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Left atrial (LA) distension has been demonstrated to be linked with aortic stiffness in different patient populations. 
Three-dimensional (3D) speckle-tracking echocardiography (STE) seems to be a promising tool for volumetric and 
functional evaluation of the LA. The aim of the present study was to determine whether correlations exist between 
3DSTE-derived LA volume-based and strain parameters characterizing all phasic functions of the LA and 
echocardiographic aortic elastic properties in healthy subjects. The study included 19 healthy volunteers (mean age: 
37.9 ± 11.4 years, 11 men) who had undergone complete two-dimensional (2D) Doppler transthoracic 
echocardiography extended with the assessment of aortic elastic properties and 3DSTE. Results: None of LA 
volumes correlated with echocardiographic aortic elastic properties. Active atrial stroke volume correlated with 
aortic stiffness index (ASI, r = 0.45, p = 0.05). None of other volume-based functional properties significantly 
correlated with aortic stiffness parameters. Global peak 3D strain correlated with aortic strain (r = –0.46, p = 0.05). 
Global radial pre-atrial contraction strain correlated with ASI (r = –0.49, p = 0.04) and AS (r = –0.50, p = 0.04). 
Conclusions: Correlations exist between 3DSTE-derived LA functional parameters and eschocardiographic aortic 
elastic properties in healthy subjects. 
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dimensional 

There is a strong interplay between vascular and cardiac mechanics including arterial-
ventricular coupling. Left ventricular (LV) remodeling is a powerful determinant of left atrial 
(LA) size, therefore arterial stiffness could influence LA dimensions, as well (5, 6, 12). 
Arterial stiffness was found to be associated with LA size in different patient populations 
(12). Three-dimensional (3D) speckle-tracking echocardiography (STE) seems to be an 
optimal choice for non-invasive quantification of LV and LA volumes and deformation 
parameters by 3D volumetric and strain analysis (1, 4, 7, 8, 11, 13, 15, 17–19, 22). The aim 
of the present study was to determine whether correlations exist between 3DSTE-derived LA 
volume-based and strain parameters characterizing all phasic functions of the LA and 
echocardiographic aortic elastic properties in healthy subjects. 
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Materials and Methods

Patient population
The study included 19 healthy volunteers (mean age: 37.9 ± 11.4 years, 11 men) who had 
undergone complete two-dimensional (2D) Doppler transthoracic echocardiography extended 
with echocardiographic aortic elastic properties assessments. 3DSTE has also been performed 
following 2D echocardiography in all cases. None of the subjects had any known disease 
which could have affected results. All subjects have been included in the MAGYAR- Healthy 
Study (Motion Analysis of the heart and Great vessels bY three-dimensionAl speckle-
tRacking echocardiography in Healthy subjects). The study aimed to evaluate diagnostic and 
prognostic significance of 3DSTE-derived volumetric, strain, rotational, dyssynchrony, etc. 
parameters in healthy cases (‘magyar’ means ‘Hungarian’ in the Hungarian language). 
Informed consent was obtained from each patient and the study protocol conformed to the 
ethical guidelines of the 1975 Declaration of Helsinki, as reflected in a priori approval by the 
institution’s human research committee (23).

Two-dimensional echocardiography
Standard 2D echocardiographic imaging was performed with the patient in the left lateral 
decubitus position using a commercially available Toshiba ArtidaTM echocardiography 
equipment (Toshiba Medical Systems, Tokyo, Japan) in the tissue harmonic mode. 2D 
echocardiographic images were obtained using the PST-30SBP (1–5 MHz) phased-array 
transducer in parasternal and apical 4-chamber (AP4CH) and 2-chamber (AP2CH) views. 
Special care was taken to avoid foreshortening during measurements. LV dimensions, 
volumes, ejection fraction and LA dimension were measured, while presence of valvular 
regurgitations and stenoses were excluded by Doppler echocardiography in all cases (21). 
All echocardiographic measurements were averaged from 3 beats. 

Measurement of blood pressure values
Systolic (SBP) and diastolic blood pressure (DBP) values were estimated by a mercury cuff 
sphygmomanometer following 10 min of rest on the right arm in the supine position (16). The 
first Korotkoff sound for at least two consecutive heart beats was considered the SBP, while 
disappearance of fifth Korotkoff sound proved to be the DBP. Coffeinated drinks like coffee, 
tea, or other types of beverages, and cigarettes were not used or ingested from half and hour 
before the blood pressure measurements. Data were taken as the average of three consecutive 
measurements.

