A CHARACTERIZATION OF CENTRAL ELEMENTS IN C^* -ALGEBRAS

LAJOS MOLNÁR

ABSTRACT. In the paper [8] Wu proved that if the exponential function on the set of all positive elements of a C^* -algebra is monotone in the usual partial order, then the algebra in question is necessary commutative. In this note we present a local version of that result and obtain a characterization of central elements in C^* -algebras in terms of the order.

1. Introduction

Let \mathcal{A} be a (unital) C^* -algebra and denote by \mathcal{A}_s the space of all of its self-adjoint elements. An element $x \in \mathcal{A}_s$ is called positive, $x \geq 0$, if its spectrum $\sigma(x)$ lies in the non-negative part of the real line. The set of all positive elements of \mathcal{A} is denoted by \mathcal{A}_+ . The usual partial order \leq on \mathcal{A}_s is then defined in the following way: for any $x, y \in \mathcal{A}_s$ we write $x \leq y$ iff $y - x \in \mathcal{A}_+$.

There are some classical results in the literature which characterize the commutativity of C^* -algebras in terms of certain properties of the order. For example, a result of Sherman [7] says that a C^* -algebra \mathcal{A} is commutative if and only if \mathcal{A}_s is a lattice (cf. [1]). Another famous result is due to Ogasawara [4] telling that squaring is monotone on \mathcal{A}_+ if and only if \mathcal{A} is commutative. The slightly more general result [5, 1.3.9. Proposition] shows that if the power function $t \mapsto t^{\beta}$ with $\beta > 1$ is monotone with respect to the usual order on \mathcal{A}_+ (meaning that $x, y \in \mathcal{A}_+, x \leq y$ implies $x^{\beta} \leq y^{\beta}$), then the algebra \mathcal{A} is necessarily commutative. In [8] Wu presented a similar statement saying that the same conclusion holds if the power function is replaced by the exponential function.

In this note we present a local version of Wu's result. Namely, we show that the "points of monotonicity" of the exponential function on \mathcal{A}_s necessarily belong to the center of \mathcal{A} . Having proven that we get Wu's result as an apparent consequence.

2. The result

Our result read as follows.

Theorem 1. Let \mathcal{A} be a C^* -algebra and $x \in \mathcal{A}_s$. The following assertions are equivalent:

- (i) we have $e^x \leq e^y$ for every $y \in A_s$ with $x \leq y$;
- (ii) $\int_0^1 e^{tx} z e^{(1-t)x} dt \in \mathcal{A}_+$ holds for all $z \in \mathcal{A}_+$;
- (iii) x is a central element of A.

For the proof we need the following auxiliary lemma.

Lemma 2. Let H be a complex Hilbert space and denote by B(H) the algebra of all bounded linear operators on H. Let $T \in B(H)$ be self-adjoint. Assume that $0 = \min \sigma(T)$ and $r = \max \sigma(T)$. For every $\epsilon > 0$ we can choose orthogonal unit vectors $\xi, \eta \in H$ such that for any

²⁰¹⁰ Mathematics Subject Classification. Primary: 46L05.

Key words and phrases. C^* -algebra, central element, order, exponential function.

The author was supported by the "Lendület" Program (LP2012-46/2012) of the Hungarian Academy of Sciences and by the Hungarian Scientific Research Fund (OTKA) Reg. No. K115383.

 $A \in B(H)$ with the properties $||A|| \leq \sqrt{2}$, $A\xi = A\eta$, $||A\xi|| = ||A\eta|| = 1$, the positivity of the operator

$$\int_0^1 \exp(tT)A^*A \exp((1-t)T)dt$$

implies the inequality

$$\left(\frac{e^r - 1}{r}\right)^2 \le (1 + 2\epsilon)(e^r + 2\epsilon).$$

Proof. It is apparent that for any pair $f, g : [0,1] \to B(H)$ of continuous functions, the transformation

$$X \mapsto \int_0^1 f(t) X g(t) dt$$

is a bounded linear map on B(H) and its norm is majorized by the product of the supremum norms of f and g. It follows that the above integral depends continuously on the functions fand g, meaning that if $f_n, g_n : [0,1] \to B(H)$ are sequences of continuous functions uniformly converging to f and g, respectively, then the corresponding sequence

$$X \mapsto \int_0^1 f_n(t) X g_n(t) dt$$

of bounded linear maps on B(H) converges to the map

$$X \mapsto \int_0^1 f(t) X g(t) dt$$

in the operator norm.

