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Cluster analysis plays a foremost role in identifying groups of genes that show
similar behavior under a set of experimental conditions. Several clustering algorithms
have been proposed for identifying gene behaviors and to understand their signifi-
cance. The principal aim of this work is to develop an intelligent rough clustering
technique, which will efficiently remove the irrelevant dimensions in a high-
dimensional space and obtain appropriate meaningful clusters. This paper proposes
a novel biclustering technique that is based on rough set theory. The proposed algorithm
uses correlation coefficient as a similarity measure to simultaneously cluster both the
rows and columns of a gene expression data matrix and mean squared residue to
generate the initial biclusters. Furthermore, the biclusters are refined to form the lower
and upper boundaries by determining the membership of the genes in the clusters using
mean squared residue. The algorithm is illustrated with yeast gene expression data and
the experiment proves the effectiveness of the method. The main advantage is that it
overcomes the problem of selection of initial clusters and also the restriction of one
object belonging to only one cluster by allowing overlapping of biclusters.

Keywords: biclustering algorithm, correlation clustering, gene expression
data, overlapping biclusters, rough clustering

Introduction

A lot of techniques have emerged for analyzing microarray gene expression
data, but clustering proves to be the primary [1] and the most popular approach for
analyzing the expressions of thousands of genes and has been successful in many
applications [2]. The process of clustering is the assignment of a set of

*Corresponding author; E-mail: jleenasamsy@yahoo.co.in

Acta Microbiologica et Immunologica Hungarica, 63 (2), pp. 185–201 (2016)
DOI: 10.1556/030.63.2016.2.4

1217-8950/$20.00 © 2016 Akadémiai Kiadó, Budapest
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observations into subsets called clusters so that observations in the same cluster are
similar in some sense. The objects within a cluster are highly similar and objects in
different clusters are highly dissimilar. This ultimately increases intraclass simi-
larity but decreases interclass similarity. Clustering is a technique of unsupervised
learning that does not have the need of prior knowledge of the groups to which the
objects or data members belong to. Varieties of clustering algorithms have been
proposed for analyzing gene expression data [3]. The conventional clustering
algorithms like k-means, hierarchical, SOM, and other density-based methods are
very common. The results produced by these methods are consistent for micro-
array experiments performed on homogeneous conditions. However, when the
experimental conditions vary to a great extent, the clusters are no longer correct.
This led to a promising alternative prototype of clustering, biclustering.

Biclustering algorithms, also referred to as co-clustering, capture consistency
exhibited by subset of genes over subset of conditions. An increasing number of
biclustering algorithms have also been proposed for identifying gene patterns [4–9].
Most of the above-mentioned algorithms find exclusive biclusters, but most of these
biclusters prove inappropriate in the biological context. Since biological processes
are dependent on each other, many genes participate in two or more different
processes. Each gene therefore should be grouped to multiple biclusters whenever
biclusters are identified.

This problem is addressed in the proposed biclustering algorithm by intro-
ducing the framework of generalized rough sets into biclustering. The theory of
rough sets is an issue of intense significance in computational intelligence research.
The extension of this theory into clustering provides a necessary and potentially
useful addition to the range of cluster analysis techniques available to researchers.
The concept of rough sets has been introduced into clustering lately and a very few
clustering algorithms have also been developed based on rough set theory [10–12].
A technique combining k-means and rough set approaches proposed in [13]
introduced the concept of upper and lower bounds to the k-means centroid. An
enhancement to this technique was proposed in [14]. But the main drawback is that
these techniques do not address the problem of selection of initial parameters.

This work aims in developing a biclustering algorithm that helps in
efficiently identifying all subset of genes that exhibit similar patterns under a
subset of experimental conditions. The problem of selection of initial seeds is also
addressed here and the quality of the overlapping biclusters is refined based on
mean squared residue. Moreover, the proposed approach allows us to profit from
the major advantages of rough methods [15], over the crisp techniques. One
important aspect of rough sets, bearing significant importance in gene expression
clustering, is that it facilitates the identification of overlapping clusters. Hence, by
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allowing genes to be members of various clusters, rough methods can more
suitably predict the complex relations governing gene regulation.