Evaluation of aortic stiffness parameters
Systolic and diastolic ascending aortic diameters (SD and DD, respectively) were recorded in 
M-mode echocardiography at a level of 3–4 cm above the aortic valve from a parasternal 
long-axis view as described in more details in the literature (16, 20) (Fig. 1). The SD and DD 
were considered at the time out of maximum aortic anterior motion and at the peak of QRS 
complex, respectively. All measurements were repeated 3 times, and average data have been 
given. Echocardiographic aortic elastic properties were calculated using the following 
equations: 

[1] Aortic strain [AS] = (SD – DD) / DD
[2] �Aortic stiffness index [ASI] = ln (SBP / DBP) / [(SD – DD) / DD], where ‘ln’ is the 

natural logarithm
[3] Aortic distensibility [AD] = 2 × (SD – DD) / [(SBP – DBP) × DD]
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Fig. 1. Measurements of systolic (SD) and diastolic (DD) diameters of the ascending aorta (A) are shown  
on the M-mode tracing obtained at a level 3 cm above the aortic valve (B) at parasternal long-axis view.

Abbreviations: LV = left ventricle, RV = right ventricle, LA = left atrium, Ao = ascending aorta

3DSTE-derived volumetric measurements
All patients underwent 3D echocardiographic acquisitions immediately after 2D 
echocardiographic study from the same apical window using the fully sampled PST-25SX 
matrix-array transducer (Toshiba Medical Systems, Tokyo, Japan) with 3DSTE capability 
(19). During acquisitions full volume mode was used in which six wedge-shaped subvolumes 
were acquired over six consecutive cardiac cycles during a single breath-hold. If there was an 
opportunity the sector width was decreased as much as possible to improve temporal and 
spatial image resolutions. Pyramid-shape 3D datasets were analysed using 3D Wall Motion 
Tracking software version 2.5 (Toshiba Medical Systems, Tokyo, Japan) by experienced 
investigators (AN, PD). AP4CH, AP2CH and 3 short-axis views at different levels of the LA 
(basal, midatrial, and superior LA regions) were automatically selected from the 3D pyramidal 
dataset (Fig. 2). In the AP4CH and AP2CH views, the LA endocardial boundaries were 
manually traced by setting multiple reference points starting at the mitral valve level going 
toward the LA apex. Regarding to the literature LA appendage and pulmonary veins were not 
considered as the part of the LA cavity during 3DSTE assessments (7, 18). The epicardial 
border was adjusted manually or by setting a default thickness for the myocardium. After 
detection of the LA borders at the end-diastolic reference frame 3D endocardial surface was 
automatically reconstructed and tracked in 3D throughout the cardiac cycle. The user could 
manually adjust endocardial and epicardial LA surface when it was necessary. The following 
volumes have been calculated (7, 8, 11, 15, 18): 

[1] �maximum LA volume (Vmax) defined as the largest LA volume at end-systole just 
before mitral valve opening, 

[2] �minimum LA volume (Vmin) defined as the smallest LA volume at end-diastole before 
mitral valve closure, 

[3] �LA volume before atrial contraction (VpreA) defined at the last frame before mitral 
valve reopening or at the time of P wave on ECG at early diastole.
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Fig. 2. Images from three-dimensional full-volume dataset showing left atrium in a patient  
with type 1 diabetes mellitus: (A) apical four-chamber view, (B) apical two-chamber view, (C3) parasternal  
short-axis view at basal, (C5) mid- and (C7) superior left atrial level. The semi-automated left atrial border 

definition and three-dimensional “wire” reconstruction of the left atrium based on three-dimensional speckle 
tracking echocardiographic analysis are also presented.

Abbreviations: LA = left atrium, LV = left ventricle 

Several LA volume-based parameters characterizing each phasis of LA function were 
calculated from these volumes as demonstrated in Table I. 

Table I. Calculation of left atrial stroke volumes and emptying fractions in different phasis  
of left atrial motion respecting cardiac cycle is presented

Functions Stroke volumes
(ml)

Emptying fractions
(%)

Reservoir (Systole) Total atrial SV =
Vmax–Vmin

Total atrial EF =
Total atrial SV/ Vmax

Conduit function (Diastole) Passive atrial SV =
Vmax–VpreA

Passive atrial EF =
Passive atrial SV/ Vmax

Active contraction (Diastole) Active atrial SV =
VpreA–Vmin

Active atrial EF =
Active atrial SV/VpreA

Abbreviations: EF = emptying fraction, SV = stroke volume, Vmax = maximum left atrial volume, Vmin = minimum 
left atrial volume, VpreA = left atrial volume before atrial contraction

3DSTE-derived strain measurements
From the same 3D echocardiographic dataset the following LA deformation parameters were 
calculated (4, 7, 13, 14) (Fig. 2): 

[1] Longitudinal strain (strain in the direction parallel to the endocardial contour),
[2] �Circumferential strain (fiber shortening along the circular perimeter, strain in the 

circumferential direction),
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[3] Radial strain (radially directed deformation, strain in the perpendicular direction), 
[4] �3D strain (strain in the wall thickening direction, combination of radial, circumferential 

and longitudinal strains), and 
[5] �Area strain (ratio of endocardial area change during the cardiac cycle, percentage 

change in area).
Global and mean segmental peak and pre-atrial contraction LA strain parameters were 

calculated in each patient.

