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Introduction

The concept of functional response, a fundamental aspect 
of community ecology, describes the relationship between 
per capita predator consumption and prey density (Solomon 
1949). Holling (1959a) proposed various types of functional 
response to provide a better understanding of the compo-
nents of predator-prey interactions; namely, a linear (type 
I), a decelerating (type II), and a sigmoid (type III). In other 
words, the prey consumption is assumed to increase linearly 
with prey density or increase asymptotically to a plateau un-
der type I and type II respectively, while in a type III func-
tional response one assumes that the prey consumption is 
supposed to be of a sigmoid form (S-shaped) as prey den-
sity increases. Although more complex forms of the classical 
prey-dependent functional responses exist (see, for example 
Jeschke et al. 2002), a significant amount of interest has been 
drawn to Holling’s type II and III functional responses be-
cause of their simplicity and tractability, balancing between 
reality and feasibility (see, for example Englund et al. 2011). 

Holling’s modelling approach for type II functional responses 
illustrates an inverse-density-dependent prey mortality model 
which is common among invertebrate predators (Hassell et 
al. 1977). Examining the workings of predator’s individuals, 
Holling (1959b) developed a mechanistic model to explain 
their feeding behaviour, commonly known as the disc equation, 
which is an ordinary differential equation (ODE) of the form: 
 

           (1)

where N denotes the prey density, a the predator’s attack rate, 
i.e., the per capita prey mortality at low prey densities, and 
Th the handling time which reflects the time that a predator 
spends on pursuing, subduing, eating and digesting its prey. 
Despite its potentially simplified assumptions, a vast litera-
ture indicates that researchers often focus on the disc equation 
to describe predator’s feeding behaviour, developing several 
concepts in ecology theory or modelling predator-prey dy-
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namics (see, for example Beddington 1975, Englund et al. 
2011, Jeschke et al. 2002, Okuyama 2012a). Thus, it has be-
come a baseline model in the sense of its determinant effect 
on much of modern ecology theory (Englund et al. 2011).

Given the importance of the disc equation on natural 
ecosystems, a number of early published papers investigated 
various statistical methods to infer the attack rate (a) and the 
handling time (Th) from experimental data (see for example 
Fan and Petitt 1994, Livdahl 1979, Livdahl and Stiven 1983, 
Okuyama 2012b). One approach that has been commonly 
used is to linearize the disc equation to enable estimation of 
a and Th within the framework of linear regression models. 
Linearizing a non-linear model, sometimes by making sim-
plifying assumptions, is a method that has been attractive in 
the literature due to its ease of implementation. In this partic-
ular case, this can be done easily; setting N = N0 on the right 
hand side of (1), where N0 denotes the initial prey density, an 
analytic expression of N(t) is available:

 

 
 

By rearranging and taking the reciprocals, one can derive ex-
pressions of the least square estimates of a and Th explicitly 
(i.e., without numerical optimization). Nevertheless, such an 
approach relies on the assumption that the resource is not 
depleted during the experimental progress. Whilst there are 
cases in which that assumption is not unreasonable, such as in 
parasitoid-host systems, there are several cases where the re-
sources are depleted over time; for instance, in predator-prey 
systems. Therefore, in such cases the differential form of the 
disc equation is to be preferred over its linear approximation, 
or the random predator equation (Rogers 1972) which is the 
integrated form of the disc equation. 

Another approach to estimate the parameters of the disc 
equation given experimental data involves non-linear least 
squares optimization assuming identically and independently 
distributed (additive) Gaussian errors. However, such an as-
sumption not only is likely to be violated by the heteroscedas-
ticity which often arises in functional response data (Trexler 
et al. 1988), but this particular error distribution does not 
seem natural either, especially at early stages of the experi-
ment where the number of prey consumed is low.

An interesting approach to modelling predation in func-
tional response was developed by Fenlon and Faddy (2006) 
who studied two alternative model classes for such systems, 
one using likelihood-based inference for a beta-binomial 
model accounting for overdispersion and a counting-process-
based framework. Although there are similarities to our basic 
modelling framework there are also important differences, 
namely we follow a distinct (Bayesian) approach to inference 
and model selection and our computational framework does 
not resort to asymptotic normality. In addition, our model dif-
fers in the way it accounts for density dependence. 

