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ABSTRACT

Gamma-ray bursts can be divided into three groups (“short”, “intermediate”, “long”) with respect to their durations. This classification is
somewhat imprecise, since the subgroup of intermediate duration has an admixture of both short and long bursts. In this paper a physically
more reasonable definition of the intermediate group is presented, using also the hardnesses of the bursts. It is shown again that the existence of
the three groups is real, no further groups are needed. The intermediate group is the softest one. From this new definition it follows that 11% of
all bursts belong to this group. An anticorrelation between the hardness and the duration is found for this subclass in contrast to the short and
long groups. Despite this difference it is not clear yet whether this group represents a physically different phenomenon.
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1. Introduction

It is a great challenge to classify gamma-ray bursts (GRBs) into
classes. Mazets et al. (1981) and Norris et al. (1984) suggested
there might be a separation in the duration distribution. Using
the First BATSE Catalog, Kouveliotou et al. (1993) found a bi-
modality in the distribution of the logarithms of the durations.
This bimodality is highly pronounced, if one uses the param-
eter T90 (the time during which 90% of the fluence is accu-
mulated, Kouveliotou et al. 1993) to characterize the durations
of GRBs (McBreen et al. 1994; Koshut et al. 1996; Belli 1997;
Pendleton et al. 1997). Today it is widely accepted that the
physics of these two groups (also called “subclasses” or simply
“classes”) are different, and these two kinds of GRBs are dif-
ferent phenomena (Norris et al. 2001; Balázs et al. 2003). The
high redshifts and the cosmological distances are directly con-
firmed for the long bursts only, while for the short ones there is
only indirect evidence for their cosmological origin (Mészáros
2001, 2003).

Using the Third BATSE Catalog (Meegan et al. 1996)
Horváth (1998) has shown that the distribution of the loga-
rithms of the durations of GRBs (log T90) could be well fitted

by a sum of three Gaussian distributions. He finds it statisti-
cally unlikely (with a probability ∼10−4) that there are only
two groups. Simultaneously Mukherjee et al. (1998) report
the finding (in a multidimensional parameter space) of a very
similar group structure of GRBs. Somewhat later several au-
thors (Hakkila et al. 2000; Balastegui et al. 2001; Rajaniemi &
Mähönen 2002; Hakkila et al. 2003; Borgonovo 2004; Hakkila
et al. 2004) included more physical parameters into the analysis
of the bursts (e.g. peak-fluxes, fluences, hardness ratios, etc.).
A cluster analysis in this multidimensional parameter space
suggests the existence of the third (“intermediate”) group as
well (Mukherjee et al. 1998; Hakkila et al. 2000; Balastegui
et al. 2001; Rajaniemi & Mähönen 2002). The physical ex-
istence of the third group is, however, still not convincingly
proven. For example, Hakkila et al. (2000) believe that the
third group is only a deviation caused by a complicated in-
strumental effect, which can reduce the durations of some faint
long bursts. Later Hakkila et al. (2003) published another paper
which had different conclusions (we discuss this greater detail
later). However, the celestial distribution of the third group is
anisotropic (Balázs et al. 1998, 1999; Mészáros et al. 2000a,b;
Litvin et al. 2001); i.e. different from that of the long GRBs
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alone (Mészáros & Štoček 2003). The log N − log S distribu-
tion may also differ from those of the other groups (Horváth
1998). Taken together this means that the existence of the third
intermediate group is acceptable, but its physical meaning, im-
portance and origin is less clear than those of the other groups.
Hence, its further study is required.

Using Principal Component Analysis (PCA), Bagoly et al.
(1998) have shown that there are only two major quantities nec-
essary (called the Principal Components; PCs) to characterize
most of the properties of the bursts in the BATSE Catalog.
Consequently, the problem of the choice of the relevant
parameters describing GRBs is basically a two-dimensional
problem. For the statistical analysis the choice of two inde-
pendent parameters is enough; they may be, but are not nec-
essarily, the two principal components. This means that only
two parameters, relevantly chosen, should be enough for the
classification and determination of the groups. Concluding
from the analysis of the clustering properties of GRBs in the
BATSE 3B Catalog Mukherjee et al. (1998) identified the fol-
lowing measured quantities relevant for classification: dura-
tion (T90), total fluence (Ftot = F1 + F2 + F3 + F4) and hard-
ness (H321 =

F3
F1+F2

). (log H321 is highly redundant with log H32

(= log F3−log F2) which is a linear combination of the two PCs
mentioned above.)