Stastical analysis
Statistical analyses were performed using the MedCalc software (MedCalc, Mariakerke, 
Belgium). All continuous variables are expressed as mean ± standard deviation. Statistical 
significance was determined as a P value of less than 0.05 for all tests. To compare continuous 
variables independent samples Student’s t-test were used. Chi-square tests were used for 
comparison of categorical variables. 

Results

Two-dimensional echocardiographic data
Routine 2D echocardiographic LV and LA data and aortic elastic properties are summarized 
in Table II.

Table II. Two-dimensional echocardiographic data and aortic elastic properties of subjects

Data
Left ventricular diastolic diameter (mm) 48.0 ± 6.8
Left ventricular systolic diameter (mm) 30.1 ± 4.2
Left ventricular diastolic volume (ml) 100.7 ± 20.2
Left ventricular systolic volume (ml) 34.8 ± 11.0
Interventricular septum (mm) 9.5 ± 2.0
Left ventricular posterior wall (mm) 9.5 ± 2.3
Left ventricular ejection fraction (%) 65.7 ± 7.0
Systolic aortic diameter (mm) 30.3 ± 3.6
Diastolic aortic diameter (mm) 26.8 ± 3.8
Systolic minus diastolic aortic diameter (mm) 3.50 ± 2.28
Aortic strain 0.13 ± 0.09

Aortic distensibility (cm²/dynes 10–6) 4.58 ± 3.21

Aortic stiffness index 5.17 ± 3.45

Three-dimensional speckle-tracking echocardiographic data
3DSTE-derived LA volumes, volume-based functional properties and strain parameters are 
summarized in Tables III and IV.

Correlations (volumetric data vs. aortic elastic properties)
None of LA volumes correlated with echocardiographic aortic elastic properties. Active atrial 
stroke volume correlated with ASI (r = 0.45, p = 0.05), while passive atrial stroke volume 
tended to be correlated with ASI (r = –0.42, p = 0.09). None of other volume-based functional 
properties correlated with any of aortic stiffness parameters. 



202

Acta Physiologica Hungarica 102, 2015

Nemes A et al.202

Table III. Comparison of 3DSTE-derived volumetric and volume-based functional left atrial parameters  
in patients with type 1 diabetes mellitus and controls

Data
Calculated volumes (ml)

  Maximum left atrial volume (Vmax) 35.6 ± 6.4

  Minimum left atrial volume (Vmin) 16.3 ± 4.9

  Left atrial volume before atrial contraction (VpreA) 23.8 ± 6.7

Stroke volumes (ml)
  Total atrial stroke volume 19.3 ± 4.5
  Passive atrial stroke volume 11.8 ± 4.7
  Active stroke volume 7.5 ± 3.2
Emptying fractions (%)
  Total atrial emptying fraction 54.5 ± 10.2
  Passive atrial emptying fraction 33.5 ± 12.3
  Active atrial emptying fraction 31.4 ± 9.2

Table IV. Comparison of 3DSTE-derived global and mean segmental peak and pre-atrial contraction  
left atrial strain parameters in healthy subjects

Peak Pre-atrial contraction
Global strain parameters
   Radial strain (%) –21.8 ± 11.8 –8.5 ± 8.3
   Circumferential strain (%) 28.7 ± 10.0 10.7 ± 11.4
   Longitudinal strain (%) 24.2 ± 6.6 9.0 ± 9.4
   Area strain (%) 57.7 ± 17.6 16.5 ± 16.5
   3D strain (%) –13.9 ± 10.8 –5.3 ± 5.4
Mean segmental strain parameters
   Radial strain (%) –23.1 ± 9.0 –8.6 ± 5.5
   Circumferential strain (%) 36.6 ± 12.4 13.3 ± 10.0
   Longitudinal strain (%) 31.6 ± 6.7 9.2 ± 6.2
   Area strain (%) 74.5 ± 23.2 21.2 ± 15.1
   3D strain (%) –16.4 ± 6.8 –6.7 ± 5.0

Abbreviation: 3D = three-dimensional

Fig. 3. Schematic figure demonstrating volumetric  
and strain changes during all the three functions of the left atrium  

and their relation to the cardiac cyle
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Correlations (peak strains vs. aortic elastic properties)
Global peak 3D strain correlated with aortic strain (r = –0.46, p = 0.05). Only tendentious 
correlations could be demonstrated between global radial peak strain and ASI (r = –0.39,  
p = 0.08) and AS (r = –0.41, p = 0.07) and between mean longitudinal peak strain and AS  
(r = 0.41, p = 0.08). 