The main aim of this paper is to introduce a hierarchical 
model which in principle can incorporate any of Holling’s 

various types of functional response and accounts for het-
eroscedasticity. Also, in spite of numerical differential equa-
tion solvers making it perfectly feasible to use richer ODE 
models, there is still a tendency for researchers to use simpler 
models on grounds of convenience (e.g., the random predator 
equation). Therefore, we aimed to show that it is perfectly 
feasible to work with the richer models, providing clear sta-
tistical evidence of the benefit of doing so. In addition, we 
illustrate how one can estimate the parameters of this model 
within a Bayesian framework and select between compet-
ing models (hypotheses) given experimental data. The pro-
posed model and methodology are illustrated via the analy-
sis of eight data sets which involve the functional response 
of a predatory insect to its prey. In particular, the ladybird 
beetle Propylea quatuordecimpunctata L. (Coleoptera: 
Coccinellidae) and its essential prey Aphis fabae Scopoli 
(Hemiptera: Aphididae) were used as case study organisms. 
Aphis fabae is well recognized as a serious pest of culti-
vated plants worldwide (Blackman and Eastop 2000), where 
P. quatuordecimpunctata is a widely distributed aphidopha-
gous coccinellid (Hodek et al. 2012). As a thoroughly esti-
mating of biological control agents’ functional response is 
of importance, with this application we provide a quantified 
analysis of the intake rate of P. quatuordecimpunctata as a 
function of A. fabae density. 

Materials and methods

Data collection and experimental conditions

An A. fabae colony originated from a stock colony at the 
Biological Control Laboratory, Benaki Phytopathological 
Institute, reared on Vicia faba L. plants at 20 ± 1 °C, 65 ± 2% 
RH and a photoperiod of 16:8 L:D. Propylea quatuordecim-
punctata was collected from Zea mays L. plants infested with 
Rhopalosiphum maidis Fitch in Arta County (Northwestern 
Greece). The coccinellid was reared in large cylindrical 
Plexiglass cages (50 cm length 30 cm diameter) containing A. 
fabae prey on potted V. faba plants at 25 ± 1 °C, 65 ± 2% RH 
and a photoperiod of 16:8 L:D. The experiments were car-
ried out at 20 ± 1 °C, 65 ± 2% RH and a photoperiod of 16:8 
L:D. The experimental arena consisted of a plastic container 
(12 cm height × 7 cm diameter) with a potted V. faba plant 
host (at 8-9 cm height, top growth was cut) with different A. 
fabae densities (3-3.5 days-old). An individual larva, female 
or male of P. quatuordecimpunctata was placed into plastic 
containers, having starved for 12h. Total exposure time of 
prey and predator was 24h. Aphis fabae densities were 2, 4, 
8, 16 and 32 aphids for 1st instar larvae, 2, 4, 8, 16, 32 and 64 
aphids for 2nd instar larvae, 4, 8, 16, 32, 64 and 128 aphids 
for 3rd and 4th instar larvae as well as female and male adults. 
We used 20-30 day old P. quatuordecimpunctata adults. Ten 
replicates of each prey density were formed. Functional re-
sponse experiments were also run at 25 ± 1 °C for female and 
male adults. The data sets concerning the functional response 
of larvae were used in a previous study of Papanikolaou et 
al. (2011).
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A hierarchical model

Denote by Ne(t) the number of prey eaten by time t. Since 
a prey item is either dead or alive by time t (which often de-
notes the end of the experiment), we assume that Ne(t)  fol-
lows a Binomial distribution with parameters N0 and p(t), 
where N0 is the initial prey population and p(t) is the prob-
ability that a prey item has been eaten by time t:

             (2)

where N(t) is given by the solution of the ordinary differential 
equation (1) and evaluated at time t. Notice that (1) cannot 
be solved analytically and hence the solution has to be de-
rived numerically. Furthermore, in principle any functional 
response model for N(t) can be used and not just the model 
as given in (1). 

Bayesian inference

Preliminaries. Traditionally, parameter estimation for mod-
els concerned with functional response has been done by 
searching for the set of parameters (i.e., attack rate, handling 
time, etc) for which the model and data match most closely 
according to some criterion, such as the sum of squared dif-
ferences. Such an ordinary least squares (OLS) approach 
provides an estimate for the parameter values that gives the 
“best fit” to the experimental data, but it gives no information 
about uncertainty in the estimate; for example, whether or not 
there are other plausible values of parameters that also give 
equally good fits. Thus, being able to quantify the uncertainty 
surrounding the ability of our point estimates to reflect the 
(unknown) truth is an equally important aspect in parameter 
estimation. Typically, researchers resort to normality assump-
tions whence OLS coincide with the maximum likelihood es-
timators (MLEs), leading to quantification of the uncertainty 
around the MLEs.

