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Introduction

One of the most widely used fractal dimensions is the box 
counting dimension dB. Suppose we wish to estimate dB from 
N points, e.g., pixels in a 2-dimensional image. We cover the 
N points with boxes of side length s. If the object is 2-di-
mensional, the boxes are squares; if the object is 3-dimen-
sional, the boxes are cubes; in general for an E-dimensional 
object, the boxes are E-dimensional hypercubes. Let B(s) be 
the number of boxes containing at least one of the N points. 
When s is sufficiently large, all points lie in one box, so B(s) 
= 1. As s decreases, B(s) increases or remains constant. For 
all sufficiently small box sizes, each non-empty box contains 
a single point, so B(s) = N. 

The box counting dimension dB of a geometric object is 
defined as (Mandelbrot 1983)

There are examples for which dB does not exist (Falconer 
2003) but in this paper we assume dB exists. In practice, dB 
is computed by evaluating B(s) for a set of J values of s, 
which we denote by sj, j = 1, 2,..., J. Then, typically, a line 
is fitted (often using linear regression) to the J pairs (−log 
sj, log B(sj)), and the slope of this line is the estimate of dB. 
Assume the sj values are ordered so that s1 < s2 < ... < sJ. We 
want sJ−s1 as large as possible, so as to minimize the error in 
estimating dB from the J pairs (log sj, log B(sj)). However, we 
cannot make s1 arbitrarily small, since then, as noted above, 
B(s) approaches N, and the slope of the (log s, log B(s)) curve 
approaches 0. The study of the minimal and maximal box 
sizes has received a great deal of attention; see, e.g., the large 
number of references in Kenkel (2013). 

A recent paper by Kenkel (2013) introduces a simple but 
very useful probabilistic model to obtain a relationship be-

tween N and s1. The model estimates the expected value of 
B(s) as a function of s and dB. Then s1 is chosen to be the 
value at which the “local slope” of the (−log s, log B(s)) curve 
deviates from dB by no more than 0.001, where this accuracy 
was chosen since estimates of dB are often expressed to three 
or four decimal places. Using 28 simulations in which s was 
decreased until the local slope is within 0.001 of dB, Kenkel 
obtained the following approximation for the minimal usable 
box size: 

 
 .                                                       (1)	

 
Since (1) was obtained numerically, and only for the accu-
racy 0.001, this result provides no guidance on how s1 varies 
as a function of the accuracy. Indeed, in many applications, 
e.g., in the analysis of neurons (Karperien 2013), dB is only 
estimated to two decimal places. Letting e be the desired ac-
curacy, in this paper we generalize Kenkel’s result to compute 
s1 for arbitrary e. We show that s1 can be computed, for any 
e, by standard one-dimensional search techniques such as bi-
nary search. 

The original model 

Following Kenkel (2013), consider first the 1-dimen-
sional case. If we randomly select N points on [0, 1] then the 
probability that a given box (i.e., interval) of size s does not 
contain any of these points is (1−s)N . The probability that a 
given box of size s contains at least one of N randomly se-
lected points is 1 − (1−s)N . Hence the expected number B(s) 
of nonempty boxes of size s is given by B(s) = [1 −(1 −s)N]/s. 

Considering next the 2-dimensional case, if we randomly 
select N points on the unit square [0, 1]×[0, 1] then the prob-
ability that a given box of size s does not contain any of these 
points is (1 −s2)N . The probability that a given box of size s 
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1 Introduction

One of the mostly widely used fractal dimensions is the box counting dimension d
B

. Suppose we wish to

estimate d
B

from N points, e.g., pixels in a 2-dimensional image. We cover the N points with boxes of side

length s. If the object is 2-dimensional, the boxes are squares; if the object is 3-dimensional, the boxes are

cubes; in general for an E-dimensional object, the boxes are E-dimensional hypercubes. Let B(s) be the

number of boxes containing at least one of the N points. When s is sufficiently large, all points lie in one

box, so B(s) = 1. As s decreases, B(s) increases or remains constant. For all sufficiently small box sizes,

each non-empty box contains a single point, so B(s) = N .

The box counting dimension d
B

of a geometric object is defined as (Mandelbrot 1983)

d
B

= − lim
s→0

log B(s)

log s
.

There are examples for which d
B

does not exist (Falconer 2003) but in this paper we assume d
B

exists. In

practice, d
B

is computed by evaluating B(s) for a set of J values of s, which we denote by s
j
, j = 1, 2, · · · , J .
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Then, typically, a line is fitted (often using linear regression) to the J pairs
(
− log s

j
, logB(s

j
)
)
, and the

slope of this line is the estimate of d
B

. Assume the s
j

values are ordered so that s
1

< s
2

< · · · < s
J
. We want

s
J
− s

1
as large as possible, so as to minimize the error in estimating d

B
from the J pairs

(
log s

j
, logB(s

j
)
)
.