Rough bi-correlation clustering

The structural framework

In this section, we will present the framework and the methodology we
follow to determine the biclusters using Pearson’s correlation coefficient and mean
squared residue. Subsequently, we provide detailed description of the ROBICOR
algorithm and how the algorithm is integrated in the rough clustering process to
guide clustering. We explain how the algorithm automatically determines the
number of clusters present in a dataset and produces biclusters with upper and
lower approximations.

The ROBICOR algorithm is designed to be intelligent and more efficient. It
is intelligent as it does not require the number of clusters as input. It is more
efficient as it uses Pearson’s correlation coefficient and mean squared residue for
producing high quality overlapping biclusters. The framework of the proposed
model is shown in Figure 1. The proposed algorithm is also robust as it handles
noisy data.

Biclustering
Uses Pearson’s correlation 
and mean squared residue 

Roughness Membership
Placing genes in lower and 

boundary regions 

Overlapping 
Biclusters 

Data set 
Pre Processing

Removal of Flat genes 

Analysis 

Figure 1. The proposed rough set based model for biclustering
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Preprocessing of data

Some genes in the gene expression matrix do not respond much to the
experimental conditions and so do not actively participate in the biclustering of the
data. These genes are called ‘flat genes’ and should be removed to provide good
quality biclusters. For this, we use the formula proposed by Tang et al. [16]. Each
gene vector with j conditions can be represented as gi = (ei1,ei2, : : : eij). A vector-
cosine can be used to match each gene vector and with a predefined pattern H =
(h1,h2, : : : hj) to determine the deviation in gene intensity values among samples as
shown in Equation (1).

cosðθÞ=
Xm
j= 1

e 0ij × hj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j= 1

e 0ij2

vuut ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j= 1

hj
2

vuut (1)

Both the vectors are said to be more similar if the value of the cosine-vector
is close to 1. A threshold value is chosen and the genes which have cos(θ) values
more than the specified threshold value are removed. This process removes the
gene vectors that are more similar to the predefined pattern. The data is now
preprocessed and in shape for clustering.

The biclustering algorithm

Usually, gene expression data is arranged in a form of a data matrix. Each
row corresponds to one gene and each column to one condition. Each element of
this matrix is a real number that represents the expression level of a gene under a
specific experimental condition. The value of each element is usually the logarithm
of the relative abundance of the mRNA of the gene under the specific condition.
Pearson correlation coefficient for measuring similarity between expression
patterns of two genes xi and xj is defined as

Simðxi,xjÞ=
Xm
l= 1

ðxil − x̄iÞðxjl − x̄jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
l= 1

ðxil − x̄iÞ2
Xm
l= 1

ðxjl − x̄jÞ2
s

(2)

where xil and xjl are l-th expression values of the i-th and j-th genes, respectively.
The terms x̄i and x̄j are mean values over m expression values (corresponding to
microarray experiments) of the i-th and j-th genes, respectively. The value of m
gives the number of conditions or samples under which the genes exhibit the
expression patterns.

188 JEYASWAMIDOSS ET AL.

Acta Microbiologica et Immunologica Hungarica 63, 2016



The proposed ROBICOR algorithm effectively and efficiently approximates a
set of overlapping biclusters simultaneously with relative lower mean squared
residue. The step 1 of the algorithm produces biclusters for which it uses correlation
coefficient metric and mean squared residue. The ROBICOR uses Pearson correla-
tion coefficient for measuring the similarity between expression patterns of two
genes xi and xj, and is defined in Equation (2). This idea of generating biclusters
using correlation coefficient was inferred from the BCCA algorithm proposed by
Bhattacharya and De [17]. BCCA uses only Pearson’s correlation coefficient to
detect the biclusters where as the newly designed ROBICOR uses mean squared
residue in addition to Pearson’s correlation coefficient to detect biclusters of high
quality. The ROBICOR initially starts with a pair of genes and finds the conditions
under which they are co-regulated. For any pair of genes (gi, gj), the algorithm finds
the similarity of the genes under all conditions. Sim(xi,xj)> θ indicates that xi and xj
are similarly expressed, i.e., their expression patterns are altering in a similar way. If
the similarity is less than θ, then the algorithm finds out the condition, when
eliminated gives the maximum increase in the correlation coefficient. That condition
is eliminated from the condition set and this step is repeated until the similarity
exceeds θ and the number of conditions involved is not less than some specified
number of conditions in the condition set. If they are not correlated, it moves on to
find the next pair of genes. Otherwise, the algorithm forms a bicluster with the initial
two genes and the conditions. The bicluster is further refined by including a new
gene based not only on the correlation values with all the other genes in the bicluster,
but also on the mean squared residue of the bicluster. When a new gene is added to
the bicluster, the mean squared residue of the bicluster is calculated.

