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e-mail: bagoly@ludens.elte.hu
3 Dept. of Physics, Bolyai Military University, Budapest, Box 12, 1456, Hungary

e-mail: hoi@bjkmf.hu
4 Astronomical Institute of the Charles University, 180 00 Prague 8, V Holešovičkách 2, Czech Republic
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Abstract. We argue that the distributions of both the intrinsic fluence and the intrinsic duration of the γ-ray emission in gamma-
ray bursts from the BATSE sample are well represented by log-normal distributions, in which the intrinsic dispersion is much
larger than the cosmological time dilatation and redshift effects. We perform separate bivariate log-normal distribution fits to
the BATSE short and long burst samples. The bivariate log-normal behaviour results in an ellipsoidal distribution, whose major
axis determines an overall statistical relation between the fluence and the duration. We show that this fit provides evidence for
a power-law dependence between the fluence and the duration, with a statistically significant different index for the long and
short groups. We discuss possible biases, which might affect this result, and argue that the effect is probably real. This may
provide a potentially useful constraint for models of long and short bursts.
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1. Introduction

The simplest grouping of gamma-ray bursts (GRBs), which is
still lacking a clear physical interpretation, is given by their
well-known bimodal duration distribution. This divides bursts
into long (T >∼ 2 s) and short (T <∼ 2 s) duration groups
(Kouveliotou et al. 1993), defined through some specific dura-
tion definition such as T90, T50 or similar. The bursts measured
with the BATSE instrument on the Compton Gamma-Ray
Observatory are usually characterized by 9 observational quan-
tities, i.e. 2 durations, 4 fluences and 3 peak fluxes (Meegan
et al. 1996; Paciesas et al. 1999; Meegan et al. 2001). In a
previous paper (Bagoly et al. 1998) we used the principal com-
ponents analysis (PCA) technique to show that these 9 quan-
tities can be reduced to only two significant independent
variables, or principal components (PCs). These PCs can be
interpreted as principal vectors, which are made up of some
subset of the original observational quantities. The most im-
portant PC is made up essentially by the durations and the
fluences, while the second, weaker PC is largely made up of
the peak fluxes. This simple observational fact, that the domi-
nant principal component consists mainly of the durations and
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the fluences, may be of consequence for the physical modeling
of the burst mechanism. In this paper we investigate in greater
depth the nature of this principal component decomposition,
and, in particular, we analyze quantitatively the relationship be-
tween the fluences and durations implied by the first PC. In our
previous PCA treatment of the BATSE Catalog (Paciesas et al.
1999) we used logarithmic variables, since these are useful for
dealing with the wide dynamic ranges involved. Since the log-
arithms of the durations and the fluences can be explained by
only one quantity (the first PC), one might suspect the existence
of only one physical variable responsible for both of these ob-
served quantities. The PCA assumes a linear relationship be-
tween the observed quantities and the PC variables. The fact
that the logarithmic durations and fluences can be adequately
described by only one PC implies a proportionality between
them and, consequently, a power law relation between the ob-
served durations and fluences. We analyze the distribution of
the observed fluences and durations of the long and the short
bursts, and we present arguments indicating that the intrinsic
durations and fluences are well represented by log-normal dis-
tributions. The implied bivariate log-normal distribution rep-
resents an ellipsoid in these two variables, whose major axis
inclinations are statistically different for the long and the short
bursts. An analysis of the possible biases and complications is
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made, leading to the conclusion that the relationship between
the durations and fluences appears to be intrinsic, and may thus
be related to the physical properties of the sources themselves.
We calculate the exponent in the power-laws for the two types
of bursts, and find that for the short bursts the total emitted en-
ergy is weakly coupled to the intrinsic duration, while for the
long ones the fluences are roughly proportional to the intrin-
sic durations. The possible implications for GRB models are
briefly discussed.

The paper is organized as follows. Section 2 (Sect. 3) pro-
vides classical χ2 fitting of the measured durations (fluences) –
separately for the short and long GRBs. The purposes of these
two Sections is to show that – separately for the two subgroups
– both the intrinsic durations and also the total emitted energies
are distributed log-normally. Using these results in Sect. 4 a si-
multaneous fitting of the fluences and the measured durations
are done by the superposition of two bivariate log-normal dis-
tributions. The purpose of this section is to find the power-law
connections between the fluences and durations – separately for
the two subgroups. Because the observational biases may play
an essential role in these results the biases are studied in this
section, too. Section 5 discusses and summarizes the results of
article. In the Appendix some technical calculations are pre-
sented.

2. Analysis of the duration distribution

Our GRB sample is selected from the Current BATSE Gamma-
Ray Burst Catalog according to two criteria, namely, that they
have both measured T90 durations and fluences (for the defi-
nition of these quantities see Meegan et al. 2001, henceforth
referred to as the Catalog). The Catalog in its final version lists
2041 bursts for which a value of T 90 is given. The fluences
are given in four different energy channels, F 1, F2, F3, F4,
whose energy bands correspond to [25, 50] keV, [50, 100] keV,
[100, 300] keV and >300 keV. The “total” fluence is defined
as Ftot = F1 + F2 + F3 + F4. We restrict our sample to in-
clude only those GRBs, which have Fi > 0 values in the first
three channels; i.e. F1, F2, F3 are given. Concerning the fourth
channel, whose energy band is >300 keV, if we had required
F4 > 0 as well, this would have reduced the number of el-
igible GRBs by � 20%. Hence, we decided to accept also
these bursts with F4 = 0, rather than deleting them from the
sample. (With this choice we also keep in the sample the no-
high-energy (NHE) subgroup defined by Pendleton et al. 1997.)
Our choice of F ≡ F tot, instead of some other quantity as the
main variable, is motivated by two arguments. First, as dis-
cussed in Bagoly et al. (1998), F tot is the main constituent of
one of the two PCs which represent the data embodied in the
BATSE Catalog, and hence it can be considered as a primary
quantity, rather than some other combination or subset of its
constituents. Second, Petrosian and collaborators in a series of
articles (Efron & Petrosian 1992; Petrosian & Lee 1996; Lee
& Petrosian 1996, 1997) have also argued for the use of the
fluence as the primary quantity instead of, e.g., the peak flux.
Using such defined F tot, from the sample only such GRBs are
deleted, which have no measured F tot. Because also the peak
fluxes are needed, too, we are left with N = 1929 GRBs, all

of which have defined T90 and Ftot, as well as peak fluxes P256

on the 256 ms trigger scale. If the peak flux P64 on the 64 ms
trigger scales is needed, then the sample contains N = 1972
GRBs. These are the samples studied in this article.