In order to perform a statistical analysis to estimate the
probable number of classes Mukherjee et al. (1998) made the
apriori assumption that the observed BATSE sample is a su-
perposition of multivariate Gaussians in the variables included
in the analysis. Concerning log T90 Horváth (1998) showed
that its distribution could be well fitted with three Gaussians.
Recently, Balázs et al. (2003) has proven that the intrinsic dis-
tributions of the total fluence and duration were two dimen-
sional Gaussians for the long and short GRBs, separately. The
Gaussian fit for the observed distribution of the total fluence of
long bursts, however, was poor due to the effect of the luminos-
ity distance. The dependence of the observed fluence distribu-
tion on the luminosity distance might result in “ghost clusters”
when attempting to fit with Gaussians. In the contrary, the ef-
fect of the luminosity distance was eliminated when computing
hardness.

Fitting the observed distribution with the superposition of
Gaussian components one had to keep the number of esti-
mated parameters as small as possible to ensure the stability
of the Maximum Likelihood procedure (e.g. in case of two di-
mensions and 4 components the number of parameters is 23
while the same in 3 dimensions is 39). Summarizing all these
considerations we decided to use two dimensional Gaussians
with the logarithmic duration (log T90) and hardness (log H321

or log H32, alternatively).
Based on this technique several questions should be an-

swered concerning the intermediate group. First, will the sta-
tistical analysis, using only these two parameters, reconfirm the
existence of the intermediate group? Second, if this question is
answered in the affirmative, then one has to show that either
further groups exist, or they do not. Using a much smaller sam-
ple Mukherjee et al. (1998) claim that only three groups are
necessary. On the other hand, Cline et al. (1999) propose the
existence of a fourth subgroup of very short durations. Third,

one also has to define the quantities by which this third group
is different. Fourth, the method – making it possible to assign
a certain GRB to a given group – should also be developed.
Fifth, the fraction of this third intermediate group in the whole
BATSE Catalog should also be determined more exactly. Sixth,
does the intermediate group really represent a third type of
bursts different from both the short and long ones in its astro-
physical origin?

The observational data from The Current BATSE
GRB Catalog (Meegan et al. 2001) will be used to answer these
questions in which there are 2702 GRBs, for 1956 of which
both the hardnesses and durations are measured. The paper is
organized as follows: Sect. 2 briefly summarizes the mathemat-
ics of the two-dimensional fits. Section 3 deals with these fits
in the two-dimensional parameter space and confirms the real-
ity of the intermediate group. Section 4 gives the mathematical
definition of the intermediate group making it possible to de-
termine, for any GRB, the probability that it belongs to a given
group and deals with possible observational bias. Section 5 dis-
cusses the physical differences between the classes. Section 6
summarizes the conclusions of this paper.

2. Mathematics of the two-dimensional fit
of k classes

We will study the distribution of GRBs in the
{log T90; log H32} plane. Previously, Belli (1997) used this
plane to separate the bursts. She suggested that the curve
H32 = 2T 0.5

90 gave a better division than the cut T90 = 2 s
between the short and long GRBs.

We can assume that the observed probability distribution of
the GRBs in this plane is a superposition of the distributions
characterizing the different types of bursts present in the sam-
ple. Introducing the notations x = log T90 and y = log H32 and
using the law of full probabilities (Rényi 1962) we can write

p(x, y) =
k∑

l=1

p(x, y|l)pl. (1)

In this equation p(x, y|l) is the conditional probability density
assuming that a burst belongs to the lth class. pl is the proba-

bility for this class in the observed sample (
k∑

l=1
pl = 1), where k

is the number of classes. In order to decompose the observed
probability distribution p(x, y) into the superposition of differ-
ent classes we need the functional form of p(x, y|l). The prob-
ability distribution of the logarithm of durations can be well
fitted by Gaussian distributions, if we restrict ourselves to the
short and long GRBs (Horváth 1998). We assume the same also
for the y coordinate. With this assumption we obtain, for a cer-
tain lth class of GRBs,

p(x, y|l) = 1

2πσxσy
√

1 − r2

× exp

⎡⎢⎢⎢⎢⎣− 1
2(1 − r2)