It is easy to see that if (T_k) is a sequence in B(H) which converges in norm to T, then the sequence $t \mapsto \exp(tT_k)$ of operator valued functions converges to $t \mapsto \exp(tT)$ uniformly in $t \in [0,1]$. It follows that given $T \in B(H)$, for every real number $\epsilon > 0$ we have a real number $\delta > 0$ such that

(1)
$$\sup_{\|X\| < 1} \left\| \int_0^1 \exp(tT) X \exp((1-t)T) dt - \int_0^1 \exp(tT') X \exp((1-t)T') dt \right\| \le \epsilon$$

holds whenever $T' \in B(H)$ with $||T - T'|| \leq \delta$. Obviously, we may assume that $2\delta < r$. Consider a continuous function $h: [0,r] \to [0,r]$ which is zero on the interval $[0,\delta]$, it equals r on $[r-\delta,r]$ and its distance to the identity function on [0,r] in the supremum norm is not greater than δ . Then we have $||T - h(T)|| \leq \delta$ and hence we obtain from (1) that

(2)
$$\left| \int_0^1 \langle \exp(tT) A^* A \exp((1-t)T) \zeta, \zeta \rangle dt - \int_0^1 \langle \exp(th(T)) A^* A \exp((1-t)h(T)) \zeta, \zeta \rangle dt \right| \leq \epsilon \|A\|^2 \|\zeta\|^2$$

holds for every operator $A \in B(H)$ and vector $\zeta \in H$. Observe that, by elementary change of variables, for any self-adjoint operator $S \in B(H)$ we obtain that

$$\int_0^1 \exp(tS)A^*A \exp((1-t)S)dt = \int_0^1 \exp((1-t)S)A^*A \exp(tS)dt, \quad A \in B(H)$$

implying that the values of these integrals are self-adjoint operators. Therefore, if

(3)
$$\int_0^1 \exp(tT)A^*A \exp((1-t)T)dt \ge 0,$$

then it follows from (2) that

$$0 \le \int_0^1 \langle \exp(tT)A^*A \exp((1-t)T)\zeta, \zeta \rangle dt$$

$$\le \int_0^1 \langle \exp(th(T))A^*A \exp((1-t)h(T))\zeta, \zeta \rangle dt + \epsilon ||A||^2 ||\zeta||^2$$

$$= \int_0^1 \langle A \exp((1-t)h(T))\zeta, A \exp(th(T))\zeta \rangle dt + \epsilon ||A||^2 ||\zeta||^2.$$

Denote by E the spectral measure of T on the Borel subsets of [0, r]. Pick a unit vector ξ from the range of $E([0, \delta])$ and another one η from the range of $E([r - \delta, r])$. Clearly, we have that ξ is orthogonal to η . Let s be an arbitrary real number and set $\zeta = s\xi + \eta$. We compute

$$A \exp((1-t)h(T))\zeta = A(s\xi + e^{(1-t)r}\eta), \quad A \exp(th(T))\zeta = A(s\xi + e^{tr}\eta)$$

and hence, for any $A \in B(H)$ satisfying (3), $||A|| \leq \sqrt{2}$, $A\xi = A\eta$, $||A\xi|| = ||A\eta|| = 1$ we obtain

$$0 \le \int_0^1 (s + e^{(1-t)r})(s + e^{tr})dt + \epsilon 2(s^2 + 1)$$

for every real number s. This implies

$$0 \le s^2 + e^r + 2s \frac{e^r - 1}{r} + \epsilon 2(s^2 + 1)$$

for every real number s. Examining the discriminant of the corresponding quadratic equation, we obtain

$$4\left(\frac{e^{r}-1}{r}\right)^{2}-4(1+2\epsilon)(e^{r}+2\epsilon)\leq 0$$

which gives us the statement of the lemma.

After this we are now in a position to prove the theorem.

Proof of Theorem 1. According to the bottom line on p. 148 in [6], the (Fréchet-) derivative of the exponential function $T \mapsto \exp T$ on B(H) at the point T is the linear map

$$X \mapsto \int_0^1 \exp(tT)X \exp((1-t)T)dt$$
.

This implies that the function $x \mapsto e^x$ on the C^* -algebra \mathcal{A} is differentiable at x and its derivative is the linear map

$$z \mapsto \int_0^1 \exp(tx)z \exp((1-t)x)dt.$$

Now, assuming (i) we clearly obtain (ii).