The distribution of the logarithm of the observed T 90 dis-
plays two prominent peaks1, which is interpreted as reflecting
the existence of two groups of GRBs (Kouveliotou et al. 1993;
Norris et al. 2001). This bimodal distribution can be well fit-
ted by the sum of two Gaussian distributions (Horváth 1998)
indicating that both the long and the short bursts are individ-
ually well fitted by pure Gaussian distributions in the loga-
rithmic durations. The fact that the distribution of the BATSE
T90 quantities within a group is log-normal is of interest, since
we can show that this property may be extended to the intrin-
sic durations as well. Let us denote the observed duration of
a GRB with T90 (which may be subject to cosmological time
dilatation), and denote with t90 the duration which would be
measured by a comoving observer, i.e. the intrinsic duration.
One has

T90 = t90 f (z), (1)

where z is the redshift, and f (z) measures the time dilatation.
For the concrete form of f (z) one can take f (z) = (1 + z) k,
where k = 1 or k = 0.6, depending on whether energy stretch-
ing is included or not (Fenimore & Bloom 1995; Mészáros &
Mészáros 1996). If energy stretching is included, for different
photon frequencies ν the t90 depends on these frequencies as
t90(ν) = t90(νo)(ν/νo)−0.4 ∝ ν−0.4, where νo is an arbitrary fre-
quency in the measured range (i.e. for higher frequencies the
intrinsic duration is shorter). The observed duration at ν is sim-
ply (1 + z) times the intrinsic duration at ν × (1 + z). Thus,
T90(ν) = t90(ν(1 + z))(1 + z) = t90(νo)(ν(1 + z)/νo)−0.4(1 + z) =
t90(ν)(1 + z)0.6. Hence, when stretching is included, f (z) =
(1+ z)0.6 is used. Taking the logarithms of both sides of Eq. (1)
one obtains the logarithmic duration as a sum of two indepen-
dent stochastic variables. According to a mathematical theorem
of Cramér (Cramér 1937; Rényi 1962), if a variable ζ – which
has a Gaussian distribution – is given by the sum of two in-
dependent variables, e.g. ζ = ξ + η, then both ξ and η have
Gaussian distributions. (In practical cases, however, this holds,
of course, only if the variances of ξ and η are comparable. If
the variance of, say, ξ is much smaller than the variance of η,
then both the variables ζ and η may have a normal distribution
– but nothing can be said about the distribution of ξ. It can, but
also need not be Gaussian.)

Therefore, the Gaussian distribution of log T 90 – confirmed
for the long and short groups separately (Horváth 1998) – im-
plies that the same type of distribution exists for the variables
log t90 and log f (z). However, unless the space-time geometry
has a very particular structure, the distribution of log f (z) can-
not be Gaussian. This means that the Gaussian nature of the
distribution of log T90 must be dominated by the distribution

1 There is also an evidence for the existence of a third intermediate
subgroup as part of the long duration group (Horváth 1998; Mukherjee
et al. 1998; Hakkila et al. 2000a,c; Balastegui et al. 2001; Horváth
2002), which shows a distinct sky angular distribution (Mészáros et al.
2000a,b; Litvin et al. 2001). We do not deal with this third group here.
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of log t90 alone, and therefore the latter must then necessar-
ily have a Gaussian distribution. In other words, the variance
of f (z) must be much smaller than the variance of log t 90. This
must hold for both duration groups separately. This also implies
that the cosmological time dilatation should not affect signifi-
cantly the observed distribution of T 90, which therefore is not
expected to differ statistically from that of t90. We note that
several other authors (Wijers & Paczyński 1994; Norris et al.
1994; Norris et al. 1995) have already suggested that the dis-
tribution of T90 reflects predominantly the distribution of t90.
Nevertheless, our argumentation based on the mathematical
Cramér theorem is new.

One can check the above statement quantitatively by cal-
culating the standard deviation of f (z), using the available ob-
served redshifts of GRB optical afterglows. The number of the
latter is, however, relatively modest, and, in addition, so far they
have been obtained only for long bursts. There are currently up-
wards of 21 GRBs with well-known redshifts (Greiner 2002).
The calculated standard deviation is σ log f (z) = 0.17, assuming
log f (z) = log(1+ z). Comparing the variance σ2

log f (z) with that
of the group of long burst durations which gives σ log T90 = 0.5,
one infers that the variance of log f (z), or of log(1 + z), can
explain maximally only about (0.17/0.50) 2 � 12% of the to-
tal variance of the logarithmic durations. (If f (z) = (1 + z) 0.6,
then the variance of log f (z) can only explain an even smaller
amount, because σlog f (z) = 0.6 × 0.17.) This comparison sup-
ports the conclusion obtained by applying Cramér’s theorem to
the long duration group. For the short duration group, since this
does not so far have measured redshifts, one can rely only on
the theorem itself.

3. Analysis of the fluence distribution

The observed total fluence F tot can be expressed as

Ftot =
(1 + z)Etot

4πd2
l (z)

= c(z)Etot. (2)

Here Etot is the total emitted energy of the GRB at the source in
ergs, the total fluence has dimension of erg/cm2, and dl(z) is the
luminosity distance corresponding to z for which analytical ex-
pressions exist in any given Friedmann model (Weinberg 1972;
Peebles 1993). (We note that the considerations in this paper
are valid for any Friedmann model. Note also that the usual
relation between the luminosity and flux is given by a similar
equation without the extra (1 + z) term in the numerator. Here
this extra term is needed because both the left-hand-side is in-
tegrated over the observer-frame time and the right-hand-side
is integrated over the time at the source (Mészáros & Mészáros
1995).)

Assuming as the null hypothesis that the log F tot of the short
bursts has a Gaussian distribution, for the sample of 447 bursts
with T90 < 2 s, a χ2 test with 26 degrees of freedom gives
an excellent fit with χ2 = 20.17. Accepting the hypothesis
of a Gaussian distribution within this group, one can apply
again Cramer’s theorem similarly to what was done for the
logarithm of durations. This leads to the conclusion that either
both the distribution of log c(z) and the distribution of log E tot

are Gaussian ones, or else the variance of one of these quan-
tities is negligible compared to the other, which then must
be mainly responsible for the Gaussian behaviour. Because
log c(z) hardly can have a log-normal distribution, the second
possibility seems to be the situation. In any case, one may con-
clude that the intrinsic fluence (i.e. the total emitted energy)
should be distributed log-normally.