However, we cannot make s
1

arbitrarily small, since then, as noted above, B(s) approaches N , and the slope

of the
(
log s, log B(s)

)
curve approaches 0. The study of the minimal and maximal box sizes has received a

great deal of attention; see, e.g., the large number of references in (Kenkel 2013).

A recent paper by Kenkel (Kenkel 2013) introduces a simple but very useful probabilistic model to obtain

a relationship between N and s
1
. The model estimates the expected value of B(s) as a function of s and d

B
.

Then s
1

is chosen to be the value at which the “local slope” of the
(
− log s, log B(s)

)
curve deviates from d

B

by no more than 0.001, where this accuracy was chosen since estimates of d
B

are often expressed to three or

four decimal places. Using 28 simulations in which s was decreased until the local slope is within 0.001 of

d
B

, Kenkel obtained the following approximation for the minimal usable box size:

s
1
≈

(
N

10

)
−1/d

B

. (1)

Since (1) was obtained numerically, and only for the accuracy 0.001, this result provides no guidance on

how s
1

varies as a function of the accuracy. Indeed, in many applications, e.g., in the analysis of neurons

(Karperien 2013), d
B

is only estimated to two decimal places. Letting ε be the desired accuracy, in this

paper we generalize Kenkel’s result to compute s
1

for arbitrary ε. We show that s
1

can be computed, for

any ε, by standard one-dimensional search techniques such as binary search.

2 The Original Model

Following (Kenkel 2013), consider first the 1-dimensional case. If we randomly select N points on [0, 1]

then the probability that a given box (i.e., interval) of size s does not contain any of these points is (1−s)N .

The probability that a given box of size s contains at least one of N randomly selected points is 1− (1−s)N .

Hence the expected number B(s) of nonempty boxes of size s is given by B(s) = [1 − (1 − s)N ]/s.

Considering next the 2-dimensional case, if we randomly select N points on the unit square [0, 1]× [0, 1]

then the probability that a given box of size s does not contain any of these points is (1 − s2)N . The

probability that a given box of size s contains at least one of N randomly selected points is 1 − (1 − s2)N .

Hence the expected number B(s) of nonempty boxes of size s is given by B(s) = [1 − (1 − s2)N ]/s2.

Finally, consider the case where the N points are sampled from a self-similar fractal set with box counting

dimension d
B

. For example, N might be the total number of pixels in an image of a real-world fractal, such
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contains at least one of N randomly selected points is 1 − (1−
s2)N . Hence the expected number B(s) of nonempty boxes of 
size s is given by B(s) =[1 − (1 −s2)N]/s2 . 

Finally, consider the case where the N points are sampled 
from a self-similar fractal set with box counting dimension 
dB. For example, N might be the total number of pixels in 
an image of a real-world fractal, such as a fern leaf. The ex-
pected number B(s) of nonempty boxes of size s is given by 
(Kenkel 2013) 

                                   
                                                (2)

 
 

This equality is the basis for the analysis of the remainder of 
this paper. 

From (2), Kenkel numerically computes the “local slope” 
of the (log s, log B(s)) curve, where the “local slope” m(s) 
is defined by m(s) ≡ (log B(s + δ) – log B(s))/(log (s + δ) 
– log s) for some small increment δ. Then, s1 is the value 
for which m(s)+ dB = 0.001 and empirically s1 is found to be 
well approximated using (1). From (1) we obtain s1

dB = 10/N. 
Substituting this in (2), we have 

 

 
 
 

 
which yields, for large N, the estimate B(s1) = N/10. This 
means no box size s should be used, in the estimation of dB, 
for which B(s) > N/10 (Kenkel 2013). 

The generalized model 

In this section, we generalize the original model by deter-
mining the minimal box size when the constant 0.001 described 
in Section 2 is replaced by a positive parameter e. Rather 
than work with a local slope of the (log s, log B(s)) curve, 
we work with an actual derivative, which can be obtained in 
closed form. Using the chain rule for derivatives, we have  

 

     (3) 
 
 
	

From (2), taking the derivative of log B(s) we have 

 

			               (4)

Combining (3) and (4) yields 

 
                                                                (5)

Denoting the right hand side of (5) by F(s), our task is to 
find the value s* such that F(s*) = −dB + e. For s < s* we have 
F(s) > − dB + e, so such box sizes should not be used in the 
estimation of dB. Thus s* is the minimal usable box size. As a 
first step towards calculating s*, define 

a ≡ (1 − sdB )N−1 . 			              (6) 
While α is actually a function of s, for notational simplicity 
we write α rather than α(s). The equation F(s) = −dB + e can 
now be rewritten as 

 
(7) 

Dividing both sides by dB yields 
 

 
             (8) 

Define ν ≡(e/dB) − 1. Multiplying the numerator and denomi-
nator of the left hand side of (8) by sdB yields NαsdB −1+ α−
αsdB = ν(1−α+ αsdB), which simplifies to αsdB(N−1−ν)=(ν+1)
(1−α). Recalling the definition of ν, more algebra yields 

                         (9) 

                                         
Finally, from (9) and the definition (6) of α, we obtain an 
implicit equation for s*: 

  (10) 
 
 

Equation (10) is exact; no approximations were made. The 
parameter e appears only in the right hand side, which is in-
dependent of s. 