In this paper, we adopt the Bayesian paradigm which 
enables us to quantify the uncertainty of our estimates in a 
coherent, probabilistic manner (e.g., Bolker 2008). We utilise 
a Markov Chain Monte Carlo (MCMC) algorithm (see, for 
example, Brooks et al. 2011, Gelman et al. 1996) to sample 
from the posterior density of the parameters of interest
Prior distributions. We assume little prior knowledge of the 
attack rate (a) and handling time (Th) when making inference 
for the parameters of our model. In particular, we assume that 
both of them have independent slowly varying Exponential 
distributions:
 a ~ Exp (l1)            (3)
 Th ~ Exp (l2)           (4)
and we typically set λ1 and λ2 to 10-6 in order to achieve large 
prior variance. Assigning Exponential distribution with low 
rates is a typical choice when one is interested in assuming 
a non-informative distribution about the parameters. In other 
words, our prior belief is expressed via a practically flat den-

sity over realistically plausible positive real numbers (e.g., 
between 0 and 100), allowing for the data to mostly inform 
the posterior density of a and Th. We have used non-informa-
tive priors for the attack rate and the handling time. Although 
the maximum likelihood estimates will coincide with the 
maximum a posteriori probability estimates in this case, we 
advocate the use of a Bayesian approach since, in principle, 
one can assign informative priors to either parameter (e.g., 
using information from past experiments) and most impor-
tantly, offers a particularly natural way to select between can-
didate models.
Likelihood. We now derive the likelihood of the observed 
data under the proposed hierarchical model. Given that all the 
experiments lasted for 24 hours and for the ease of exposi-
tion, we drop the dependence of t in the notation. Denote by 
X ={(xi,ni)k}, i = 1,...,m and k = 1,..., K the observed data of a 
functional response experiment; the index i refers to the dif-
ferent initial prey densities that were used in the experiment 
and k refers to each replication. Essentially, the observed data 
consist of pairs of initial prey density and number of prey 
eaten after 24 hours.

An observed dataset is presented in Table 1 for illustra-
tion; the second column (nj) consists of the initial prey densi-
ties for j = 1,...,6 and the rest, (x1,..., xj) refer to the number of 
prey eaten by the predator after 24 hours.

The probability of observing xj prey items eaten out of nj 
prey after 24 hours is given by:

                                    
,            

(5)

 
where p = P(t/a, Th) is given in Equation 2 for t = 24 and there-
fore is implicitly dependent upon a and Th via (1). Assuming 
independence between the k replicates in each experiment as 
well as between the different experiments, the likelihood of 
the observed data X given the parameters θ = (a,Th)  after T = 
24 hours is written as follows:

 

(6)

Posterior distribution. Equations 3, 4 and 6 give rise to the 
posterior distribution whose density is given as follows:

 

               
(7)

The posterior density of interest (Equation 7) is not of a closed 
form due to its normalising constant not being available ex-
plicitly. Therefore, in this study we employed to a random 
walk Metropolis algorithm (Metropolis et al. 1953, Gelman et 
al. 1997, Gamerman and Lopes 2006) to draw samples from 
p(a,Th/X).
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Bayesian model choice. Statistical inference, in general, is 
not limited to parameter estimation. Another common goal 
is hypothesis testing, in which we are interested in discrimi-
nating models in order to gain a better understanding of the 
structure of the statistical model(s) of interest and facilitate 
for model-robust decision making. Here we are interested 
in observing the extent to which the observed data support 
the scientific hypothesis that the differential form of the disc 
equation is to be used when prey is depleted during the func-
tional response experiments.
Bayes factors. The Bayesian approach to model selection (or 
discrimination) is based upon an extension to the posterior 
distribution to include not only uncertainty regarding the 
model parameters but also for the model itself. Consider the 
following framework: suppose we observe data X and have a 
series of plausible models indexed by w = 1,...,W. Denote by 
θw the vector of parameters associated with model Mw and by 
pw(X/θw) the likelihood of the observed data under model W. 
Then by specifying a prior distribution pk(θw) for the model 
parameters under each model and a prior probability for each 
model, p(Mw), we can derive the joint posterior distribution 
over both the model and parameter spaces, given by

( ) ( ) ( ) ( )wwwwwww MXXM pθpθpθp ∝,  (8) 

Assuming prior independence between Mw and θw, 
the joint posterior distribution can then be written down 
(using Bayes Theorem) as product of two components: 

( ) ( ) ( )XwXwXw ww pθpθp ,, =               (9) 

where p(θw.Mw/X) is the posterior distribution of the param-
eters under model Mw and p(Mw/X) denotes what we refer to 
as the “posterior model probability” which represents our be-
liefs, after observing data X, of what is the chance that model 
Mw is the true model given that one of models 1,...,W is true.