Correlations (pre-atrial contraction strains vs. aortic elastic properties)
Global radial pre-atrial contraction strain correlated with ASI (r = –0.49, p = 0.04) and AS  
(r = –0.50, p = 0.04) and tended to be correlated with AD (r = 0.43, p = 0.07).

Discussion

To the best of authors’ knowledge this is the first study in which correlations could be 
demonstrated between echocardiographic aortic elastic properties and 3DSTE-derived LA 
functional parameters in healthy subjects. 3DSTE is a new non-invasive clinical tool based 
on frame-by-frame tracking of speckle patterns created by interference of the ultrasound 
beam within the myocardial tissue in the 3D space (1, 22). 3DSTE has been found to be 
feasible for non-invasive quantification of LA volumes and functional properties allowing 
complex evaluation of LA phasic function during cardiac cycle which includes (2, 9) (Fig. 3): 

[1] Reservoir function (LA inflow during LA systole),
[2] �Conduit function (LA passive emptying during LV relaxation and diastasis, when 

blood transiting from the pulmonary veins to the LV during early diastole),
[3] �Active contraction or booster pump function (LA active emptying, when LA works 

like an active contractile chamber that augments LV filling in late diastole). 
There are several ways for functional assessment of LA including calculation of volume-

based and strain parameters by 3DSTE as demonstrated before (4, 7, 8, 11, 13, 15, 18). With 
these parameters detailed characterization of all three LA functions possible: 

[1] �Reservoir function by total atrial SV and total atrial EF together with global and 
mean segmental peak strain parameters,

[2] �Conduit function by passive atrial SV and passive atrial EF, and
[3] �Active contraction (booster pump) by active atrial SV and active atrial EF together 

with global and mean segmental pre-atrial contraction strain parameters.
It is known that due to large number of collagens and filaments, the normal aorta is 

working as an elastic artery. As a physiologic consequence of the reduction of aortic buffering 
(Windkessel) function, SBP increases and DBP decreases leading to increased LV afterload 
and impaired LV relaxation (3). In the present study most of functional LA parameters 
showing correlations with aortic elastic properties are characteristics of atrial booster pump 
function reflecting magnitude and timing of atrial contractility but is dependent on the degree 
of venous return, LV end-diastolic pressures and LV systolic reserve (9). Moreover, 
correlations were found between aortic elasticity and characteristics of LA reservoir and 
conduit functions, as well. Because of the close interplay between LA, LV remodeling and 
diastolic function, the relationship is not suprising. However, in the present study detailed 
analysis could be demonstrated between echocardiographic aortic elastic properties and all 
the LA phasic functions by 3DSTE-derived volume-based and strain parameters even in 
healthy subjects. 
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Limitation section
The following important limitations should be mentioned when interpreting results: 

[1] �Due to lower temporal and spatial image resolutions the 3DSTE-derived image 
quality is mostly worse than that of 2D echocardiography. 

[2] �Despite 3DSTE seems to be an applicable technique for non-invasive estimation of 
LA volumes and functional properties, more comparative and validation studies with 
other methodologies are warranted (11, 15, 18).

[3] �At this moment 3DSTE-derived normal strain reference values has not been described 
and the results of the present study were somewhat different as compared to that of 
previous findings. It could be explained by methodological differences, but the effect 
of the age and other factors could also not be excluded (4, 7, 13). 

[4] LA appendage and pulmonary veins were excluded from evaluations. 
[5] �It is known that LA function could be deteriorated in different arrhytmologic 

disorders like in atrial fibrillation. However, all of the studied healthy subjects were 
in sinus rhythm.

[6] �Theoretically higher grade of MR could affect LA function. However, none of the 
healthy subjects had ≥ grade 1 MR. 

[7] �Quantification of LV strains and rotational parameters by 3DSTE was not aimed in 
the present study.

[8] �The blood pressure in the brachial artery and ascending aorta may be different which 
could theoretically affect our results. However, the presented non-invasive imaging 
technique has been validated against invasive methods in the evaluation of aortic 
stiffness parameters (3, 20). 

[9] 3DSTE was performed in only a small population of healthy subjects. 

Conclusions

Correlations exist between 3DSTE-derived functional LA parameters and echocardiographic 
aortic elastic properties in healthy subjects. 
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