⎛⎜⎜⎜⎜⎝
(x − ax)2

σ2
x
+

(y − ay)2

σ2
y

− C
σxσy

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ , (2)

where C = 2r(x − ax)(y − ay); ax, ay are the means, σx,
σy are the dispersions, and r is the correlation coefficient
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Table 1. Results of the EM algorithm in the {log T90; log H32} plane.
k = 2, Lmax = 1193.

l pl ax ay σx σy r

1 .280 −.233 .740 .541 .259 .049

2 .720 1.488 .396 .471 .237 .128

Table 2. Results of the EM algorithm. k = 3, Lmax = 1237.

l pl ax ay σx σy r

1 .245 −.301 .763 .525 .251 .163

2 .109 .637 .269 .474 .344 −.513

3 .646 1.565 .427 .416 .210 −.034

(Trumpler & Weaver 1953, Chap. 1.25). Hence, a certain class
is defined by 5 independent parameters, ax, ay, σx, σy, r, which
are different for different l. If we have k classes, then we have
(6k − 1) independent parameters (constants), because any class
is given by the five parameters of Eq. (2) and the weight pl

of the class. One weight is not independent, because it holds∑k
l=1 pl = 1. The sum of k functions defined by Eq. (2) gives

the theoretical function of the fit. In Balázs et al. (2003) this
fit for k = 2 was used, and the procedure for k = 2 was de-
scribed in more detail. However, that paper used fluence instead
of hardness. Here we will make similar calculations for k = 3
and k = 4.

3. New confirmation of the intermediate group

By decomposing p(x, y) into the superposition of p(x, y|l) con-
ditional probabilities one divides the original population of
GRBs into k groups, at least from the mathematical point
of view. Decomposing the left-hand side of Eq. (1) into the
sum of the right-hand side, one needs the functional form of
p(x, y|l) distributions, and also k has to be fixed. Because we
assume that the functional form is a bivariate Gaussian distribu-
tion (see Eq. (2)), our task is reduced to evaluate its parameters,
k and pl.

In order to find the unknown constants in Eq. (2) we use the
Maximum Likelihood (ML) procedure of parameter estimation
(Balázs et al. 2003). Assuming a set of N observed [xi, yi], (i =
1, . . . ,N) values (N is the number of GRBs in the sample for
our case, which here is 1956) we can define the Likelihood
Function in the usual way, after fixing the value of k, in the form

L =
N∑

i=1

log p(xi, yi), (3)

where p(xi, yi) has the form given by Eq. (1). Similarly, as it
was done by Balázs et al. (2003), the EM (Expectation and
Maximization) algorithm is used to obtain the ax, ay, σx, σy, r
and pl parameters at which L reaches its maximum value. We
made the calculations for different values of k in order to see
the improvement of L as we increase the number of parameters
to be estimated.

Tables 1–3 summarize the results of the fits for k = 2, 3, 4.

Table 3. Results of the EM algorithm. k = 4, Lmax = 1243.

l pl ax ay σx σy r

1 .234 −.307 .752 .524 .246 .215

2 .060 .441 .426 .637 .440 −.871

3 .060 .623 .262 .325 .325 −.095

4 .646 1.569 .426 .410 .211 −.034

Table 4. Results of the EM algorithm in the {log T90; log H321} plane.
k = 2, Lmax = 920.

l pl ax ay σx σy r

1 0.276 −0.251 0.544 0.531 0.256 0.016

2 0.725 1.479 0.132 0.479 0.287 0.123

The confidence interval of the parameters estimated can be
given on the basis of the following theorem. Denoting by Lmax

and L0 the values of the Likelihood Function at the maximum
and at the true value of the parameters, respectively, one can
write asymptotically as the sample size N → ∞ (Kendall &
Stuart 1976–1979),