Once these posterior model probabilities are obtained 
they can then be used to discriminate between the compet-
ing models by computing the Bayes Factor which is simply 
defined as the ratio of the posterior odds, i.e., the ratio of the 
posterior to the prior model probability:

 

         (10)

In other words rearranging Equation 10 shows that

posterior odds = Bayes factor × prior odds. 

The value of the Bayes factor represents the relative like-
lihood of M1 to M2 and is of practical appeal because its value 
is independent of the choice of the prior model probabilities 
(see Kass and Raftery 1995). It is easy to see that when the 
models are equally probable a priori so that p(Mw = 1) = 
p(Mw =2) = 0.5 the Bayes factor is equal to the posterior odds 
in favour of M1. The quantity p(X/Mw) for k = 1,2 in (10) is 
obtained by integrating over the parameter space,

where θw is the parameter vector under model Mw and pw(θw)
is its prior density. The term p(X/Mw) is the marginal prob-
ability of the data and is often called the marginal or inte-
grated likelihood in the statistical literature while it is typi-
cally referred to as the evidence in the physics and machine 
learning communities. The Bayes factor is, therefore, a sum-
mary of the evidence provided by the data in favour of one 
hypothesis represented by a statistical model as opposed to 
another. Note that this formulation is completely general and 
does not require nested models, as is typically the case with 
likelihood ratio tests. Additionally, no asymptotic justifica-
tion is required so that these results can be used for moderate 
sample sizes as well.

The marginal likelihoods are rarely available in analyt-
ic form. Therefore, in practice if the number of parameters 
in each model is not very large (typically 2-5 parameters), 
then the marginal likelihoods and consequently the Bayes 
factors are obtained via straightforward numerical integra-
tion. However, if the dimension of the parameter vector θw 
is very large then computational tools such as trans dimen-
sional MCMC algorithms (Green 1995) can be used instead 
to explore the more complex posterior distribution described 
above.
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Table 1. Number of prey items consumed by Propylea quatuordecimpunctata male adults for each trial (i=1,…,10). The experiment 
was conducted at 20 °C for six different Aphis fabae prey densities (nij, j = 1,…, 6). Therefore, xij denotes the count of consumed prey 
at the jth density at the ith trial.

j nj x1j x2j x3j x4j x5j x6j x7j x8j x9j x10j

1 4 4 4 4 4 4 4 4 4 4 4

2 8 8 8 8 8 8 2 8 8 7 7

3 16 8 14 10 10 15 14 12 14 9 16

4 32 16 27 18 16 23 20 17 21 31 17

5 64 30 29 33 24 30 22 20 26 26 27

6 128 50 36 28 26 24 41 30 38 28 42
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Results and discussion

The functional response is a fundamental characteristic 
of predator-prey systems. We have developed a hierarchical 
model which accounts for heteroscedasticity and illustrated 
how to infer the parameters of interest (e.g., the attack rate 
and the handling time) within a Bayesian framework using 
MCMC methods. In addition, we showed how one can assess 
competing scientific hypotheses by investigating which mod-
el is mostly supported by the experimental data. Generally, 
ODEs are frequently used in representing consumer-resource 
interactions and the outcome of such models is therefore of 
great interest to researchers. Thus, we have made our comput-
er code implementing the present analysis in R (R Core team 
2013) publicly available on http://www.maths.nott.ac.uk/~tk/
files/functional_response/, to encourage and allow research-
ers to fit (and compare) the proposed models to their datasets.