In the case of the long bursts, a fit to a Gaussian distribu-
tion of logarithmic fluences does not give a significance level,
which is as convincing as for the short duration group. For the
1482 GRBs with T90 > 2 s a χ2 test on log Ftot with 22 degrees
of freedom gives a fit with χ2 = 35.12. Therefore, in this case
the χ2 test casts some doubt on normality but only with a rel-
atively high error probability of 3.5% for rejecting a Gaussian
distribution (Trumpler & Weaver 1953; Kendall & Stuart 1976;
Press et al. 1992). This circumstance prevent us from apply-
ing Cramér’s theorem directly in the same way as we did with
the short duration group. Calculating the variance of log c(z)
for the GRBs with known 21 redshifts (Greiner 2002) one ob-
tains σlog c(z) = 0.43. For the GRBs of long duration, however,
one obtains σlog Ftot = 0.66. The ratio of these variances equals
(0.432/0.66)2 � 42%, i.e. more than half of the variance of
Ftot is not explained by the variance of c(z). (If one takes into
account the energy stretching even a larger fraction remains
unexplained.) In other words, a significant fraction of the total
variance of F tot has to be intrinsic. It is worth mentioning that
the unexplained part of the variance of F tot corresponds nicely
to the value obtained in Sect. 4 making use the EM algorithm.

Despite these difficulties, there is a substantial reason to
argue that the intrinsic distribution of total emitted energies is
distributed log-normally for the long subgroup, too.

The Gaussian behaviour of log c(z) can almost certainly
be excluded. One can do this on the basis of the current ob-
served distribution of redshifts (Greiner 2002), or on the ba-
sis of fits of the number vs. peak flux distributions (Fenimore
& Bloom 1995; Ulmer & Wijers 1995; Horváth et al. 1996;
Reichart & Mészáros 1997). In such fits, using a number den-
sity n(z) ∝ (1 + z)D with D � (3 − 5), one finds no evi-
dence for the stopping of this increase with increasing z (up
to z � (5 − 20)). Hence, it would be contrived to deduce from
this result that the distribution of log c(z) is normal. In order
to do this, one would need several ad hoc assumptions. First,
the increasing of number density would need to stop around
some unknown high z. This was studied (Mészáros & Mészáros
1995; Horváth et al. 1996; Mészáros & Mészáros 1996), and
no such effect was found. (For the sake of preciseness it must
be added here that these fits were done for the whole sample
of GRBs. But, because GRBs are dominated by the long ones,
conclusions from these fits should hold for the long subgroup,
too.) Second, even if this were the case, above this z the de-
crease of n(z) should mimic the behavior of a log-normal dis-
tribution for c(z), without any obvious justification. Third, be-
low this z one must again have a log-normal behavior for c(z),
in contradiction with the various number vs. peak flux fits.
Fourth, this behavior should occur for any subclass separately.
Hence, the assumption of log-normal distribution of c(z) ap-
pears highly improbable.
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Having a highly improbable log-normal distribution of
log c(z), which variance is surely not negligible, a 3.5% error
probability (i.e the probability that we reject the hypothesis of
normality but it is still true) from the goodness-of-fit is still re-
markable. One may argue that, if the distribution of the total
emitted energy were not distributed log-normally, then the two
non-normal distributions together would give a fully wrong χ 2

fit for log Ftot; under this condition even the 3.5% probabil-
ity would not be reachable. Of course, this argumentation is
more or less heuristic, and – as the conclusion – one cannot
say that the log-normal distribution of E tot is confirmed sim-
ilarly unambiguously in both subgroups. In the case of long
subgroup questions still remain, and they will still be discussed
(end of Sect. 4.3). It is worth mentioning the rise times, fall
times, FWHM, pulse amplitudes and areas were measured and
the frequency distributions are consistent with log-normal dis-
tributions (McBreen et al. 2001; Quilligan et al. 2002).

In addition, even in the case of short GRBs the situation is
not so clear yet. The argument based on the Cramér theorem
for the short GRBs should also be taken with some caution.
As shown in Bagoly et al. (1998), the stochastic variable corre-
sponding to the duration is independent from that of the peak
flux. This means that a fixed level of detection, given by the
peak fluxes, does not have significant influence on the shape of
the detected distribution of the durations (Efron & Petrosian
1992; Wijers & Paczyński 1994; Norris et al. 1994, 1995;
Petrosian & Lee 1996; Lee & Petrosian 1996, 1997). In the
case of the fluences, however, a detection threshold in the peak
fluxes induces a bias on the true distribution, since fluences
and durations are stochastically not independent. Therefore, the
log-normal distribution recognized from the data does not nec-
essarily imply the same behaviour for the true distribution of
fluences occurring at the detector. In other words, observational
biases may have important roles; in addition, for both sub-
groups. A discussion of these problems can be found in a series
of papers published by Petrosian and collaborators (Efron &
Petrosian 1992; Petrosian & Lee 1996; Lee & Petrosian 1996,
1997; Lloyd & Petrosian 1999). In what follows, we also will
study the biases together with the fitting procedures.

4. Correlation between the fluence and duration

In the previous sections we presented firm evidences that the
observed distribution of the durations is basically intrinsic. We
argued furthermore that a significant fraction of the variance
of the fluences is also intrinsic. We proceed a step further in
this section and try to demonstrate that there is a relationship
between the duration and the fluence which is also intrinsic.
There are two basic difficulties in searching the concrete form
of this relationship (if there is any at all): first, we observe only
those bursts which fulfill some triggering criteria and, second,
the observed quantities are suffering from some type of bias
depending on the process of detection. Several papers discuss
these biases (Efron & Petrosian 1992; Lamb et al. 1993; Lee &
Petrosian 1996; Petrosian & Lee 1996; Lee & Petrosian 1997;
Stern et al. 1999; Paciesas et al. 1999; Hakkila et al. 2000b;
Meegan et al. 2000). In the following we will address these
issues in a new way.

The detection proceeds on three time scales: the input
signal is analyzed on 64, 256 and 1024 ms resolution. The
counts in these bins of these scales are compared with the
corresponding 17 s long averaged value. There are eight detec-
tors around the BATSE instrument. If at least one of the three
peak intensities in the second brightest detector exceeds 5.5
sigma of the threshold computed from the averaged signal the
burst will be detected. In case of the bursts of long duration (at
least several seconds) the differences in the time scales of de-
tection do not play an important role since the vast majority of
the events were triggered on the 1024 ms scale and the detec-
tion proceeded if the peak exceeded the threshold on this time
scale. In contrast, at the bursts of short duration – when T 90

could be much shorter then the time scale of the detection –
the situation could be drastically changed. Looking at the data
of the BATSE the bursts of duration of T 90 < 2 s are mixtures
of those triggered on different time scales. Among bursts trig-
gered on the same time scale the detection proceeds when the
corresponding peak flux exceeds the threshold. In the case of
bursts, which are shorter than their triggering time scale, the
corresponding peak fluxes are given by the fluence itself. This
has the consequence that the threshold in the peak flux means
the same for the fluence, i.e. it results a horizontal cut on the
fluence – duration plane and a bias in the relationship between
these quantities. In order to minimize this effect we will use
the peak flux on the 64 ms and 256 ms time scale in our further
analysis. The BATSE had a spectral response on the detected γ
radiation. It had the consequence that different measured val-
ues were assigned to bursts having the same total energy at the
entrance of the detector if the incoming photons had different
spectral distributions.

