second fertilization develops into

endospermin the higher plant (Chaudhury et al. 1998). In cereals, which are a major

source of food for mankind, the endosperm stores carbohydrates and proteins during cary-

opsis development. Also, the storage products, starch and protein, which accumulate in

starch granules and protein bodies, are considered to be important nutrient sources during

seed germination. The aleurone layer, which develops from surface endosperm cells, is a

nutrient transporter that is able to transport the nutrient from endosperm cavities to endo-

sperm during wheat caryopsis development. In different wheat cultivars, aleurone layers

exhibited different sizes and shapes (Xiong et al. 2013).
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Figure S2 shows the development of the endosperm and aleurone layers in our two

wheat cultivars. At 12 DAF, starch granules and protein bodies accumulated in the endo-

sperm of these wheat cultivars. Compared with NW, the endosperm of WW accumulated

a greater number of protein bodies (Figs S2a and S2b). No remarkable differences were

found in aleurone layers (Figs S2c and S2d). At 20 DAF, compared with NW, the number

of starch granules and protein bodies was enriched in the endosperm cells of WW, and the

aleurone cells were larger in size (Figs S2e, S2f, S2g and S2h). At 26 DAF, the endosperm

cells of WW were highly enriched for starch granules and protein bodies. The latter were

pushed together by the starch granules, deforming the cell’s appearance into irregular

shapes (Figs S2i and S2j). The aleurone cells were full of aleurone grains and were larger

in size (Fig. S2k). The aleurone cells, containing fewer aleurone grains, were smaller in

size (Fig. S2l). Phytin particles, which accumulate in aleurone grains, are composed pri-

marily of two elements, P and Mg, with only small amounts of K and Ca. Fatty acids,

amino acids and minerals accumulate in aleurone cells, and can provide either nutrient re-

sources for embryo early germination and hinder the transport of nutrients (Xiong et al.

2013). Thus, the differential development of endosperm and aleurone layers indicated that

WW had a higher degree of biochemical accumulation.

Ultrastructure, amylose content, amylopectin content, total starch content

and protein content of mature caryopses

It is known to all that waxy gene deficiency reduced the amylose content (Hansen et al.

2010). As shown in Table 1, in comparison with NW, WW shows a lower amylose content

and a higher amylopectin content and total starch content. In high amylose content rice,

the caryopses appear to be largely translucent, whereas in low amylose content rice they

are opaque and the kernels contain numerous air spaces (Zhu et al. 2012). Vitreous endo-

sperm has been suggested to result from the lack of air spaces (Hoseney 1986). Figure S3

shows the endosperm ultrastructure of a mature caryopsis under SEM. In the central endo-

sperm of WW, more protein bodies filled the air space between starch granules and

formed a tightly packed endosperm (Figs S3a and S3c). This structural conclusion was

consistent with the result as shown in Table 1, which suggested that the protein content

was higher in WW. On the surface of some parts of the starch granules many hollows were

found, which might be formed by extrusion forces between the starch granules and protein

bodies (Figs S3a and S3c). In the central endosperm of NW, the cells exhibited a looser

structure that appeared to have more air space, and the surface of the starch granules was
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Table 1. Content of amylose, amylopectin, total starch and protein and 1000-grain weight

Cultivars Amylose Amylopectin Total starch Protein 1000-grain

content (%) content (%) content (%) content (%) weight (g)

WW 0.99a 73.21a 74.20a 12.66a 38.55a

NW 16.45b 61.24b 77.69b 9.78b 45.02b

Each data in the table are obtained from five replicates. Values in the same column followed by different su-

perscript letters are significantly different, as determined by the LSD test (P < 0.05).



smooth (Figs S3b and S3d). In accordance with the developing caryopsis, the aleurone

layer cells of WW were larger in size compared with NW (Figs S3e and S3f). The struc-

tural characteristics indicated that WW was a hard wheat, and NW was a soft wheat.

Distribution of elements in the caryopses

Although the endosperm and aleurone layer both developed from a fertilized polar nu-

cleus, they reportedly differ in development and element composition (Li et al. 2007). The

concentrations of P, K, and Mg minerals in the aleurone layer and scutellum’s cytoplasm

were much higher than in the endosperm (Joyce et al. 2005). Xiong et al. (2013) also dem-

onstrate that there are higher concentrations of the elements Na, Mg, Si, P, and K in the

aleurone cells than in the endosperm cells.