In practice, we often summarize the posterior distribu-
tion of the parameters by calculating a variety of interpret-
able summary statistics such as posterior means, medians and 
credible intervals. The posterior means of both parameters 
of the disc equation obtained are presented in Table 2. By 
inspecting the 95% credible intervals we observe that the es-
timated attack rates were similar for all four larval stages of 
the predator, indicating that the larvae have similar abilities 
to respond to increasing prey densities. On the other hand, 
handling times decreased for the older larvae. This further 
indicates an increase in the upper level of the response, lead-
ing older larvae to a higher consumption of prey. Being larger 
gives them an advantage in handling prey. At 20 °C, the at-
tack rate for females was higher than those for males. This 
means that at low prey densities (i.e., at the supplied prey 
densities that the predator is not satiated) the females have the 
ability to consume more prey items than the males. However, 
comparison of handling times yielded no differences, indicat-
ing that both sexes have similar maximum predation ability. 
Overall, at 20 °C we expect that females, males and fourth 

instar larvae of P. quatuordecimpunctata to display the higher 
predation ability among predators stages. This could be of 
great interest for biological control practitioners, since these 
stages are to be preferred in potential release of this predator 
in agroecosystems, allowing an influential decrease of aphid 
pests.

Our results also showed that at the temperature of 25 °C 
there was a notable difference of estimated handling times 
between males and females. This further indicates that fe-
males might prey and subdue prey more efficiently and faster 
than males. Moreover, handling time increased considerably 
as temperature decreased from 25 °C to 20 °C for females, 
but not for males. According to Papanikolaou et al. (2013), 
the fecundity of P. quatuordecimpunctata females is higher 
at 25 °C than 20 °C, where females of roughly 20-30 day-old 
exhibit their maximum reproductive potential at 25 °C. As a 
consequence, higher energy requirements for egg production 
lead them to higher consumption of prey. Additionally, attack 
rate for males was lower at 20 °C than 25 °C unlike females, 
as it was not different among these temperatures. Attack rate 
might follow a hump-shaped relationship with temperature 
as it happens for the ladybird Coleomegilla maculata lengi 
DeGeer (Sentis et al. 2012). The two temperatures examined 
here might have been at the plateau of the hump-shaped rela-
tionship with temperature for females and therefore no differ-
ences occurred, whereas, for males was still increasing with 
temperature.

Although investigating the Pearson’s correlation between 
the estimated parameters of the disc equation appears to be 
mostly ignored in the ecological literature, it is important to 
do so since this may reveal potential parameter non-identifi-
ability issues as well as biological insights. Table 2 reveals a 
moderate but statistically significant positive correlation be-
tween the estimated handling times and the estimated attack 
rates of the predator, based on 95% credible intervals. This 
is biologically intuitive since coccinellids are being highly 

Table 2. Parameter values of Holling’s disc equation obtained as posterior means (95% Credible Intervals), and the correlation of attack 
rate and handling time (95% Credible Intervals).

attack rate handling time correlation

1st instar 0.1496  
(0.0728-0.2578)

7.1195 
(5.6887-8.7337)

0.2393 
(0.2197-0.2587)

2nd instar 0.1324 
(0.0976-0.1763)

2.6713 
(2.3351-3.0357)

0.1035 
(0.0830-0.1239)

3rd instar 0.1514 
(0.1230-0.1864)

1.1567 
(1.0596-1.2605)

0.0453 
(0.0246-0.0659)

4th instar 0.2025 
(0.1744-0.2373)

0.5215 
(0.4865-0.5575)

0.0864 
(0.0659-0.1069)

females (20 °C) 0.2278 
(0.1898-0.2737)

0.5058 
(0.4071-0.6273)

0.0728 
(0.0523-0.0934)

males (20 °C) 0.1067 
(0.0889-0.1265)

0.6507 
(0.5143-0.7735)

0.1600 
(0.1396-0.1798)

females (25 °C) 0.2193 
(0.1910-0.2494)

0.2565 
(0.2237-0.2881)

0.1538 
(0.1335-0.1740)

males (25 °C) 0.1970 
(0.1666-0.2321)

0.4805 
(0.4104-0.5608)

0.1994 
(0.1795-0.2192)
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voracious, especially larvae which consume more prey items 
than they need for their development (Hodek et al. 2012). 
This trend may lead to a gradual increase of the handling 
time, as the attack rate increases.

In a previous study (Papanikolaou et. al. 2011) the authors 
fitted the non-differential form of the disc equation using a 
non-linear least squares approach, in order to provide infer-
ence for the functional response of P. quatuordecimpunctata 
larvae. The values of attack rates are notably lower than those 
estimated in the present analysis, indicating that linearisation 
may induce estimation bias. The attack rate coefficient illus-
trates the per capita prey consumption at low prey densities, 
indicating the initial slope of the functional response curve. 
A biased estimate of this parameter leads to underestimation 
of prey consumption at the lower prey densities, in which the 
handling time is not the limiting factor of the predation. In 
addition, a high value of the attack rate coefficient shows that 
the predator may exhibit stronger density-dependent preda-
tion behavior. In contrary, the values of the larvae handling 
times are close to those estimated in the present analysis. 
Handling time depicts a more complex behavior which in-
cludes a number of distinguish predator activities, such as 
pursuing, subduing, eating and digesting a prey item.