2(Lmax − L0) ≈ χ2
m, (4)

where m is the number of parameters estimated (m = 6k − 1
in our case), and χ2

m is the usual m-dimensional χ2 function
(Trumpler & Weaver 1953). Moving from k = 2 to k = 3
the number of parameters m increases by 6 (from 11 to 17),
and Lmax grows from 1193 to 1237. Since χ2

17 = χ
2
11 + χ

2
6

the increase in Lmax by a value of 44 corresponds to a value
of 88 for a χ2

6 distribution. The probability for χ2
6 ≥ 88 is ex-

tremely low (<10−10), so we may conclude that the inclusion of
a third class into the fitting procedure is well justified by a very
high level of significance.

Moving from k = 3 to k = 4, however, the improve-
ment in Lmax is only 6 (from 1237 to 1243) corresponding
to χ2

6 ≥ 12, which can happen by chance with a probability
of 6.2%. Hence, the inclusion of the fourth class is not justi-
fied. We may conclude from this analysis that the superposi-
tion of three Gaussian bivariate distributions – and only these
three ones – can describe the observed distribution.

This means that the 17 independent constants for k = 3
in Table 2 define the parameters of the three groups. We see
that the mean hardness of the intermediate class is very low –
the third class is the softest one. Because p2 = 0.109, 11%
of all GRBs belongs to this group. This value is very close to
those found previously (Mukherjee et al. 1998; Horváth 1998;
Hakkila et al. 2000; Horváth 2002; Rajaniemi & Mähönen
2002; Horváth et al. 2004).

To test the robustness of the groups found by using
this procedure we also repeated the calculations in the
{log T90; log H321} plane. Comparing the maximum values of
the likelihood function (920, 980, 982) obtained by assuming
k = 2, 3 and 4 components it is clear from Tables 4–6 that
3 Gaussian distributions are necessary and sufficient to account
for the GRB sample studied (L3

max−L2
max = 60, L4

max−L3
max = 2).
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Table 5. Results of the EM algorithm. k = 3, Lmax = 980.

l pl ax ay σx σy r

1 0.233 −0.354 0.560 0.486 0.237 0.082

2 0.154 0.722 0.057 0.480 0.432 −0.356

3 0.613 1.588 0.174 0.404 0.249 −0.048

Table 6. Results of the EM algorithm. k = 4, Lmax = 982.

l pl ax ay σx σy r

1 0.234 −0.354 0.559 0.485 0.238 0.078

2 0.148 0.704 0.062 0.447 0.432 −0.335

3 0.333 1.580 0.115 0.403 0.268 −0.141

4 0.284 1.600 0.236 0.400 0.214 0.064

Comparison of the results obtained in the {log T90; log H32}
and {log T90; log H321} planes show that the parameters of
the Gaussian distributions match each other well in the x =
log T90 coordinate (see Tables 2 and 5).

4. Mathematical classification of GRBs

4.1. The method

Based on the calculations in the previous paragraph we re-
solved the p(x, y) probability density of the observed quanti-
ties into a superposition of three Gaussian distributions. Using
this decomposition we can classify any observed GRB into the
classes represented by these groups. In other words, we de-
velop a method allowing us to obtain, for any given GRB, its
three membership probabilities, which define the likelihood of
the GRB to belong to the short, intermediate and long groups.
The sum of these three probabilities is unity. For this pur-
pose we define the following Il(x, y) indicator function, which
assigns to each observed burst a membership probability in
a given l class as follows:

Il(x, y) =
pl p(x, y|l)

k∑
l=1

pl p(x, y|l)
· (5)

According to Eq. (5) each burst may belong to any of the
classes with a certain probability. In this sense one cannot as-
sign a given burst to a given class with certainty, but with a
given probability. This type of classification is called a “fuzzy”
classification (McLachlan & Basford 1988). Although, any
burst with a given [x, y] could be assigned to all classes with a
certain probability, one can select that l at which the Il(x, y) in-
dicator function reaches its maximum value. Figure 1 shows the
distribution of GRBs in the {log T90; log H32} plane, in which
the classes obtained in this way are marked by different sym-
bols. The 1σ ellipses of the three Gaussian distributions are
also shown.