The duration of a GRB is only a lower limit for its intrin-
sic value since a certain fraction of the burst can be buried in
the background noise. Therefore any relationship recognized
among the observed fluence and duration is not necessarily rep-
resentative for those between the corresponding intrinsic quan-
tities. In the next paragraphs we address these issues in more
details.

4.1. Effect of the detection threshold on the joint
probability distribution of the fluence and duration

In the following we will study the effect of the detection thresh-
old on the joint probability distribution of the observed fluence
and duration. In order to put this effect into a quantitative basis
we use the law of full probabilities (see e.g. Rényi 1962). Let
P(Ftot, T90) be the joint probability density of the fluence and
duration. Using this theorem any of the probability densities on
the right side can be written in the form of

P(Ftot, T90) =

∞∫
0

P(Ftot, T90|p)G(p)dp, (3)

where p is the peak flux at any of the 64 ms, 256 ms
and 1024 ms time scales, P(F tot, T90|p) is the joint (bivari-
ate) probability density of the fluence and duration (assum-
ing that p is given), and G(p) is the probability density of p.
This means that, if there are N bursts in the sample, then
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NP(Ftot, T90) d log Ftotd log T90 is the expected number of ob-
served GRBs in the infinitesimal intervals [log F tot, (log Ftot +

d log Ftot)] and [log T90, (log T90 + d log T90)], respectively.
Among the bursts triggered on a given time scale G(p) repre-
sents an unbiased function above p th, the peak flux correspond-
ing to the detection threshold. Below this limit, however, G(p)
is biased by the process of detection. It inserts also a bias on
the joint probability density of the observed fluence and du-
ration. Nevertheless, the kernel P(F tot, T90|p) represents some
intrinsic relationship between these two quantities, and it is free
from the bias of G(p). Following our discussion given above,
we use in the following the peak fluxes of the 64 ms time scale.

4.2. Intrinsic relationship between the fluence
and the duration

We demonstrated in an earlier paper (Bagoly et al. 1998) that
the logarithms of the peak flux and the duration represent two
independent stochastic variables and the logarithmic fluence
can be well approximated as the linear combination of these
variables:

log Ftot = a1 log T90 + a2 log p + ε, (4)

where a1, a2 are constants, and ε is a noise term (later on we
will see that a1 may depend on the duration, i.e. it is different
for the bursts of short and long duration). One may confirm this
statement by inspecting the tables given in the Appendix. They
demonstrates convincingly that, independently of the choice of
the peak flux, the standard deviation and the mean value of the
duration is not changed significantly. This expression reveals
that – fixing the peak intensity – the distribution of the fluences
reflects basically the distribution of the durations. Since the
probability density of the durations is a superposition of two
Gaussian distributions, the same should hold also for the flu-
ences. Consequently, we may assume that the joint conditional
probability distribution of the fluence and duration consists of
a superposition of two two-dimensional Gaussian distributions.
One such distribution takes the form

f (x, y)dxdy =
N

2πσxσy
√

1 − r2
× exp

[
− 1

2(1 − r2)

×
 (x − ax)2

σ2
x
+

(y − ay)2

σ2
y

− 2r(x − ax)(y − ay)

σxσy


 dxdy, (5)

where x = log T90, y = log Ftot ax, ay are the means, σx, σy are
the dispersions, and r is the correlation coefficient (Trumpler
& Weaver 1953, Chap. 1.25). In our case one needs a weighted
sum of two such bivariate distributions. This means that 11 free
parameters should be determined (two times 5 parameters for
the both distributions; the 11th independent parameter is the
weight of the, say, first subgroup). This also means that two r
correlation coefficients should be obtained, which may be dif-
ferent for the two subgroups.

The parameters ax, σx, characterizing the distribution of the
duration do not depend on the peak flux, because T 90 and p are
independent stochastic variables. The only dependent param-
eter is ay, the mean value of the fluence. In the case, when
the r-correlation coefficient differs from zero, the semi-major

axis of the dispersion ellipse represents a linear relationship
between log T90 and log Ftot, with a slope of m = tanα, where

tan 2α =
2rσxσy

σ2
x − σ2

y

· (6)

This linear relationship between the logarithmic variables im-
plies a power-law relation of form F tot = (T90)m between the
fluence and the duration, where m may be different for the two
groups. Replacing the G(p) probability density by the empir-
ical distribution of the measured peak fluxes, one may write
the joint probability density of the fluence and duration in the
form of

P(Ftot, T90) =

∞∫
0

P(Ftot, T90|p)G(p)dp �
N∑

i=1

P(Ftot, T90|pi)

�
k∑

l=1

blP(Ftot, T90|pl), (7)

i.e. the integral is approximated by a sum of k separate terms
(bins), in which bl is the number of GRBs at the given bin.

The k is the number of bins at the right-hand-side, and is
somewhat arbitrary. Trivially, bigger k leads to a better approx-
imation of the integral. On the other hand, bigger k leads to
the situation, when in one single bin the number of GRBs b l is
smaller. Hence, k should be small in order to get enough num-
ber of GRBs in each bin for making statistics, but not too small
in order to have good approximation of the integral.

4.3. Maximum Likelihood estimation of the parameters
via EM algorithm

One finds in the tables of Appendix the computed mean val-
ues and standard deviations of the logarithmic durations for
the short and long bursts, respectively. These tables clearly
suggest that, except for the faintest bins where we expect se-
rious biases in the duration and fluence due to the detection
close to the background, the standard deviations do not dif-
fer significantly between the bins. Dividing the sample into
short and long bursts by the cut of T 90 < 2 s and T90 > 2 s,
we may assume that these subsamples are dominated by only
one Gaussian distribution and we may compute its parame-
ters in a simple way as given below. If the P(F tot, T90|p) con-
ditional probability density is a pure Gaussian one, then the
Maximum Likelihood (ML) estimation of its parameters would
be very simple, because they can be obtained by computing
the mean values, standard deviations and the correlation be-
tween the fluence and duration. In the reality, however, this
probability density is a superposition of two Gaussians one,
and the simple cut at T90 = 2 s is hardly satisfactory. The
proper way to estimate the free parameters is not so simple.
For this reason we will use a procedure, called EM algorithm
(Expectation and Maximalization), which terminates at the ML
solution (Dempster et al. 1977). If we knew, which of the bursts
belong to the short and long duration groups, we may add a
{i1, i2} two dimensional indicator variable to each GRB having
the value of {1, 0} in the case if a burst was short, and similarly
{0, 1} if it was long. The sample means of T 90 weighted with i1
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Table 1. Number of GRBs within the 0.2 wide strata of the logarithmic
64 ms peak fluxes.