We compute a solution s* of (10) using binary search over 
[0,1]; a code listing is provided in the Appendix. The binary 
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Equation (10) is exact; no approximations were made. The parameter ε appears only in the right hand side,

which is independent of s.

We compute a solution s� of (10) using binary search over [0, 1]; a code listing is provided in the Appendix.

The binary search is halted when the width of the interval containing s� is less than 1.0× 10−7, which takes

24 iterations. For N = 1000 and ε = 0.001, the percent error 100(s
1
− s�)/s�, where s

1
is the estimate

defined by (1), is plotted in Figure 1 as a function of d
B

for 1 ≤ d
B
≤ 2. The error in the approximation (1)

Figure 1: Percent error in the minimal usable box size for N = 1000 and ε = 0.001, for 1 ≤ d
B
≤ 2.
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≈0.331. The error arises from the third order Taylor series 
approximation, since for x = (s*)2 we have (1−x)1−N ≈19700 
while 1 + Nx + (N2/2)x2 + (N3/6)x3 ≈ 219. Thus, while (12) 
yields the functional form obtained by Kenkel, in practice s* 
should be computed using (10) and binary search. 

Concluding remarks 

We generalized Kenkel’s model for finding the minimal 
usable box size s* for computing the box counting dimen-
sion. For box sizes smaller than s*, the slope of the (−log 
s, log B(s)) curve flattens out, and deviates by more than 
a specified accuracy e from dB. Whereas Kenkel consid-
ered only the choice e =0.001, we derived an exact implicit 
equation for s* for any e. Binary search was used to actu-
ally compute s*, and a Python implementation is provided in 
the Appendix. We also used the implicit equation to derive 
a closed form approximation for s* having the same func-
tional form as Kenkel’s empirically obtained expression.  
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Appendix: Binary search code 

Python code used to implement the binary search method 
used in Section 3 to compute the s* solving (10). The code 
performs binary search over the interval [0, 1] to compute s* 
to an accuracy of 10−7 for e = 0.001 and for dB from 1 to 2, 
in increments of 1/200. The variable Estimate is the estimate 
given by (1). 

 

Since, as noted in Section 1, in many applications d
B

is estimated to only two decimal places, Figure 2

compares, for N = 1000, the value s� for ε = 0.1, ε = 0.01, and ε = 0.001, all for the same range 1 ≤ d
B
≤ 2.

Figure 2: Minimal usable box size for N = 1000 and for three values of ε, for 1 ≤ d
B
≤ 2.

4 Approximating the Minimal Usable Box Size

We now derive a closed form approximation to s�. Defining x = sd
B , we rewrite (10) as

x−1

((
1 − x

)1−N
− 1

)
= ε−1Nd

B
− 1 . (11)

We have x < 1 since s < 1 and d
B

> 0. Ignoring terms of degree four and higher, the Taylor series expansion

of (1−x)1−N yields (1−x)1−N ≈ 1− (1−N)x+(1 − N)(−N)x2/2− (1 − N)(−N)(−N − 1)x3/6. For large

N we have (1 − x)1−N ≈ 1 + Nx + (N2/2)x2 + (N3/6)x3. Substituting this in (11) yields

x−1

((
1 − x

)1−N
− 1

)
≈ x−1

(
1 + Nx + (N2/2)x2 + (N3/6)x3

− 1
)

= N + (N2/2)x + (N3/6)x2 = ε−1Nd
B
− 1 ≈ ε−1Nd

B
.

Dividing by N , we obtain (N2/6)x2 + (N/2)x + (1 − ε−1d
B

) ≈ 0. Using 1 − ε−1d
B
≈ −ε−1d

B
we obtain

x =
−

N
2
±

√
N2

4
− 4N2

6
(−ε−1d

B
)

(2/6)N2
≈

N
√

2

3
ε−1d

B

(1/3)N2
=

1

N

√
6d

B

ε
.

By definition, x = sd
B , so sd

B = (1/N)
√

6d
B

/ε. Solving for s yields an approximation s̃ for the minimal

usable box size:

s̃ =

(
N

√
ε

6 d
B

)
−1/d

B

. (12)

5

Binary Search

1 import math

2 N = 1000.

3 epsilon = .001

4 for i in range(201):

5 d = 1.0 + float(i)/200.

6 RHS = -1.0 + N*d/epsilon

7 Estimate = (0.1*N)**(-1.0/d)

8 low = 10**(-8)

9 high = 1.0

10 while (low + 10**(-7) <= high):

11 s = (low + high)/2.0

12 x = s**d

13 LHS = ((1.0-x)**(1.0-N) -1.0)/x

14 if LHS < RHS:

15 low = s

16 else:

17 high = s

18 error = 100*(Estimate-s)/s

19 print " d ", d, " s ", s, " error ", error

Figure 3: Python code for binary search.
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