
1 

 

"This accepted author manuscript is copyrighted and published by Elsevier. It is posted 

here by agreement between Elsevier and MTA. The definitive version of the text was 

subsequently published in [Nuclear Instruments and Methods in Physics Research A 

832 (2016) 254–258; DOI 10.1016/j.nima.2016.06.132]. Available under license CC-BY-

NC-ND."  



2 

 

Coating and functionalization of high density ion track structures by atomic layer 

deposition 

 

Laura Mättö
1
, Imre M. Szilagyi

2,3,4*
, Mikko Laitinen

1
, Mikko Ritala

4
, Markku Leskelä

4
, Timo 

Sajavaara
1 

 

1
Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014, Finland 

2
Department of Inorganic and Analytical Chemistry, Budapest University of Technology and 

Economics, Budapest, Szent Gellért tér 4, H-1111, Hungary 

3
MTA-BME Technical Analytical Research Group, Budapest, Szent Gellért tér 4, H-1111, 

Hungary 

4
Department of Chemistry, University of Helsinki, Helsinki, P.O. Box 55, FI-00014, Finland 

 

Email: imre.szilagyi@mail.bme.hu  

 

Abstract 

 

In this study flexible TiO2 coated porous Kapton membranes are presented having electron 

multiplication properties. 800 nm crossing pores were fabricated into 50 m thick Kapton 

membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 

films were deposited into the pores of the Kapton membranes by atomic layer deposition 

using Ti(
i
OPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes 

were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray 

reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was 

achieved by electron beam evaporation. The electron multipliers were obtained by joining 
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two coated membranes separated by a conductive spacer. The results show that electron 

multiplication can be achieved using ALD-coated flexible ion track polymer foils.  
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1. Introduction 

 

Porous materials with precisely controlled properties, such as pore size and diameter, have 

several applications in, for instance, filtration [1], gas sensing [2,3], catalysis [4], 

photocatalysis [5,6], solar cells [7], adsorption [8,9], and biomedical research [10]. Micro-

channel plates (MCPs) are special member of these materials, in which a porous membrane is 

composed of parallelly aligned or crossing tubes. An MCP is an array of miniature electron 

multipliers that are each acting as a continuous dynode chain. They can be used e.g. in night 

vision applications, photomultipliers, particle and time-of-flight detectors [11]. 

One method to fabricate porous films is to shoot single heavy energetic ions through a 

material to be manipulated. In ion track method [12] these ions with typical energies of 

several hundred MeVs are generated by means of an accelerator. When these ions hit the 

target material, they lose their energy by various interactions with the material, and cause 

excitation and ionization of target electrons (electronic energy loss), projectile excitation and 

ionization, electron capture, elastic collisions with target atoms (nuclear energy loss) and 

electromagnetic radiation. For high energy heavy ions the most significant process is the 

electronic energy loss. The incident ions are chosen in such a way that the energy transfer to 

the material is large. The electronic energy loss can be well described by the Bethe-Bloch 

formula and the SRIM software [13]. The incident ion induces ionization and electric 
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excitation, which in polymers predominantly breaks chemical bonds and a damaged ion track 

forms. 

After the ion irradiation the pore is created via chemical etching process. The shape of the 

etched pore depends on the etch velocity of the bulk material Vb (etch rate of undamaged 

material) and the etch velocity of track line Vt (etch rate along the track). Both depend on the 

etching conditions and Vt is also influenced by the energy loss of the irradiated ions. Vt 

increases with increasing energy loss due to higher damage along the ion track [14]. Size of 

the pore varies with the etching time, as well as the pH and temperature of the solution. 

Atomic layer deposition (ALD) is a gas phase thin film deposition method based on surface 

controlled self-limiting reactions of volatile precursors, which are introduced into the reaction 

chamber alternately. ALD can be used to coat not only flat substrates, but also complex 

surfaces and highly porous materials with uniform films having thickness even down to 

single nanometers [15,16]. These films can be, for instance, insulating oxides or conducting 

metals, ternary compounds or polymers [17,18]. These features make ALD a convenient 

choice for modifying the surface properties of various nanostructures [19-21] or even 

sensitive substrates such as biomaterials [22]. 