Algorithm

Step 1: Detect bicluster set Biclust.
Biclust =∅;
For each pair of genes (gi,gj), i<> j, do:
{
Set I = (gi,gj) and J = set of all conditions and m = |j|
While Sim (gi,gj)< θ, gi, gj ∈I and m≥ r, do:
{
From m expression values, find out the elimination of a
condition y which when eliminated from J will cause
maximum increase in Sim (xi, xj)
Remove y from the set J and m = m− 1.

}
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If Sim (xi,xj)≥ θ, for gi, gj∈ I over m expression values in
J, where m≥ r, then
{
Remove the set I from X (the set of all genes);
For each gp∈ X, do:
{
If Sim(gi,gp)≥ θ, for all gi∈ I over m expression
values in J, and If Kgp

≤ δ, then set (I = I ∪{gp})
Remove gp from the Set X;

}
c.Set ccount = ccount+1; Biclust = Biclust ∪ I;

}
}
Step 2: Detect upper and lower approximations
For each bicluster Bi∈ Biclust = {B1,B2, : : :,Bn}
{
For each object v in bicluster Bj do
{
If v∈ one and only bicluster Bj and If K ′Xj

≤ δ, then
{v belongs to the lower bound of Bj.}
Else
{Compute the difference in the mean squared residue for
each bicluster (v inserted and removed)

Let dmin be the minimum mean squared residue.
Find the ratio between dmin and mean squared residue
of other clusters

If the ratio < =ω, add the cluster to set P.
If P≠∅, insert v to boundary region bicluster with
dmin and all B̄j with j∈ P;

Else insert v to the lower bound of the bicluster with
dmin.

}
}

}

The roughness measure

The mean squared residue of a bicluster (I,J) as defined by Cheng and
Church [18] is
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KðI ,JÞ= 1

jI j ⋅ jJ j
X

i∈I , j∈J
rij

2, (3)

where the residue

rij = dij − diJ − dIj þ dIJ (4)

is an indicator of the degree of coherence of an entry with remaining entries of a
bicluster. Also the base of the gene gi is defined as

diJ =
X
j∈J

dij=jJ j (5)

And the base of the condition Ci is defined as

dIj =
X
i∈I

dij=jI j (6)

And the base of the bicluster dIJ is defined as

dIJ =

P
i∈I , j∈J dij
jI j ⋅ jJ j (7)

Only if the mean squared residue is less than δ, the gene is placed in the
bicluster. Thus, the algorithm reduces the possibility of misplacing a gene in a
bicluster. Furthermore, the lower the mean squared residue, the stronger is the
coherence exhibited by the bicluster. The mean squared residue well indicates the
general coherence of a bicluster. The lower the mean squared residue, the higher is
the quality of the bicluster. By the end of step 1, the possible number of high
quality biclusters and the objects in each bicluster are obtained.

Based on the concepts of rough sets [16, 19], we can consider each bicluster
as a generalized rough set with two approximations, a lower bound and an upper
bound. The genes or conditions of the lower approximation belong only to the
bicluster, whereas the members of the upper approximation may belong to one or
more biclusters. This property leads to overlapping among corresponding biclus-
ters. Given a gene expression data matrix R, for each object (gene or condition),
there are three possibilities in the bicluster membership:

• not belonging to any biclusters in R or
• belonging to the lower approximation of the bicluster or
• belonging to the upper approximation of the bicluster in R.
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The step 2 of the algorithm gives the procedure to place the genes in the upper and
lower approximations for which it uses the ratio of the mean squared residue of the
biclusters to which the gene belongs to. To determine the bicluster membership,
we follow the following procedure: For each object vector v, an element of S =
{C1,C2, : : : ,Cn}, where C1, : : : ,Cn represents the biclusters generated, find the
difference in the mean squared residue before and after the removal of v using
Equation 8.