In wheat grains, the concentrations of the heavy elements Cd and Pb occur in the order:

aleuronic layer > hypocotyls > radicle > scutellum > plumule > cortex > endosperm

(Zhang et al. 2010). The concentrations of the elements C, O, Mg, P, K, Ca, Cr, Cd, and Pb

were determined using SEM equipped with EDS. The distributions of nine elements in the

endosperm and aleurone layer are listed in Table S1. No significant differences between

WW and NW were found in the endosperm or aleurone layer for elements C and O. The

other elements, Mg, P, K, Ca, Cr, Cd, and Pb, were mainly concentrated in the aleurone

layer, and the relative content of the atoms was greater in the aleurone layer than in the en-

dosperm. In the aleurone layer, WW exhibited a higher content of elements Mg, P, K, and

Ca and a lower content of elements Cr, Cd, and Pb. Thus, compared with NW, WW is a

high-level mineral and low-level heavy elements cultivar, and its products are beneficial

to human health.

Discussion

In this study, we investigated the structural development and biochemical accumulation

between NW and WW and the results showed that the differences were reflected not only

amylose contents but also the caryopsis development, which included the programmed

cell death of the pericarp, development of chalazal cells and endosperm cells, and bio-

chemical accumulation, such as starch granules, protein bodies, tannins, aleurone grains,

and minerals. We also found that amylose content and total starch content was lower and

amylopectin content and protein content was higher in WW. It is because of this possibil-

ity: Concomitant with inhibition of amylose synthesis, the ATP synthesized in photosyn-

thesis was transferred to the synthesis of amylopectin and protein. This results in higher

content of amylopectin and protein in mature caryopsis. Compared with NW, WW exhib-

ited a shorter filling duration. This significant variation was reflected in the microstructure

in developing and mature caryopses. The nutrients from the pericarp degradation enabled

it to survive prior to the maturity of the caryopses, and the degradation also provided the

nutrients for the growth of endosperm (Müntz et al. 1978). This may lead to an earlier on-

set of programmed cell death in the pericarp. Meanwhile, starch granule and protein body

accumulation in the endosperm was greater, which resulted in a tightly packed endosperm

with little air space. A greater accumulation of tannins in the chalazal cells indicated
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that dry matter accumulation was rapid, and this resulted in a lower 1000-grain weight

(Table 1). The aleurone layer, which is known as a nutrient transporter, exhibited a larger

size, where the mineral elements Mg, P, K, and Ca, and the heavy elements Cr, Cd, and Pb

showed higher and lower concentrations, respectively.
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Electronic Supplementary Table S1. Distribution of mineral and heavy elements in the endosperm and

aleurone layers

Electronic Supplementary Figure S1. Structure of chalazal cells. (a) WW, 12 DAF; (b) NW, 12 DAF;

(c) WW, 20 DAF; (d) NW, 20 DAF; (e) WW, 26 DAF; and (f) NW, 26 DAF. CH, chalazal;

and TV, tannin vacuole. Red arrows marked in e and f indicate the thickened chalazal cell walls resulting

from lignin and suberin deposition. The samples are stained by toluidine blue O solution

Electronic Supplementary Figure S2. Structure of the aleurone layer and endosperm. (a, c) WW, 12 DAF;

(b, d) NW, 12 DAF; (e, g) WW, 20 DAF; (f, h) NW, 20 DAF; (i, k) WW, 26 DAF; and (j, l) NW, 26 DAF.

AG, aleurone grain; AL, aleurone layer; PB, protein body; and SG, starch granule.

The samples are stained by toluidine blue O solution

Electronic Supplementary Figure S3. Scanning electron microscope images of the ultrastructure of mature

wheat caryopses. (a, c) WW, central endosperm; (b, d) NW, central endosperm; (e) WW, aleurone layer; and

(f) NW, aleurone layer. Red arrows indicate in (a, c) hollows in the surface of starch granules,

and in (b, d) the smooth surface of starch granules. Red asterisks indicate in (b, d) the air space between starch

granules and protein bodies. AL, aleurone layer; En, endosperm; PB, protein body; and SG, starch granule
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