In previous work by others, ion track structures and ALD have been combined to make 

nanotubes after dissolving the soluble nano templates [23]. On the other hand, ALD has been 

used to coat with thin films MCP structures made of glass [24], lead glass [25], borosilicate 

glass [26,27], porous silicon [28] and anodized Al2O3 [29]. These ALD-MCP structures 

showed mostly similar or even better properties than conventional MCPs based on lead glass, 

and had increased gain and improved stability as a function of extracted charge in several 

cases. However, all these substrates were rigid materials, and for MCP applications flexible 

MCP structures might have obvious advantages in several fields (e.g. night vision). Also 

MCP devices from plastic materials have been previously reported [30,31]. These devices 
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were made out of porous polymethyl methacrylate (PMMA) having pore size and thickness 

of 50 µm and 5 mm, respectively. The polymer channels had separate unspecified conductive 

and emissive low-temperature ALD coatings. The electron yield was amplified with 

additional conventional MCP stack after the polymer MCP. In ALD coated MCP structures 

various secondary electron emissive layers were deposited, e.g. MgO, MgO/TiO2, TiO2, etc 

[32]. Though TiO2 is a less common material for secondary electron emission, its easy ALD 

deposition makes it a good candidate to prepare new MCP structures. 

In this study ALD was used to grow TiO2 films on the sub-micron diameter ion track 

structures in order to have low-resistivity and enhanced secondary electron production in the 

pores. The idea was that an 
16

O beam releases secondary electrons upon collision with the 

pore walls. The secondary electron cloud can divide between crossing pores and further 

increase the number of electrons. With high secondary electron gain, this type of structures 

could act as low-cost electron multipliers in optical and various detector applications. The 

substrate for ALD in our case was a highly flexible porous ion track polyimide (Kapton) (Fig. 

1).  

 

2. Experimental 

 

Self-supporting 50 µm thick polyimide foils (Kapton from DuPont) were used as substrate 

material. The foils were irradiated using the JYFL K-130 cyclotron and Radiation Effects 

Facility (RADEF) irradiation chamber. The used ion was 600 MeV Xe
25+

, the fluence varied 

from 10
7
 to 10

9
 ions/cm

2
, and individual irradiations lasted from seconds to thirty minutes. 

During the irradiations the beam homogeneity and flux were monitored. Irradiation angle was 

continuously varied between ±15
o
 and the foil was also rotated in order to get crossing ion 
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tracks in all directions, and thereby minimizing the probability of wide pores due to adjacent 

tracks.  

The irradiated foils were etched in NaOCl solution [33]. The desired pH for the solution was 

obtained by adding boric acid (H3BO3), and the pH was monitored before and after the 

etching. The pH was 10.5 in the beginning and 9.9 after the etching had been completed. The 

etching temperature was (60 ± 2 
o
C), and the etching time was 6 hours. The as-formed pores 

were imaged using a scanning electron microscope (Hitachi S-4800 FE-SEM), and the pore 

diameter was measured to be about 800 nm. 

In order to both enhance the secondary electron production from the pore surface and make 

the pore surface resistive, the porous foils were coated by atomic layer deposition with a TiO2 

layer using TTIP (titanium tetraisopropoxide, 65 °C evaporation temperature) + H2O as 

precursors at 250 °C. Each cycle had the following sequence: two times 0.5 s pulse and 1 s 

purge followed by 0.5 pulse and 15 s purge for TTIP, then the same for H2O. Ca. 50 nm TiO2 

was deposited in 1500 cycles in a Picosun Sunale R-150 ALD reactor.  