ΔKðv,X jÞ=K 0ðxjÞ − KðxjÞ: (8)

Let K′(x j) and K(x j) be the mean squared residue of the biclusters after and
before v is removed from the bicluster Xj, respectively. Find the minimum of this
value dmin.

dmin=min1≤ j≤ kΔKðv,X jÞ (9)

Using Equation (9), the bicluster that has the minimum mean squared residue
when gene v is inserted into it is found. Using Equation (10), the ratio of the
bicluster (R) with minimum mean squared residue and others is found.

R=ΔKðv,X jÞ=ΔKðv,X iÞ (10)

Equation (10) helps to resolve the membership of the gene v. Let

D= fjjΔKðv,X iÞ=ΔKðv,X iÞ ≤ ω,i ≠ jg (11)

i.e., the set D consists of all biclusters for which the ratio R is less than ω.
Furthermore, if D =∅, then v is placed in the upper boundary of all biclusters
present in the set D. Otherwise, if D =∅, then v is placed in the lower boundary of
the bicluster which has the minimum mean squared residue.

The parameters ω and δ used in this procedure are predefined thresholds.
The parameter δ is to make sure that all biclusters discovered have mean squared
residues less than δ to improve cluster quality. The parameter ω determines the
degree of overlapping among these biclusters. The set D is calculated using the
formula given in Equation (11). The concept of using mean squared residue for
rough biclustering was proposed by Wang et al. [13]. In the proposed method, we
have used Pearson’s correlation and mean squared residue for biclustering, and we
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use the ratio of the mean squared residue of the clusters for finding lower and
upper approximations.

The initial part of the proposed algorithm ROBICOR generates the number
of biclusters. Then the algorithm goes one step further to find the quality of the
biclusters generated and also the upper and lower bounds for each bicluster. We
have used mean squared residue to determine the bicluster quality and the
membership of objects in the lower and upper approximation of the bicluster.
The ratio between the mean squared residue of a bicluster and the volume of the
bicluster depicts the overall quality of the bicluster. The average of this ratio is also
found to decide about the degree of overlapping.

Performance evaluation

The size of the biclusters obtained by ROBICOR depends on the correla-
tion threshold value θ. The optimum correlation threshold value was selected by
varying correlation threshold between 0 and 1. This process is very time
consuming. The algorithm was experimented for θ values in the range {0.72,
0.74, 0.76, 0.78, 0.80, 0.82, 0.84, 0.86, 0.88}. This variation in the cluster
accuracy is depicted using line graph of Figure 2. It has been noted that the
relative accuracy (relative accuracy is the accuracy of the algorithm represented
in percentage) of the algorithm is 83% when the value of θ is 0.80. As the
algorithm yields better results when θ is 0.8, we have chosen the threshold value
to be 0.80.

Figure 2. The relative accuracy of ROBICOR for various values of correlation threshold θ
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The degree of overlapping between the biclusters is determined by the
parameter ω. A range of values {0.25, 0.3, 0.35, 0.4, 0.45, 5, 0.55, 0.6, 0.65,
0.7) were experimented for the datasets. Figure 3 shows the degree of
overlapping of the clusters for different values of ω. It has been noted that
a value of 0.6 for ω yields an optimal result. Moreover, it is interesting to note
that our algorithm delivers meaningful results over the range [0.5, 0.7] of ω,
where the overlapping degree increases dramatically and stabilizes as shown in
Figure 3. The values for the parameters adopted in ROBICOR are presented
in Table I.

The mean squared residue of the biclusters produced by the proposed
algorithm is analyzed and evaluated. The lower the mean squared residue, the
higher is the quality of the bicluster. It has been found that for most of the
biclusters, the mean squared residue value falls below 300. The threshold value
300 is chosen as stated in [19, 20]. Figure 4 shows the mean squared residue for
the biclusters produced by ROBICOR for the yeast dataset. It can be observed that
the mean squared residue of most of the biclusters falls below 350.