Serial No. log P64 total No. No. of GRBs No. of GRBs
of GRBs with T90 < 2 s with T90 < 0.064 s

1. −0.6–−0.4 5 1 0
2. −0.4–−0.2 113 5 0
3. −0.2–0.0 385 44 1
4. 0.0–0.2 434 104 4
5. 0.2–0.4 365 126 8
6. 0.4–0.6 254 79 3
7. 0.6–0.8 166 47 2
8. 0.8–1.0 95 34 0
9. 1.0–1.2 74 22 0

10. 1.2–1.4 39 6 0
11. 1.4–1.6 19 5 0
12. 1.6–1.8 15 2 0
13. 1.8–2.0 6 1 0
14. 2.0 < 2 0 0

would give the ML estimation of ax of the first Gaussian dis-
tribution (i.e. ax =

∑N
j=1 i1 j x j/

∑n
j=1 i1 j). The same hold for the

other parameters. Weighting with i2 would give the parameters
of the second Gaussian distribution. Hence 10 parameters of
the two distributions would be well calculable. The 11th pa-
rameter would also be trivially calculable, because the fraction
of first subgroup should simply be

∑N
i=1 i1/N. Hence, if the val-

ues of the {i1, i2} indicator variable were known, the ML pa-
rameters would be well calculable.

If the parameters of the two Gaussians were given, one
could compute the {p1, p2} membership probabilities of a burst
to each of the two groups. Replacing the indicator variable by
these probabilities one may calculate new parameters in the
same way as was done assuming {i1, i2} were given. Then one
may again calculate new {i1, i2}, and again the new parame-
ters. This iteration is exactly the procedure, what EM algorithm
is doing. One gives an initial estimate for the parameters of
the two Gaussian distributions. Then one estimates the mem-
bership probabilities (E step). Weighting with the membership
probabilities one obtains the new ML estimation of the param-
eters (M step). Repeating these steps successively one proceeds
to the ML solution of the parameter estimation (Dempster et al.
1977).

In order to fit the [log T90, log Ftot] data pairs with the su-
perposition of two two-dimensional Gaussian bivariate distri-
butions we splitted the Catalog into subsamples with respect to
64 ms peak fluxes. The strata were obtained by taking 0.2 wide
strips in the logarithmic peak fluxes. Table 1 summarizes the
number of GRBs within the strata. In addition, also the number
of GRBs with T90 < 2 s and with T90 < 0.064 s are given there.
The first one shows that, roughly, which fraction of GRBs be-
long to the short subgroup in the given strata, and the second
one shows which fraction is maximally biased.

In the fitting procedure we omitted bins No. 1–3, being
affected by selection bias, and also No. 9–14, being scarcely
populated. We performed the ML fitting in the bins No. 4–8,
making use the EM algorithm. Table 2 summarizes the results
of the ML fitting for the short GRBs, and Table 3 for the long
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Fig. 1. The best ML fits of the two log-Gaussian distributions for the
faintest sample No. 4 with N = 434.
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Fig. 2. The best ML fits of the two log-Gaussian distributions for the
sample No. 5 with N = 365.

GRBs, respectively. In Figs. 1–5 the results of fitting for bins
No. 4–8 are shown. The ellipses define the 1-sigma and 2-sigma
regions, respectively.

The slopes of short GRBs obtained for the bins No. 7 and
No. 8 differ remarkably from those in bins No. 4–6. They are
based, however, on a small number of bursts; hence, the r pa-
rameter is highly uncertain. Since we used for weighting the
number of GRBs within the given bin their, contribution to the
final result is marginal. We noted above that the duration and
peak flux are independent stochastic variables. Since the sam-
ple was splitted into subsamples by the peak flux, this means
that the parameters of Gaussians distributions referring to T 90

either in the Table 2 or in Table 3 should be identical within
the statistical uncertainty of estimation. Inspecting a x in these
tables – which summarize the results of the EM algorithm –
clearly demonstrates that their difference is much less than σ x.
It is also possible to compare the mean slopes obtained by
weighting the results for the short and long GRBs, respectively,
in order to test the significance of the difference between these
groups. One may compute a χ2 = (m1−m)2/σ2

1+ (m2−m)2/σ2
2
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Table 2. Results of the ML fitting for the short GRBs using the EM algorithm. Weighted mean for m is m = 0.81 ± 0.06.

Strip No. rel. frequency ax ay σx σy r total No. of GRBs m = tanα
4. .293 −.199 −6.587 .549 .502 .593 434 0.86
5. .418 −.275 −6.488 .575 .503 .591 365 0.80
6. .321 −.365 −6.244 .486 .497 .515 254 1.04
7. .332 −.188 −5.921 .510 .420 .342 166 0.58
8. .358 −.325 −5.910 .440 .347 .279 95 0.46

Table 3. Results of the ML fitting for the long GRBs using the EM algorithm. Weighted mean for m is m = 1.11 ± 0.03.

Strip No. rel. frequency ax ay σx σy r total No. of GRBs m = tanα
4. .707 1.560 −5.485 .400 .434 .586 434 1.15
5. .582 1.613 −5.239 .445 .463 .599 365 1.07
6. .679 1.419 −5.216 .538 .613 .753 254 1.19
7. .668 1.468 −4.894 .448 .459 .610 166 1.04
8. .642 1.391 −4.779 .541 .531 .656 95 0.97
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Fig. 3. The best ML fits of the two log-Gaussian distributions for the
sample No. 6 with N = 254.

variable based on the assumption that the m1, m2 slopes of the
short and long GRBs differs from the m weighted mean only
by chance. Making this assumption one obtains χ2 = 22.2 indi-
cating that the null hypothesis, i.e. m1 = m2, should be rejected
on a 4.7σ significance level. The two slopes are different.