4.2. Application of the fuzzy classification

Inspecting Fig. 1 one can recognize immediately that the do-
main within the ellipse of the intermediate group is only partly

 

 

 

    

 

 

Fig. 1. Distribution of N = 1956 GRBs in the {log T90; log H32} plane.
The 1σ ellipses of the three Gaussian distributions are also shown,
which were obtained in the ML procedure. The different symbols
(crosses, filled circles and open circles) mark bursts belonging to the
short, intermediate and long classes, respectively.

populated by GRBs belonging to this class according to the
classification procedure described above. The remaining part
is dominated by GRBs classified as short and, in particular,
as long. In other words, the ellipse of the third group contains
an essential amount of GRBs, which should belong either to
the long group or to the short group. Due to the “fuzzy” classi-
fication some probability was also assigned to the other classes.
Based on the analytical expressions of the components, one can
easily calculate the contribution of any other groups within the
ellipse of a given class by summing the Il(x, y) values of differ-
ent l-s for the bursts lying in this particular region.

The reliability of the classification can be characterized by
counting the different classes of the GRBs lying within the
1σ ellipse of a given Gaussian component. If the classifica-
tion were correct, only those GRBs would lie within the ellipse
of a given l that have classes corresponding to this component.
Denoting by nl the number of GRBs within the ellipse belong-
ing to class l one gets n1 = 218, n2 = 174, n3 = 514. The
rows of Table 7 give the number of GRBs of all classes within
the 1σ ellipses of the short, intermediate and long Gaussian
components. The first row shows that in the ellipse that defines
the short group, there are 218 GRBs. In accordance with the
fuzzy classification all have the highest probability assigning
them to the short group. Similarly, the third row shows that in
the ellipse, which defines the long group, there are 514 GRBs.
All these, in accordance with the fuzzy classification, have the
highest probability assigning them to the long group. But in the
second row, which defines the 174 GRBs in the ellipse defin-
ing the intermediate group, only 47 bursts have the highest
probability assigning them to the intermediate group. A fur-
ther 21 (106) GRBs should belong to the short (long) class.

Table 7 demonstrates that the classifications of the short
and long GRBs are very reliable, since they do not overlap the
other two classes. This means that GRBs within the ellipse of
the first and third class (first and third row in Table 7) were
well classified as short and long, respectively. In contrast, the
ellipse of the intermediate component (second row) contains a
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Table 7. Number of GRBs classified by the procedure described in the
text, within the 1σ ellipses of l = 1, 2, 3 Gaussian components.

l Short Interm. Long Total

1. 218 − − 218

2. 21 47 106 174

3. − − 514 514

Total 239 47 620 906

significant number of members of the two other classes, in par-
ticular of the long group. This is caused predominantly by the
closeness of the most numerous long class to the intermedi-
ate one.

There are N − (n1 + n2 + n3) = 1050 GRBs scattered
over a much larger area outside the ellipses. In this region
the Gaussian components have low probabilities. The indica-
tor function can still have a large value, however, because there
are small numbers in both the nominator and denominator of
the right-hand side of Eq. (5). Although the classification of
these bursts is formally correct, it is less reliable than those
within the ellipses.

We demonstrated the robustness of classification by com-
paring the results obtained from the {log T90; log H321} and the
{log T90; log H32} planes, respectively. A cross tabulation be-
tween these two classifications is given in Table 8. One may
infer from this cross tabulation that the short and long classes
correspond within about 10% to the respective groups obtained
from the other classification. Consequently, the robustness of
the short and long group is well established. On the contrary,
the population of the intermediate group is much poorer in clas-
sifying in the {log T90; log H32} plane than in the other one.
Table 8 clearly shows that classification Class321, except for
one, contains all GRBs assigned to the intermediate group
by Class32.

Classification in the {log T90; log H321} plane indicated
42 GRBs from the short and 89 ones from the long groups, re-
spectively. This high number of indicated bursts clearly shows
that a slight variation of the parameters of the Gaussian dis-
tribution representing the intermediate group results in a dras-
tic change in the number of classified objects in this group.
However, comparing the fraction of GRBs belonging to the in-
termediate group according to Tables 2 and 5 one gets figures
of 213 and 294, respectively.