Figure 3. Relative increase in the degree of overlapping when varyingω, the roughness threshold for
ROBICOR algorithm

Table I. Optimum values for the parameters used in ROBICOR

Procedure Parameter Value

Generating the initial biclusters Threshold for correlation coefficient θ 0.8

Rough clustering Overlapping threshold ω 0.6

Mean squared residue threshold 300
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Results

The performance of the proposed algorithm was experimented with two
different sets of data. The different data sets, namely yeast gene expression data,
colon cancer data, and leukemia dataset were considered for experimentation. The
data set is 384 × 17 matrix. A total of 384 genes were clustered based on 17
experimental conditions. Next, the algorithm was experimented with colon cancer
data set which contains expression levels of 2,000 genes taken from 62 different
samples out of which 50 genes were chosen across all 62 samples. When applied
on 384 × 17 yeast data matrix, it produced 450 biclusters and when applied on
500× 36 colon data matrix, 322 biclusters were produced.

The cluster profile plot of four biclusters depicting the expression level of genes
in each bicluster generated by ROBICOR algorithm when applied on yeast and colon
expression data is shown in Figures 5 and 6. The profile plot of only four randomly
selected clusters is shown to depict the accuracy of the algorithm. Moreover, we can
also observe that the genes in the biclusters are highly correlated as their profile
patterns are varying similarly. The genes falling in the lower and boundary regions
are depicted with the color difference in the profile pattern. The profile pattern of
genes in boundary region is depicted with red lines and in the lower approximation
is depicted with blue lines. The placement of genes in lower and boundary regions of
biclusters based on the mean squared residue is presented in Table II. The
membership of a few randomly selected genes in three different biclusters based
on their mean squared residue values is clearly presented in Table II. The resulting
biclusters with the details of number of genes and conditions, number of genes in the
lower approximation and boundary region are shown in Table III. The algorithm
depicts and differentiates the members certainly classified as the member of the
clusters/biclusters and the members those possibly belong to the clusters/biclusters.

Figure 4. Mean squared residue of the biclusters detected using ROBICOR algorithm
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Performance metrics

For evaluating the performance of the biclustering algorithm ROBICOR,
Adjusted Rand index (ARI), Silhouettes index (SI), and Davies–Bouldin (DB) index
are used. ARI is applied on a 50× 10 synthetic data set while SI and DB index are
applied on both artificial and real datasets. The average ARI and SI values are
reported in Table IV for 10 runs of each algorithm. The value N in the table indicates
the number of clusters. The results indicate that for the synthetic dataset, the proposed
ROBICOR shows significant improvement in the ARI and SI values when compared
with other clustering and biclustering algorithms. The SI and DB index of ROBICOR
for the three real datasets is compared with the other algorithms in Table V. The

Figure 5. Cluster profile plot of bicluster1 and bicluster2 produced by ROBICOR when applied on
colon gene expression
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results show that SI values of ROBICOR algorithm are closer to 1 when applied on
the three different real data sets. It has also been observed that the DB index of
ROBICOR is minimum when compared with the other biclustering algorithms.

Test for statistical significance

The p-values produced by Wilcoxon’s rank sum test are calculated for all
algorithms participating in the comparison. The ARI scores for the artificial data and
SI scores for the real data sets are recorded for 10 consecutive runs of the algorithms.
For the null hypothesis, it is assumed that the median values of two groups show no

Figure 6. Cluster profile plot of bicluster1 and bicluster2 produced by ROBICOR when applied on
yeast gene expression
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significant difference between them and the alternative hypothesis is that the median
values of the two groups show significant difference in them. Table VI reports
p-values produced by Wilcoxon’s rank sum test for comparison of two groups at a
time. All the p-values reported in the table are p-values received when ROBICOR is
compared with other algorithms (ROBICOR as group one and the other algorithm as