Model selection

We applied the proposed method in two cases:
a) Our hypothesis is translated into two different models, 

describing type II functional responses; in particular
Note that the model M1 uses the functional response used 
Papanikolaou et al. (2011) while M2 uses the hierarchical 

model that is proposed in Material and Methods.
b) In this case, our aim was to distinguish between 

type II and type III functional responses, which is of im-
portance in functional response studies (Juliano 2001), i.e., 
where the model M3 describes type III functional responses.

In each case, we assumed that both models are equally 
likely a priori and consider Exponential prior distributions 
for both parameters, a Exp (l), Th Exp (l). It is well known 
that the Bayes factor can be sensitive to the choice of model 
parameter’s prior distributions. Therefore, we computed the 
Bayes factor for a range of different values of l, namely, 0.01, 
0.1, 1, and 10. We first computed the log of the marginal like-
lihoods for both models via numerical integration and then 
the Bayes Factors of model M2 versus M1 in the first case and 
M2 versus M3 in the second case. Tables 3 and 4 show the 
Bayes Factors of model M2 versus model M1 and M2 versus 
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Table 3. The Bayes factor of M2 versus M1 for different values of the prior’s hyperparameter  λ.

λ=0.01 λ=0.1 λ=1 λ=10
1st instar 8.17 7.61 4.04 0.27
2nd instar 175.91 170.71 151.21 8.50
3rd instar 1.65× 107 1.62× 107 1.31× 107 1.64× 106

4th instar 1.09× 1021 1.06× 1021 8.50× 1020 9.21× 1019

females (20 °C) 1.32× 1020 1.29× 1020 9.98× 1019 7.95× 1018

males (20 °C) 0.12 0.12 0.11 0.04
females (25 °C) 7.56× 1022 7.41× 1022 6.00× 1022 7.81× 1021

males (25 °C) 5.60× 1014 5.49× 1014 4.50× 1014 5.56× 1013

Table 4. The Bayes factor of M2 versus M3 for different values of the prior’s hyperparameter  λ.

λ=0.01 λ=0.1 λ=1 λ=10
1st instar 1.47 1.53 2.08 1.55
2nd instar 29.83 29.93 30.67 20.91
3rd instar 56.41 55.56 47.78 10.70
4th instar 1.69 1.67 1.43 0.30
females (20 °C) 132614 130522 111268 22586
males (20 °C) 2.64× 1014 2.61× 1014 2.33× 1014 7.38× 1013

females (25 °C) 614829 604344 508693 91812
males (25 °C) 6309 6230 5497 1559
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M3, respectively, for the different datasets and for different 
prior distributions. It is immediately apparent that M1 is to 
be preferred in all but one cases (males at 20 °C M1 is to be 
preferred). Furthermore, the conclusions appear to be robust 
to the different choice of l.

Type II functional responses are frequent in nature, espe-
cially among aphidophagous ladybirds (Hodek et al. 2012) 
and are typically described by Holling’s disc equation, one 
of the most commonly used models in ecology. Our study al-
lowed us to predict the efficiency of P. quatuordecimpunctata 
on a common and important aphid species. Since biological 
control practitioners often rely on functional response studies 
to design and use efficiently biocontrol agents, an accurate 
and non-biased estimation of the functional response pa-
rameters is of crucial importance. The approach developed 
here is towards that direction, for a more precise estimation 
of the parameters that determine the shape of the functional 
response of a predator. Also, functional response parameters 
of P. quatuordecimpunctata preying on A. fabae may be in-
corporated in predator-prey models evaluating the population 
dynamics of the study organisms.

From a statistical viewpoint routine Bayesian inference 
and model selection for ODE-based models remains a chal-
lenge for a number of reasons which relate to the need for 
solving the ODEs numerically. With respect to the former one 
may extend our methods by utilising gradient-based informa-
tion for the construction of efficient MCMC proposals. The 
issue of model selection can be further explored by methodol-
ogy based upon thermodynamic integration (Friel and Pettitt 
2008). Such an approach is appealing in cases where numeri-
cal integration might be infeasible due to the large number of 
parameters in the model, resulting in the evaluation of high-
dimensional integrals. These are important directions for fu-
ture research.
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