4.4. Possible sources of the biases

The relationships derived in the previous subsection refer to the
observed values of GRBs. There is a dilemma, however, how
representative they are for the true quantities of GRBs not af-
fected by the process of detection. We mentioned already sev-
eral major source of bias. Here we summarize them again:

- Some GRBs below the threshold remain undetected.
Therefore, the stochastic properties of the observed part of
the true joint distribution of

{
log T90, log Ftot

}
are not nec-

essarily relevant for the whole population.
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Fig. 4. The best ML fits of the two log-Gaussian distributions for the
sample No. 7 with N = 166.

- Observed duration refers to the detected part of GRBs. The
real duration might be much longer.

- There is a similar bias also for the fluence.
- Additionally, due to the limited spectral response of

BATSE, a significant fraction of the high energy part of the
fluence may remain unobserved.

- There is a special bias at short GRBs. At GRB, where the
duration is shorter than the time resolution of detection,
there is a one-to-one correspondence between the peak flux
and the fluence.

4.4.1. Effect of the threshold

Using the law of full probability we decomposed the observed
joint probability distribution of

{
log T90, log Ftot

}
into the dis-

tribution of the peak flux and a conditional probability, assum-
ing p is given. Since the detection proceeds on three different
time scales, one does not expect a sharp cut on G(p) but the
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Fig. 5. The best ML fits of the two log-Gaussian distributions for the
brightest sample No. 8 with N = 95.

distortion is more complicated in the reality. Although the ob-
servational threshold may seriously affect the detected form of
G(p), it need not necessarily modify P(F tot, T90|p). The detec-
tion threshold, however, may distort also the fluence and dura-
tion themselves, and in this way also the form of P(F tot, T90|p).

4.4.2. True vs. observed duration

Depending on the light curve of the GRBs a significant frac-
tion of the outbursts may remain unobserved. So the duration
derived from the observed part is only a lower limit for the true
one. Approaching the detection threshold this effect should be-
come more and more serious. Assuming a Gaussian form for
P(Ftot, T90|p) one expect a systematic change in the parame-
ters as one is approaching the threshold. Inspecting the mean
values and standard deviations of the duration in the tables
of the Appendix, one may really recognize this effect in the
three faintest bins. In the remaining part of the sample, how-
ever, there is a remarkable homogeneity in the mean value and
standard deviation of duration. It is also worth mentioning that
the same is true in Tables 2 and 3 summarizing the result of the
ML fitting. So one may conclude that this bias does not play a
significant influence in the 4–8. bins used for our calculations.

4.4.3. True vs. observed fluence

Similarly to the duration also the observed fluence might be
a lower bound depending on the light curve of the burst.
Although fixing p resulted in a similar functional (Gaussian)
form of the fluence as of the duration, its mean value a y differs
from bin to bin due to the dependence of F tot on the peak flux.
Its standard deviation σy, however, shows a noticeable homo-
geneity within the limits of statistical uncertainty. Again, this
implies a constancy in the functional form of P(F tot, T90|p) in
the bins studied. The only exception is perhaps the bin No.
8 for the short GRBs, where the standard deviation and the r
correlations coefficient seems to depart considerably from the
others in Table 2. One may test the significance of the ex-
cursion of σy in bin No. 8 by performing a F test (see e.g.

Kendall & Stuart 1976). Computing the F = σ2
8/σ

2
5 value,

where the indexes refer to the serial number of bins, one ob-
tains F = 2.11 indicating significant difference on the 99.9%
level. Except for this significant excursion in the 8th bin, the
σy values are statistically identical implying that the functional
relationship between F tot and T90 is not significantly influenced
by the process of detection in the bins studied.

4.4.4. Bias from the spectral response

BATSE were observing in four energy channels. Even the high-
est energy channel was not able to detect the hardest parts of
the bursts. A significant fraction of the incoming energy might
remain unobserved. In principle, there is a possibility for es-
timating the amount of unobserved part of radiation by sup-
posing a spectral model for the GRB. Fitting this model to the
values measured in the four energy channels one may get an es-
timate for the unobserved part. Supposing, the energy distribu-
tion of the bursts can be described by two power laws separated
by an Ep energy Lloyd & Petrosian 1999 did a four parameter
fit (two powers, Ep and an amplitude) for GRBs detected by
BATSE. A basic trouble at this approach appears in the fact
that numbers of points and parameters to be fitted are identical
and, consequently, any uncertainty in the measured values has
a very sensitive impact on the parameters estimated. Moreover,
a significant fraction of GRBs does not have a reliable fluence
in the high energy channel which exceeds at least the 3σ level
of the background. In particular, it is true for the No. 4–8. bins.

It is well-known that the short bursts are harder in the aver-
age than the long ones. Consequently, the fraction of the unob-
served part of the energy spectrum may have a negative correla-
tion with the duration in the case of this subgroup. The detected
part of the fluence experiences therefore a positive correlation,
assuming there is no intrinsic relationship between the duration
and the true total fluence. In the case of a real intrinsic relation-
ship between these quantities, the apparent correlation from the
spectral bias may have a contribution to the real one. One may
expect that the spectral bias is more serious at bursts, where the
whole high energy fluence is buried into the background noise.
So one expect a gradual change in the slope of the relationship
between Ftot, and T90 as one proceeds from the faint bursts to
the brighter ones. Tables 4 and 5 summarize the frequency of
bursts having different S/N (”signal-to-noise”) ratios within the
studied peak flux bins, separately.

It is clear from Table 5 that the long faint bins are dom-
inated by bursts with no significant high energy fluence. The
contrary is true for the brighter ones. Proceeding from the faint
burst to the bright ones one does not see a gradual change in
the slope of the {log F tot, log T90} relationship. Hence, we may
conclude that the spectral bias makes only a marginal contribu-
tion, and the correlation observed is close to the real one. For
the short bursts (Table 4), in the contrary, a significant change
is observed, which might be interpreted as a clear sign of spec-
tral bias. It implies, furthermore, that the real slope, if any, is
smaller than the observed one. This fact strengthens the conclu-
sion on the difference between the short and long GRBs with
respect of the {log F tot, log T90} relationship.
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Table 4. Frequency of S/N ratios of fluences in the high energy chan-
nel for GRBs of T90 < 2 s (the integer numbers given in the header are
the truncated S/N values).

Bin S/N Row
.00 1.00 2.00 >3.00 Total

1. 0 1 0 0 1
2. 3 0 1 1 5
3. 19 10 7 8 44
4. 57 15 14 18 104
5. 53 28 14 31 126
6. 17 16 17 29 79
7. 4 3 4 36 47
8. 2 4 4 24 34
9. 0 0 3 19 22

10. 1 0 1 4 6
11. 0 0 0 5 5
12. 0 0 0 2 2
13. 0 0 0 1 1

Column 156 77 65 178 476
Total 32.8 16.2 13.7 37.4 100.0%

Table 5. Frequency of S/N ratios of fluences in the high energy chan-
nel for GRBs of T90 > 2 s (the integer numbers given in the header
have the same meaning as in Table 4).