Table II.Membership of genes in yeast expression data. The ratio between the mean squared residue of the
bicluster with minimum mean squared residue and other mean squared residue value determines the

membership of a gene

Gene ID Mean squared residue of biclusters Membership of the gene

Cluster 24 Cluster 55 Cluster 86

G89 240.26 121.12 124.03 Placed in the boundary region of Cluster 24,
Cluster 55, and Cluster 86

G107 130.36 290.16 321.00 Placed in the lower approximation of Cluster 24

G260 319.93 155.37 171.83 Placed in the boundary region of Cluster 55
and Cluster 86

G301 146.39 149.63 394.26 Placed in the boundary region of Cluster 24
and Cluster 55

Table III. Number of genes in the lower and boundary region of clusters produced by ROBICOR when
applied on yeast expression data

C4 C15 C26 C48 C75

Total number of genes 17 20 8 5 15

Total number of conditions/attributes 8 15 6 10 4

Number of genes in lower approximation 3 7 5 3 6

Number of genes in boundary region 14 13 3 2 11

Table IV. Comparison of ROBICOR with other algorithms in terms of ARI and SI for synthetic dataset

Algorithm N ARI SI

ROBICOR 22 0.6455 0.5799

BCCA 18 0.5548 0.5022

ROB 10 0.5466 0.4099

CC 10 0.5126 0.3716

SCAD 10 0.4713 0.3111

Rough k-means 10 0.5492 0.3875
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group two). It is clearly evident from the values that all the p-values are less than 0.05
(5% significance level). It has also been noted that the median values of ROBICOR
algorithm are better compared with all other algorithms. The small value of p-values
(less than 0.05) is a strong proof against the null hypothesis.

Table V. Performance comparison of ROBICOR with other algorithms in terms of SI and DB index

Dataset Clustering algorithm Number of clusters Silhouettes index DB index

Yeast ROBICOR 350 0.6649 1.7462

BCCA 326 0.5612 1.8333

ROB 50 0.5044 2.0666

CC 50 0.4151 2.1264

SCAD 50 0.5136 2.0122

Rough k-means 50 0.5632 1.9121

Colon cancer ROBICOR 239 0.5497 1.8847

BCCA 209 0.5029 1.8997

ROB 50 0.4222 2.2744

CC 50 0.3766 2.8654

SCAD 50 0.4245 2.3148

Rough k-means 50 0.4144 1.9788

Leukemia ROBICOR 308 0.5842 1.7113

BCCA 287 0.5766 1.8411

ROB 50 0.5111 2.1688

CC 50 0.4933 2.7613

SCAD 50 0.4288 2.4254

Rough k-means 50 0.4155 1.9142

Table VI. p-values of comparing ROBICOR with other algorithms

Dataset p-value

BCCA ROB CC SCAD

Artificial dataset 4.7 × E−4 4.6 × E−4 4.2 × E−5 5.2 × E−5

Yeast 1.7 × E−4 4.3 × E−4 2.8 × E−4 4.5 × E−4

Colon cancer 2.4 × E−3 3.7 × E−5 1.7 × E−3 2.6 × E−5

Leukemia 3.7 × E−4 5.2 × E−5 3.5 × E−5 3.4 × E−4
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Conclusion

Here, we have proposed and developed a biclustering algorithm called
ROBICOR based on Pearson correlation coefficient and mean squared residue as a
similarity measure. The algorithm finds group of genes that show similar pattern in
their expression profiles over a subset of conditions. The results clearly demon-
strate that the genes in a bicluster obtained by ROBICOR are not only highly
correlated but the clusters are also highly coherent. Our method also finds a set of
biclusters with a reasonable degree of overlapping associating each bicluster with
a lower and an upper approximation. The proposed method is found to be more
efficient than many existing biclustering algorithms.

Appendix

The algorithm ROBICOR is implemented in C language. To invoke the
algorithm written in C language in java interface, Java Native Interface (JNI) has
been used. JNI is a mechanism that allows a Java program to call a function in a C
or C++ program. For all the C functions, shared library files are created with .dll
extension or .so (linux) extension. The native method has been declared in Java
and the shared library files have been loaded before the native method is called. A
C header file containing function prototypes for the native methods has also been
created. To improve the efficiency of the C programs, the input text file is
converted into binary file and every access to the input file is done on the binary
file.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Wang, H., Wang, Z., Li, X., Gong, B., Feng, L., Zhou, Y.: A robust approach based on
Weibull distribution for clustering gene expression data. Algorithms Mol Bio 6, 6–14
(2011).