The film thickness (47.7 nm) was determined by X-ray reflectometry (Bruker D8 Advance ) 

using a TiO2 film, which was deposited onto a 100 mm(100) Si wafer under the same 

conditions as used for the Kapton membranes. The growth rate per cycle corresponds well to 

the reported value 0.3 Å/cycle [34]. 

XRD pattern of the reference TiO2 film on Si substrate was recorded by a PANalytical X’pert 

Pro MPD X-ray diffractometer using Cu K radiation and grazing incidence angle mode. 

Consecutively, conducting 20 nm thick Au electrodes were electron beam evaporated on both 

sides of the ALD coated porous foils in an ultra high vacuum (UHV) environment.  

The electron multiplication properties of the prepared foils were studied using a specially 

made setup (Fig. 2). The primary setup consisted of two coated 50 µm thick polyimide foils 

which were separated by 2 mm conductive spacer ring. The voltage over the ALD-Kapton 
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stack was evenly divided using two 1.2 MΩ resistors. The lower electrode had a fixed 

potential of –1800 V and the potential of the upper electrode was varied between –1625 V 

and –2000 V in order to study the electron multiplication. The weak signals from Kapton 

electron multiplier were amplified by two conventional micro channel plates (MCP). The 

upper electrode of the MCP was set to a potential of –1725 V. 

The operation of the Kapton/TiO2 multipliers in ion detection was tested by backscattering a 

4.8 MeV 
16

O
2+

 beam from the Pelletron accelerator from a thin Au target towards the foils. 

The energy of scattered 
16

O ions was about 3.6 MeV, and the range in Kapton coated by 50 

nm TiO2 is about 4.1 µm as calculated using SRIM. The measurement time for each point 

was 500 s and the number of events was normalized using the incident ion fluence 

information obtained from the beam chopper.  

 

3. Results and discussion 

 

The deposition of the ALD TiO2 film was successful on polyimide even at a growth 

temperature of 250 
o
C (Fig. 3). The 50 mm thick Kapton/TiO2 porous membrane had ca. 800 

nm diameter channels penetrating through the whole structure (A/R = 62.5). The small cracks 

visible on the TiO2 film on surface of the membrane are most likely due to polymer shrinkage 

during the cooling down after the ALD growth. The thermal expansion coefficient of 

polyimide is more than ten times higher than the one for TiO2. The good quality of coated 

foils proves the compatibility of ion track technology using polyimide foils with the ALD 

method even at fairly high deposition temperatures.  

To check the conformality of the as-deposited TiO2 film, the coated membrane was annealed 

in air using 1 °C/min heating rate up to 600 °C and then keeping the sample at 600 °C for an 

hour. As a result of the polyimide membrane combustion a porous inorganic membrane was 
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obtained consisting of aligned TiO2 nanotubes (Fig. 4a). The wall thickness of the TiO2 

nanotubes was around 50 nm as expected, and it was confirmed that the TiO2 film covered 

uniformly the pores all along their length (Fig. 4b). The figure shows that the complete 

removal of the polymer material joins the nanotubes together. During the annealing of the 

polymer, the originally cylindrical TiO2 film in the polymer channels became somewhat 

distorted, and the planar TiO2 layers on the top and back side of the membrane were not 

maintained. Most probably the applied heat and the considerable gas release during the 

decomposition and combustion of the polymer were responsible for this. In addition, the film 

thickness of the TiO2 film was not enough to provide suitable robustness to it as a self-

standing structure, which could have withstood the annealing of the polymer. 

The structure of the as-deposited reference TiO2 film was measured by XRD. According to 

the XRD pattern (not shown here), TiO2 was present in the anatase form (ICDD 21-1272). 