Bin S/N Row
.00 1.00 2.00 >3.00 Total

1. 2 1 0 1 4
2. 71 19 7 11 108
3. 193 58 37 53 341
4. 135 65 42 88 330
5. 72 33 40 94 239
6. 33 23 16 103 175
7. 12 9 10 88 119
8. 1 2 7 51 61
9. 1 1 1 49 52

10. 0 0 0 33 33
11. 0 0 0 14 14
12. 0 0 0 13 13
13. 0 0 0 5 5
14. 0 0 0 2 2

Column 520 211 160 605 1496
Total 34.8 14.1 10.7 40.4 100.0%

4.4.5. Bias from the finite time resolution

We mentioned above the detection proceeded on three (64 ms,
256 ms and 1024 ms) time scales. The incoming photons were
binned in these time scales and the bin having the maximum
count rate were used for triggering the detection. The bursts
having T90 < 64 ms, however, consist of only one bin, conse-
quently, the fluence and the peak flux are based on the same
incoming photons on this time scale. If the incoming photons
of a burst had the same energy fixing p would mean fixing F tot

as well and equation (4) is no longer valid since T 90 does not
have any impact on the fluence observed. By fixing p this effect
degenerate the distribution of F tot into one point and it does
no longer reflects the distribution of T 90 we supposed. In the

Table 6. Mean values and standard deviations of the total fluences and
the 64 ms peak fluxes within the first ten 64 ms bin of the T90 duration.
Except the fluence in the first bin all the values do not differ from those
of the entire sample, within the limits of statistical uncertainties.

log Ftot log p64

Bin mean st. dev. mean st. dev. corr. coeff. no. of GRBs
1. −7.0243 .5043 .3535 .1912 .7625 17
2. −6.6280 .5109 .3815 .2447 .6333 33
3. −6.6756 .5122 .3690 .2379 .6335 37
4. −6.4863 .5408 .4090 .2629 .5793 36
5. −6.5480 .4428 .3691 .2460 .7125 26
6. −6.5804 .5637 .3482 .2370 .6117 16
7. −6.4492 .3823 .4191 .2278 .2241 31
8. −6.3312 .4756 .4278 .2802 .6868 20
9. −6.4532 .4517 .3348 .2382 .6780 16

10. −6.4292 .3826 .3682 .2258 .5620 16
entire

sample 6.5599 .5015 .3828 .2395 .5822 248

reality, however, the energies of the incoming photons have a
wide range and this effect is not so pronounced.

As the duration covers an increasing number of bins of
64 ms the particular bin representing the peak flux has a de-
creasing impact on the value of the fluence. In Table 6 we gave
some stochastic parameters (mean, standard deviation, corre-
lation) of the joint distribution of log F tot and log p64 within
the first 10 bins of T90 of 64 ms, in order to see the possible
quantitative differences. Except the mean value of log F tot in
the first bin, which deviate from the sample value at about 1σ
level there is no striking differences between the parameters.
For testing the possible differences between the bins in Table 6
we did a multivariate analysis of variance (MANOVA) which
compares the variances and covariances of variables within the
bins and between them. The analysis resulted in a difference
on the 99.5% significance level. The MANOVA module of
the SPSS software package was used for these calculations2.
Repeating the calculation but abandoning the first bin, the sus-
pected outlier, the significance dropped back to 50.4% infer-
ring that the distributions in bins 2–10. were identical within
the limits of statistical uncertainty. Even if we treated the ex-
cursion of the bin No. 1 as a real effect there is only a small
number of GRBs in it (see Table 1) which do not affect the
final results in Tables 2 and 3.

Summing up the discussions we performed in this subsec-
tion on the different bias we may conclude that either they do
not have a significant impact on the final result (i.e. there is
a significant difference in the {log F tot, log T90} correlation be-
tween the short and long GRBs) or the observed difference in
the relationship is even enhanced in the reality if we considered
the bias properly.

5. Discussion

We have presented evidence indicating that there is a power-
law relationship between the logarithmic fluences and the

2 SPSS is a registered trademark. See SPSS home page in refer-
ences.
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logarithmic T90 durations of the GRBs in the Current BATSE
Catalog, based on the EM maximum likelihood estimation of
the parameters of the bivariate distribution of these measured
quantities. This relationship holds for both subclasses of GRBs
separately. As shown in the Appendix, the dispersions of the
T90 do not differ significantly from those of the T 50 distribu-
tions, and therefore the same correlations and the same power-
law relations would be expected if one used the T 50 instead
of the T90. We have also evaluated the possible impact of in-
strumental biases, with the results that the conclusions do not
change significantly when these effects are taken into account.

An intriguing corollary of these results is that the expo-
nents in the power-law dependence between the fluence and
the duration differs significantly for the two groups of short
(T90 < 2 s) and long (T90 > 2 s) bursts at a 4.7σ level. As
shown in Sect. 4.4, this also means that the same power law
relations hold between the total energy emitted (E tot) and the
intrinsic durations (t90) of the two groups. The intrinsic nature
of this relation is also confirmed by further calculations based
on a principal component analysis.

While an understanding of such power-law relations in
terms of physical models of GRB would require more elaborate
considerations, we note that there is substantial evidence indi-
cating the two classes of bursts are physically different. First,
there is the fact that short burst are harder (Kouveliotou et al.
1993); this is confirmed also by the analysis of Mukherjee et al.
(1998). Then, there is evidence that the spectral break energies
of short bursts are larger than for long bursts (Paciesas et al.
2001). The short bursts have a different spectral lag vs. lumi-
nosity ratios than long bursts (Norris et al. 2001). Finally, the
number of sub-pulses, and the soft-to-hard evolution is differ-
ent depending on the duration (Gupta et al. 2002).

The results obtained here are compatible with a simple in-
terpretation where the bursts involve a wind outflow leading
to internal shocks responsible for the gamma-rays (Rees &
Mészáros 1994; Piran 1999), in which the luminosity is ap-
proximately constant over the duration t of the outflow, so that
both the total energy E tot and the fluence F tot are ∝t. If an ex-
ternal shock were involved, (e.g. Mészáros & Rees 1993; Piran
1999), for a sufficiently short intrinsic duration (impulsive ap-
proximation) there would be a simple relationship between the
observed duration and the total energy, t ∝ E 1/3, resulting from
the self-similar behavior of the explosion and the time delay
of the pulse arrival from over the width of the blast wave from
across the light cone. This relationship is steeper than the one
we deduced for long bursts.