2. Stekel, D: Microarray Bioinform. Cambridge University Press, Cambridge, UK, 2006.
3. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: A survey. IEEE

Trans Knowledge Data Eng 16, 1370–1386 (2004).
4. Madeira, S. C., Oliveira, A. L.: Biclustering algorithms for biological data analysis:

A survey. IEEE/ACM Trans Comput Biol Bioinform 1, 24–45 (2004).

200 JEYASWAMIDOSS ET AL.

Acta Microbiologica et Immunologica Hungarica 63, 2016



5. Yang, E., Foteinou, P. T., King, K. R., Yarmush, M. L., Androulakis, I. P.: A novel non-
overlapping bi-clustering algorithm for network generation using living cell array data.
Bioinformatics 23, 2306 (2007).

6. Pensa, R. G., Boulicaut, J.-F.: Constrained co-clustering of gene expression data. In
Proceedings of the 2008 SIAM International Conference on Data Mining, 2008.

7. Tsai, C.-Y., Chiu, C.-C.: A novel microarray biclustering algorithm. Int J Math Comput
Phys Elect Comput Eng 4, 256 (2010).

8. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig,
L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods
for gene expression data. Bioinformatics 22, 1122–1129 (2006).

9. Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights. Pattern
Recogn 37, 567–581 (2004).

10. Emilyn, J. J., Ramar, K.: An Intelligent mining framework based on rough sets for
clustering gene expression data. J Appl Sci 12, 1932–1938 (2012).

11. Shi, P.: Clustering fuzzy web transactions with rough k-means. In AST 09 Proceedings of
the 2009 International e-Conference on Advancd Science and Technology, IEEE Computer
Society, Washington, DC, 2009, pp. 48–51.

12. Wang, R., Miao, D., Li, G., Zhang, H.: Rough overlapping biclustering of gene expression
data. In Proceedings of the 7th IEEE International Conference on Bioinformatics and
Bioengineering, Harvard Medical School, Boston, MA, 2007, pp. 828–834.

13. Lingras, P., West, C., Interval set clustering of web users with rough k-means. J Intel Inf
Syst 23, 5–16 (2004).

14. Peters, G.: Some refinements of rough k-means clustering. Pattern Recogn 39, 1481–1491 (2006).
15. Lingras, P., Yan, P. R., Hogo, M.: Rough set based clustering: Evolutionary, neural, and

statistical approaches. In Proceedings of the First Indian International Conference on
Artificial Intelligence, IICAI, Hyderabad, India, 2003, pp. 1074–1087.

16. Tang, C., Zhang, L., Zhang, A., Ranmanathan, M.: Interrelated two-way clustering: An
unsupervised approach for gene expression data analysis. In Proceedings of the 2nd IEEE
International Symposium on Bioinformatics and Bioengineering, 2001, pp. 41–48.

17. Bhattacharya, A., De, R. K.: Bi-correlation clustering algorithm for determining a set of co-
regulated genes. Bioinformatics 25, 2795–2280 (2009).

18. Cheng, Y., Church, G. M.: Biclustering of expression data. Proc Int Conf Intell Syst Mol
Biol 8, 93–103 (2000).

19. Pawlak, Z.: Rough sets. Int J Comput Inform Sci 2, 341–356 (1982).
20. Jiong, Y., Haixun, W., Wei, W., Philip, Yu., Uiuc, I., Chapel, U., Hill, I., Watson, T. J.:

Enhanced biclustering on expression data. In Proceedings of 3rd IEEE Symposium on
BioInformatics and BioEngineering, BIBE, Bethesda, MD, 2003.

A NOVEL BICLUSTERING ALGORITHM FOR GENE EXPRESSION DATA 201

Acta Microbiologica et Immunologica Hungarica 63, 2016