If one assigned the burst to that group that had the max-
imum membership probability a slight change in the parame-
ters of the corresponding Gaussian distribution may move the
GRB to an other group. On the contrary, the fuzzy classifica-
tion assigns membership probability to all of the bursts. Hence,
a small variation of the parameter gives a small variation in
the estimated number of bursts in the intermediate group ob-
tained by summing the membership probabilities of all GRBs
in the sample.

4.3. Effect of observational bias on the classification

Performing several classification techniques on the whole
BATSE GRB sample indicates the intermediate group with a

Table 8. Cross tabulation of GRBs classified in the {log T90; log H321}
(Class321) and the {log T90; log H32} (Class32) plane, respectively.

Class321

Class32 Short Interm. Long Total

short 474 42 4 520

interm. − 98 1 99

long − 89 1247 1336

Total 474 229 1252 1955

high certainty. Hakkila et al. (2003) claimed the structure of
the BATSE sample identifying the intermediate group is due to
a special kind of observational bias. They pointed out that it
is reasonable to assume that observations of faint, long GRBs
detected only the brightest part of the burst and a significant
fraction was buried in the background noise. It also means
an underestimation of the true duration. As a consequence the
faint long bursts appear to be softer and shorter than in reality.
This effect could produce the intermediate group in the sample.
Detailed study of this effect, however, has proven that the exis-
tence of the intermediate group cannot be accounted for by it.

Hakkila et al. (2003) studied a further possibility which
might be the reason for the existence of the intermediate group.
The detection of the bursts proceeds on three timescales: 64 ms,
256 ms and 1024 ms. To record a GRB the count rate of the
peak-flux has to exceed the detection threshold on at least
one of these time scales. A slow faint burst, which emitted
the same amount of energy as a shorter one, might be missed
by the observation since the peak-flux event on the longest
1024 ms timescale was less that that of a faster one. Supposing
a Gaussian distribution for the logarithmic duration of the long
bursts, truncation of the slow faint GRBs results in a relative
overabundance of those that lie in the short duration wing.
Fitting this truncated distribution with Gaussian distributions
one obtains an additional component accounting for the en-
hancement at the short duration wing.

In the case of bursts where the duration is shorter than the
time scale of detection there is a one to one correspondence be-
tween the peak-flux and the total number of counts observed.
As a consequence, the fluence and the peak-flux on this time
scale are identical within a conversion factor. Let us suppose,
in addition to the 64, 256 and 1024 ms timescales, we have
a further one which is longer than the longest burst in the
BATSE sample. Figure 2 shows the relationship between the
log T90 duration and the σF32 error of the F32 = F3 + F2 flu-
ence. The horizontal dashed line marks the expected mean error
of the longest burst in the sample.

Let us take a hypothetic detection timescale as long as the
longest GRB in our sample. The detection is successful if the
fluence is greater than 5.5-times the noise level (this is the usual
BATSE trigger criterion). We marked this level by the horizon-
tal line in the top panel of Fig. 3. A burst fulfilling this crite-
rion would be detected independently of exceeding the trigger
level on the other time scales. Following the idea of Hakkila
et al. (2003) we introduced a dual timescale from 1024 ms and
the longest duration in the BATSE Catalog (800 s), in contrast
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Fig. 2. Relationship between log T90 and the logσF32 error of the
F32 fluence. The vertical dashed line indicates the duration of the
longest bursts in the sample. The horizontal dashed line marks the ex-
pected value of logσF32 at the longest duration.

 

 

 

   

 

 

 

 

     

 
 

  

Fig. 3. Distribution of the GRBs of the BATSE Current Catalog in the
{log10 P1024; log10 F32} plane. Vertical dashed line indicates the trigger
level of the P1024 peak flux and the horizontal one marks the expected
value of 5.5 × σF32 at the longest duration (top panel). Distribution
of points in the top panel after 45◦ rotation (bottom panel). Vertical
dashed line shows the limit of completeness on the dual time scale
defined in the text.

to 10 000 s of Hakkila et al. (2003). The difference between the
two timescales may have an impact on the final classification.