Suppose (ii) holds. Select an irreducible representation π of \mathcal{A} on a Hilbert space H. We apparently obtain that

$$\int_0^1 \exp(t\pi(x))\pi(z)^*\pi(z) \exp((1-t)\pi(x))dt \ge 0$$

holds for all $z \in \mathcal{A}$. Since $\pi(1) = I$, adding a real constant times the identity to x if necessary, we may assume that the operator $\pi(x)$ is positive, 0 belongs to its spectrum whose largest

element is r. By our lemma, for every $\epsilon > 0$ we can choose orthogonal unit vectors $\xi, \eta \in H$ such that for any $A \in B(H)$ with the properties $||A|| \leq \sqrt{2}$, $A\xi = A\eta$, $||A\xi|| = ||A\eta|| = 1$, the positivity of the operator

$$\int_0^1 \exp(t\pi(x)) A^* A \exp((1-t)\pi(x)) dt$$

implies

$$\left(\frac{e^r - 1}{r}\right)^2 \le (1 + 2\epsilon)(e^r + 2\epsilon).$$

Define $A = \nu \otimes (\xi + \eta)$ where $\nu \in H$ is any unit vector. Clearly we have $||A|| = \sqrt{2}$, $A\xi = A\eta$, $||A\xi|| = ||A\eta|| = 1$. Since π is an irreducible representation, by a sharper version of Kadison transitivity theorem (see [2], Exercise 5.7.41. (ii) on p. 379), we have that there is an element $z \in \mathcal{A}$ such that $||\pi(z)|| \leq \sqrt{2}$ and $\pi(z)\xi = A\xi, \pi(z)\eta = A\eta$. It then follows that

$$\left(\frac{e^r - 1}{r}\right)^2 \le (1 + 2\epsilon)(e^r + 2\epsilon).$$

But here $\epsilon > 0$ is arbitrary, consequently, we have

$$\left(\frac{e^r - 1}{r}\right)^2 \le e^r.$$

It is easy to check that for a non-negative real number r this holds only if r=0. Therefore, we have $\pi(x)=0$. Since we may have added a constant multiple of the identity to x, this means for the original element x that $\pi(x)=\lambda I$ holds for some real number λ . We know that this is true for all irreducible representations π of \mathcal{A} and claim that x is necessarily central. Indeed, if $a \in \mathcal{A}$ is an element and $xa - ax \neq 0$, then by [3, 10.2.4. Corollary] we have an irreducible representation π such that $0 \neq \pi(xa - ax) = \pi(x)\pi(a) - \pi(a)\pi(x)$, a clear contradiction.

Finally, the implication (iii) \Rightarrow (i) is apparent and hence the proof is complete.

As an immediate corollary we obtain the following statement which is formally still stronger than Wu's original theorem.

Corollary 3. Let \mathcal{A} be a C^* -algebra such that the exponential function is monotone on a non-generate interval I of the real line meaning that I is of positive length and for any $x, y \in \mathcal{A}_s$ with $\sigma(x), \sigma(y) \subset I$ and $x \leq y$, we have $e^x \leq e^y$. Then \mathcal{A} is commutative.

Proof. Let I' be a non-generate compact interval in the interior of I. Select $x \in \mathcal{A}_s$ such that $\sigma(x) \subset I'$. Apparently, for any element $z \in \mathcal{A}_+$ we have $\sigma(x+tz) \subset I$ holds for every small enough real number t > 0. It follows that the directional derivative of the exponential function on \mathcal{A}_s at x along z belongs to \mathcal{A}_+ . By the implication (ii) \Rightarrow (iii) in the theorem we have x is central in \mathcal{A} . We then easily obtain the desired conclusion.

References

- 1. M. Fukamiya, Y. Misonou and Z. Takeda, On order and commutativity of B^* -algebras, Tôhoku Math. J. 6 (1954), 89–93.
- R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol I., Academic Press, 1983.
- 3. R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol II., Academic Press, 1986.
- 4. T. Ogasawara, A theorem on operator algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1955), 307–309.

- 5. G.K. Pedersen, C^* -Algebras and Their Automorphism Groups, London Mathematical Society Monographs, 14, Academic Press, Inc., London-New York, 1979.
- 6. G.K. Pedersen, Operator differentiable functions, Publ. Res. Inst. Math. Sci. 36 (2000), 139–157.
- 7. S. Sherman, Order in operator algebras, Amer. J. Math. 73 (1951), 227–232.
- 8. W. Wu, An order characterization of commutativity for C^* -algebras, Proc. Amer. Math. Soc. **129** (2001), 983–987.

Department of Analysis, Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary and MTA-DE "Lendület" Functional Analysis Research Group, Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary E-mail address: molnarl@math.u-szeged.hu

URL: http://www.math.u-szeged.hu/~molnarl/