In Fig. 5 the number of pulses recorded from the commercial MCP anode is plotted as a 

function of the voltage over the ALD-Kapton two foil stack. The two first modes of operation 

of the device are easily understandable. If the voltage difference over the ALD-Kapton stack 

is negative, there is no voltage dependence as the possible electrons are accelerated away 

from the MCP and the count rate of about 12 counts per second is comparable to the 

background count rate of the MCP, with or without any backscattered oxygen ions. Once the 

voltage difference over the ALD-Kapton stack turns positive, there is a clear rising trend until 

the voltage difference of 75 V, which corresponds to electric field of 75 kV/m. Above this the 

count rate starts to fluctuate and saturate. The obvious explanation for the saturation could be 

that the maximum count rate for the active area of the ALD-MCP is already reached and 

higher voltage over the ALD-MCP stack will only increase the pulse height but not the 

number of pulses. A detailed pulse height analysis study will be performed in the future.  
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The electron multiplication is not only dependent on the secondary electron production 

capability of the pore surface material but also on the electron energy. The flight path is 

longer and therefore also the energy of the electrons is higher for greater pore diameter and it 

could be that the 800 nm pore diameter these foils had is quite close to the diameter below 

which electrons do not get enough energy before colliding with the wall to multiply the yield. 

On the other hand, smaller pore diameter gives better spatial and temporal resolution. One 

special signal enhancing new property these ion track foils have is due to the crossing of the 

pores inside the polymer. The electrons can find their way to another pore and generate a 

strong daughter signal there as well.  

 

4. Conclusions 

 

In this study we have demonstrated the ability to combine ion track technology and ALD in 

fabrication of films with electron multiplication properties. 50 nm TiO2 films were deposited 

onto 50 m Kapton foils, which had 800 nm crossing pores prepared previously by ion track 

method and chemical etching. The results show that electron multiplication can be achieved 

using the ALD-coated flexible ion track foils, although multiplication is not still strong 

enough for direct detection, and thus an extra amplification stage is needed, and further 

studies are required in finding the optimal pore diameter and ALD film thickness.  

One additional possibility for applications opens when the supporting organic polymer is 

etched away like is shown in Fig. 3a, where an array of 800 nm wide TiO2 nanotubes with 50 

nm wall thickness film is prepared after annealing at 600 °C in air. Due to the crossing tracks, 

the structure is still rigid and could be used as a highly porous substrate in, for instance, cell 

growth studies or catalysis.  
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Figure. 1. A) Schematic diagram of the electron multiplier detector configuration. 1) 3,6 MeV 

16O beam and aluminum collimator 2) porous polyimide foil 3) standard MCP used for post 

amplification of electron signal and 4) charge collecting plate. B) Polyimide foil thickness 

was 50 µm and pore diameter 800 nm. During the irradiation the foil was tilted between 0 

and 15 degrees. C) The ion beam releases secondary electrons upon collision with the pore 

walls. The secondary electron cloud can divide between crossing pores and further increase 

the number of electrons.  
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Figure 2. A) A photograph of the used setup showing the collimated entrance to the 

Kapton/TiO2 MCP-ALD two foil stack where the scattered 3.6 MeV oxygen beam hits. In B) 

the same setup is shown from the opposite direction showing the stack and its top and lower 

contacts as well as the commercial MCP stack which was used to amplify the signal behind 

the metal plate. 
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Figure 3. SEM image of the TiO2 coated porous Kapton membrane. A 50 µm polyimide foil 

was irradiated with 600 MeV Xe ions and etched for 6 hours in sodium hypocloride and boric 

acid solutions having pH 10.5. After etching a 50 nm ALD-TiO2 film was deposited on both 

sides but also on the pore inner surfaces. The final pore diameter was about 800 nm. The 

small cracks on the TiO2 film are most likely due to polymer shrinkage during the cooling 

down after the ALD growth.  
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Figure 4. Self-supporting porous ALD TiO2 membrane after removal of the polyimide 

substrate by annealing in air at 600 °C.  



17 

 

 

 

Figure 5. The number of counts per second as a function of the voltage difference over the 

two foil stack of Kapton/TiO2 MCP-ALD membranes. 

 