Table 9. Results of the EM algorithm on the truncated sample. k = 2,
Lmax = 1152. (Details of the truncation are described in the text.)

l pl ax ay σx σy r

1 0.194 0.562 0.290 0.697 0.380 −0.574

2 0.806 1.631 0.178 0.391 0.238 −0.024

Table 10. Results of the EM algorithm on the truncated sample. k = 3,
Lmax = 1172.

l pl ax ay σx σy r

1 0.067 0.015 0.660 0.502 0.139 −0.064

2 0.130 0.932 0.046 0.652 0.322 −0.391

3 0.802 1.622 0.186 0.397 0.233 −0.040

Denoting with Pth
1024 and F th

32 the detection threshold on
the 1024 ms and the hypothetical long timescale the in-
equality Pth

1024 + F th
32 < P1024 + F32 defines that part of the

{log10 P1024; log10 F32} plane in which all the GRBs are de-
tected. Replacing the inequality with the equality in the pre-
vious relationship we obtain a line of −45◦ slope which is the
boundary of completeness in this plane. Rotating the coordi-
nates by 45◦ the boundary of the area of completeness becomes
a vertical line as indicated in the bottom panel of Fig. 3.

Restricting ourself to the region of completeness
in the {0.71[log10 F32 + log10 P1024]; 0.71[log10 F32 −
log10 P1024]} plane (right of the vertical dashed line in
the bottom panel of Fig. 3) we repeated the group-searching
algorithm making use of this part of the BATSE sample.
Tables 9–11 summarize the results of the computation.

The truncation procedure described above left 1229 GRBs
in the sample. Inspecting the results given in Tables 9–11 one
may infer that increasing the number of Gaussian components
from k = 2 to k = 3 yielded a significant increase in the likeli-
hood while from k = 3 to k = 4 did not. We conclude that even
in this truncated sample some fraction (13%) (it was 15% in the
non-truncated case) still appeared to belong to the intermediate
group. Comparing the ax parameters between Tables 5 and 10
shows that the deviations are much less than the correspond-
ing σx term. It remains to show, however, what fraction of the
intermediate GRBs in the whole sample was assigned to the
same class in the truncated case. In Table 12 we made a cross
tabulation between the classification of the whole and the trun-
cated sample in the {log T90; log H321} plane. This table shows
that out of the 92 intermediate GRBs in the non-truncated sam-
ple 77 remain in the same class in the truncated case but 17
arrived from the other two classes (12 from the short and 5
from the long group).

4.4. Caveats

The fuzzy classification assigned three {p1, p2, p3} probabilities
(p1 + p2 + p3 = 1) to each GRB in the sample. Somewhat
arbitrarily, we assigned the k class to a burst event where pk,
(k = 1, 2, 3) was maximal. The fraction of GRBs selected in
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Table 11. Results of the EM algorithm on the truncated sample. k = 4,
Lmax = 1175.

l pl ax ay σx σy r

1 0.063 −0.049 0.663 0.486 0.138 0.002

2 0.072 0.939 −0.067 0.722 0.303 −0.395

3 0.041 0.592 0.271 0.259 0.291 −0.566

4 0.825 1.620 0.184 0.393 0.235 −0.046

Table 12. Cross tabulation of GRBs classified in the
{log T90; log H321} plane in the truncated and non-truncated cases,
respectively.

Non-truncated

class321

Truncated class321 Short Interm. Long Total

short 83 5 0 88

interm. 12 77 5 94

long 0 10 1037 1047

Total 95 92 1042 1229

this way could be different to
N∑

i=1
pi

k/N, the expected percentage

of class “k” within the whole population. The truncation we
applied in Sect. 4.3 affected the parameters of the best fitting
Gaussians, consequently pks, and it might move some bursts
into another class while others are added. The fraction of a class
within the whole population, however, could be more resistent
than the classification of individual objects. This fact implies
that we cannot classify the individual bursts with certainty in
this way.

As the fuzzy classification required a functional form for
a suspected class to obtain membership probabilities, we as-
sumed Gaussian distributions. The results reflect therefore
a stochastic structure of the sample rather than isolating
a group of objects with some distinct astrophysical properties.
Consequently, it remained unclear at this stage whether the
stochastic structure we uncovered by the EM algorithm really
represents a new class of GRBs.