The fluence – duration relation of GRBs which we have
discussed here appears to be physical, and it is significantly
different for the short and the long bursts. For the short ones,
the total energy released is proportional to the m = 0.81 power
of duration of the gamma ray emission, while for the long ones
it is proportional roughly to the of m = 1.11 power of the du-
ration. This may indicate that two different types of central en-
gines are at work, or perhaps two different types of progenitor
systems are involved. It is often argued that those bursts for
which X-ray, optical and radio afterglows have been found, all
of which belong to the long-duration group, may be due to the
collapse of a massive stellar progenitor (e.g. Paczyński 1998;

Fryer et al. 1999). The short bursts, none of which have as of
August 2002 yielded afterglows, may be hypothetically associ-
ated with neutron star mergers (e.g. Fryer et al. 1999) or per-
haps other systems. While the nature of the progenitors remains
so far indeterminate, our results provide new evidence suggest-
ing an intrinsic difference between the long and short bursts,
which probably reflects a difference in the physical character
of the energy release process. This result is completely model-
independent, and if confirmed, it would provide a potentially
useful constraint on the types of models used to describe the
two groups of bursts.

6. Conclusions

In summary, we have presented quantitative arguments in sup-
porting two new results, namely that there is a power law rela-
tion between the fluence and duration of GRBs which appears
to be physical, and that this relation is significantly different
for the two groups of short and long bursts. In addition, estima-
tions of the concrete values of exponents were obtained, two.
For the short subgroup one obtains m � (0.46−1.04) with the
most probable value around m � 0.81. (In the reality, however,
this value could be much smaller due to a possible strong spec-
tral bias). For the long subgroup one obtains m � (0.97−1.19)
with the most probable value around m � 1.11.The difference
is significant on the 4.7σ level.

For the short ones, the total energy released is weakly de-
pending on the duration of the gamma ray emission, while for
the long ones it is proportional roughly to the duration. While
the nature of the progenitors remains so far indeterminate, our
results provide new evidence suggesting an intrinsic difference
between the long and short bursts, which probably reflects a
difference in the physical character of the energy release pro-
cess. This result is completely model-independent, and if con-
firmed, it would provide a potentially useful constraint on the
types of models used to describe the two groups of bursts.

These results were obtained exclusively from the statistical
studies of BATSE data (using the known redshifts of the ob-
served afterglows, too) applying only the mathematical Cramér
theorem and the law of full probability, respectively. It is highly
surprising that these pure mathematical theorems allowed to
obtain these remarkable results.
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Appendix A: Comparison of T90 and T50 statistical
properties

In order to check, whether there is some influence of the time
dilatation on the distribution of T 90 or T50, we compare here
the basic properties of these two quantities in our sample for
the long and the short bursts, separately. We grouped the data,
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Table A.1. GRBs of long duration (T90 > 2 s).

log P256 log T90 log T50 σlog T90 σlog T50 No. of GRBs
−.50 1.24 .85 .48 .47 49
−.30 1.42 1.00 .47 .50 230
−.10 1.48 1.08 .49 .53 309

.10 1.46 1.02 .51 .57 272

.30 1.51 1.01 .52 .61 194

.50 1.43 .94 .51 .59 161

.70 1.45 .96 .48 .56 104

.90 1.42 .83 .54 .62 56
1.10 1.41 .83 .50 .49 44
1.30 1.44 .88 .50 .53 34
>1.40 1.21 .68 .41 .50 29

Table A.2. GRBs of short duration (T90 < 2 s).

log P256 log T90 log T50 σlog T90 σlog T50 No. of GRBs
−.50 −.57 −.87 .55 .60 7
−.30 −.65 −1.01 .53 .57 43
−.10 −.40 −.77 .49 .51 103

.10 −.35 −.74 .35 .32 105

.30 −.33 −.75 .39 .41 75

.50 −.27 −.69 .35 .36 54

.70 −.29 −.72 .36 .34 25

.90 −.35 −.76 .39 .36 22
1.10 −.18 −.72 .44 .39 7
1.30 −.74 −1.21 .31 .43 5
>1.40 −.72 −.90 .00 .00 1

using the 256 ms peak flux values, into 0.2 bins in P 256, and
summarized in Tables A.1 and A.2 the mean values and the
corresponding standard deviations of the logarithmic durations
of GRBs in each peak flux bin. We stress that this does not in-
clude any equalization of the noise level in the various bins, and
is not intended as a test of the time dilatation hypothesis, but
rather as a test of whether dilatation would have any effect on
our results. Inspecting the durations of long (T 90 > 2 s) GRBs
summarized in Table A.1 one sees that, except from the bright-
est and faintest bins, there is no significant difference in log T 90.
The decrease of the duration in the faintest bin is probably due
to the biasing of the determination, namely, the fainter parts of
the bursts cannot be discriminated against the background, and
therefore the duration obtained is systematically shorter. There
is a remarkable homogeneity and no trend in the standard devi-
ations of the log T90. In the case of the long burst T 50 durations,
this quantity shows an increasing trend towards the bursts of
fainter peak flux. The shortening in the faintest bin is proba-
bly also due to selection effects. Similarly to the log T 90 values,
the same homogeneity can be observed in the standard devia-
tions also in case of log T50. The standard deviations are almost
the same in both log T90 and log T50. One can test whether,
within our analysis methodology and with our sample, there
is a significant difference among the binned T 90 values, and
whether the slight trend in the T 50 significantly differs from
zero. To evaluate the significance of these data we performed a

one way analysis of variance with the ANOVA program from a
standard SPSS package. The ANOVA compares the variances
within sub-samples of the data (in our case within bins), with
the variances between the sub-samples (bins).

In the case of log T90 the probability that the difference is
accidental is 66%. In the case of the T 50 durations the same
quantities (variances within and between bins) gives a prob-
ability of 98.5% for being a real difference between bins, or a
probability of 1.5% that there is no difference between the bins.
This figure gives some significance for the reality of a trend in
the data; however, this value of 0.2 explains less than 1/6 of the
variance of T50 within one bin. We may conclude that even in
this case the variance is mainly intrinsic.

Inspecting the same data in the case of the short duration
bursts (Table A.2) we come to a similar conclusion, i.e. there is
no sign of trends in the durations of the different bins. Dropping
the two faintest bins, which are definitely affected by biases,
and dropping the poorly populated brightest bins, we arrive by
the analysis of variances with ANOVA to probabilities of 53%
and 92.1% for the difference being purely accidental between
bins in T90 and T50, respectively.
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