5. Physical differences between the mathematical
classes

In Sect. 4.4 we pointed out that the mathematical deconvolution
of the pl(x, y) joint probability density of the observed quanti-
ties into Gaussian components does not necessarily mean that
the physics behind the classes obtained mathematically is dif-
ferent. It could well be possible that the true functional form of
the distributions is not exactly Gaussian and that the algorithm
of deconvolution formally inserts a third one only in order to
get a satisfactory fit. One needs detailed investigations based on
the physical (e.g. spectral) properties of the individual bursts to
prove its astrophysical validity.

Recently Balázs et al. (2003) found compelling evidence
that there is a significant difference between the short and long
GRBs. This might indicate that different types of engines are at

work. The relationship of long GRBs to the massive collapsing
objects is now also observationally well established (Mészáros
2003), and the relation between the comoving and observed
time scales is well understood (Ryde & Petrosian 2002). The
short bursts can be identified as originating from neutron star
(or black hole) mergers (Mészáros 2001). So the mathematical
classification of GRBs into the short and long classes – ob-
tained here (see Table 1 for k = 2) and in Balázs et al. (2003) –
is also physically justified.

An important question that must be answered in this con-
text is whether the intermediate group of GRBs, obtained in the
previous paragraph from the mathematical classification, really
represents a third type of burst physically different from both
the short and the long ones.

The classification into the short, intermediate and long
classes is based mainly on the duration of the burst. From
Table 2 one may infer that these three classes differ also in
the hardnesses. The difference in the hardnesses between the
short and long group is well known (Kouveliotou et al. 1993).
According to these data the intermediate GRBs are the softest
among the three classes. This different small mean hardness
and also the different average duration suggest that the inter-
mediate group should also be a different phenomenon, that is,
both in hardness and in duration the third group differs from the
other two. On the other hand, no correlation exists between the
hardness and the duration within the short and the long classes.
More precisely, no correlation exists for the long group and a
very weak correlation exists for the short group (see Table 2).
Thus, these two quantities may be taken as two independent
variables, and the short and long groups are different in both
these independent variables.

In contrast, there is a strong anticorrelation between the
hardness and the duration within the intermediate class. This
is a surprising, new result, and because the hardness and the
duration are not independent in the third group, one may sim-
ply say that only one significant physical quantity is responsi-
ble for the hardness and the duration within the intermediate
group. Consequently, the situation is quite different here, be-
cause one needs two independent variables to describe the re-
maining two other groups. This is a strong constraint in model-
ing the third group. Hence, the question of the true nature of the
physics in the intermediate group remains open, and obviously
needs further detailed study.

6. Conclusions

Using the bivariate, duration-hardness fittings we obtained the
following results:

– Increasing k from 2 to 3 shows that the introduction of the
third group is real. This means that three groups of GRBs
should exist. This confirms the earlier results of several
authors.

– Increasing k from 3 to 4 shows that the introduction of
the fourth group is not needed. This means that only
three groups should exist. This result is in accordance with
Mukherjee et al. (1998). Discussion of the possible biases
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and also the use of two different hardnesses do not change
this conclusion.

– From the fitting procedures it follows that the duration and
the hardness are good quantities for the classification of
GRBs. Remarkably, the intermediate class is on average
even softer than the long group.

– We developed a method that makes it possible to define, for
any GRB, the probabilities determining its membership of
a given class. (The memberships are available by internet,
Horváth et al. 2005.)

– 11%–15% of GRBs in the Current BATSE Catalog should
belong to the intermediate class.

– An unusual anti-correlation between the duration and hard-
ness might exist in the intermediate group. Hence, contrary
to the other two classes, here the duration and hardness
might not be independent variables, and hence the interme-
diate class can be different from the other two classes where
the logarithmic hardness and duration are non-correlated
variables. Thus, further detailed analysis has to be carried
out to study this suspected behavior of the intermediate
class.

All these considerations mean that we answered five questions
of the six formulated in the Introduction. The question “Is
the intermediate group a physically different phenomenon?”
was not answered with satisfying certainty, and needs further
analysis.
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