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Abstract

Survivable routing with instantaneous recovery gained much attention in the
last decade, as in optical backbone networks even the shortest disruption of
a connection may cause tremendous loss of data. Recently, strict delay
requirements emerges with the growing volume of multimedia and video
streaming applications, which have to be ensured both before and after a
failure. Diversity coding provides a nice trade-off between the simplicity of
dedicated protection and bandwidth-efficiency of network coding to ensure
instantaneous recovery for the connections. Hence, in this paper we thor-
oughly investigate the optimal structure of diversity coding-based survivable
routing, which has a well-defined acyclic structure of subsequent paths and
disjoint path-pairs between the communication end-points. We define the
delay of these directed acyclic graphs, and investigate the effect of Quality-
of-Service and differential delay bounds on the solution cost. Complexity
analysis and integer linear programs are provided to solve these delay aware
survivable routing problems. We discuss their approximability and provide
some heuristic algorithms, too. Thorough experiments are conducted to
demonstrate the benefits of diversity coding on randomly generated and
real-world optical topologies.

Keywords: survivable routing, delay-aware routing, QoS routing, diversity
coding, instantaneous recovery

1. Introduction

With the proliferation of multi-media and streaming applications, the
end-to-end delay characteristics of the connections are getting more and
more into the spotlight. Besides these new applications (e.g., telesurgery,
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stock market, VoIP, etc.) are highly delay sensitive, they require high re-
silience from the underlying network. Satisfying both constraints at the
same time in a bandwidth-efficient way is unquestionably one of the most
challenging tasks of service providers in transport networks.

Survivable routing [1] approaches – e.g., dedicated protection [2] methods
– ensure high resilience through sending the connection’s data on disjoint
(end-to-end) paths, hence, they survive the failure of an arbitrary link, which
is the most common fault in transport networks [3]. Although dedicated pro-
tection approaches use excessive amount of network resources (e.g., band-
width), they satisfy the high resilience requirement of these new applications
by providing instantaneous recovery1. However, while maintaining instan-
taneous recovery, network resources can be used in an efficient manner only
if further techniques are applied above routing, e.g., network coding [5, 6].

Optimal bandwidth efficiency of dedicated protection approaches with
network coding was investigated [4], and it was shown that in order to
reach that the user data might be split into arbitrary many parts. Al-
though suitable for a theoretical lower bound, from a practical point of view
(e.g., network equipment and management complexity) this can not be im-
plemented. Hence, survivable routing with diversity coding (SRDC) was
introduced in [7] where user data is divided into at most two parts in order
to ensure instantaneous recovery, while approaching the theoretical lower
bound in bandwidth efficiency. In [8] it has been proven that every mini-
mum cost SRDC solution can be decomposed into three end-to-end directed
acyclic graphs (DAGs), forwarding the two data parts (A and B) along some
redundancy data (A⊕B, i.e., the eXclusive OR), respectively. Thus, SRDC
applies coding only at the end-nodes of the connection while avoids any
complicated hardware deployment in the core network [9].

Combining the results of [7, 8], the bandwidth-efficient survivable rout-
ing problem with diversity coding turns into finding three appropriate DAGs
between the communication endpoints s and t. With SRDC instantaneous
recovery is ensured as the data transmitted on the DAGs is unchanged upon
an arbitrary failure occurs. This high resilience of SRDC was demonstrated
in [10] through a video streaming application scenario, but it was also noted
that the end-to-end delay and the delay difference should be considered in
the routing problem [11]. Although several works are dealing with Quality-
of-Service (QoS) routing [12] and differential delay (DD) aware [13] surviv-
able routing in optical networks, all of the methods are designed for disjoint
paths only. In this paper we generalize these results for diversity coding-
based survivable routing using DAGs. Hence, we define the before- and
after-failure delay of an end-to-end DAG, and investigate the effect of QoS

1Note that, as no flow rerouting or packet retransmission is required upon failure, the
after-failure signaling is completely eliminated from their recovery process [4].
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routing and DD-aware routing delay constraints on these optimal survivable
routing structures ensuring instantaneous recovery.

The rest of the paper is organized as follows. In Section 2 the related
work is presented focusing on previous survivable QoS routing and differen-
tial delay aware routing results. In Section 3 the preliminaries and problem
formulation for survivable routing is discussed in details, and the delay of a
DAG is defined. We show a graph transformation to an equivalent surviv-
able routing problem, too, which traces back our problem to finding disjoint
paths with delay constraints in a special graph. Section 4 introduces our
complexity analysis, integer linear program and approximability result for
the survivable QoS routing problem, while the same is presented together
with a heuristic solution for the differential delay aware routing problem in
Section 5. Experimental results are shown in Section 6, and the paper is
concluded in Section 7.

2. Related work

2.1. QoS Routing

Finding a minimum cost (or shortest) path while minimizing a single
metric (e.g., cost or length) can be solved in polynomial time with Dijkstra’s
algorithm. On the other hand, satisfying an additional constraint (e.g., delay
or jitter) along the path while minimizing its cost is a fundamental problem
and arises in several application scenarios, referred to as Quality-of-Service
(QoS) routing [14]. Note that, this problem is already NP-hard [15], called
the shortest weight-constrained path problem (or restricted shortest path
problem), where a minimum cost path is required between the source s and
destination t, such that the delay of the path is lower than a pre-defined
bound D. An exact solution can be found by pseudo-polynomial algorithms,
thus, if the input parameters are bounded it can be solved in polynomial
time through a standard dynamic programming approach [16]. Furthermore,
ε-optimal fully polynomial approximation schemes (FPTAS) exists for the
problem both for acyclic [17] and general graphs [18].

The problem of finding two link-disjoint paths while minimizing the to-
tal cost of the paths is solvable in polynomial-time, e.g., with the Suurballe-
Tarjan [19] algorithm. In order to extend this work to QoS routing, in [12]
the 2-Restricted Link Disjoint Paths (2DP) problem was introduced where
the the total cost of the paths was minimized while both paths have to obey
a specific delay bound D. Note that, even if we assume that each link has
zero cost, it is NP-hard to find a solution that does not violate the delay
constraint D of at least one of the paths [12] (following from the fact that
finding a disjoint path-pair while minimizing the delay of the longer path
is NP-hard [20]). Furthermore, no polynomial-time algorithm exists which
can approximate the delay within a factor of 1 ≤ α < 2 [12]. However, a
2-approximation on the delay-bound can be provided with minimizing the
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total delay of the disjoint path-pair, e.g., with the Suurballe-Tarjan [19]
algorithm. Thus, in [12] four bifactor approximation algorithms were pre-
sented, i.e., both the total cost and the total delay of the path-pair can be
bounded with a constant factor. The first approximation algorithm 2DP-1
uses standard flow techniques, i.e., employs the path augmenting approach
to find the restricted shortest paths [18] in the residual network with a delay
bound of D and 2D for the first and second path, respectively. Thus, the ap-
proximation ratio is 1.5 on the delay, and it is a slightly larger factor on the
cost. The subsequent approximation algorithms reduce the computational
complexity and the delay violation at the expense of higher total cost.

The problem of finding a set of k link-disjoint paths from s to t, such that
the total cost of these paths is a minimum and that the delay for each path
is not greater than a specified bound D was introduced in [21]. Of course,
this problem contains the problem of 2DP [12], thus, it is also NP-hard.
The approximation ratios of [12] were generalized for k paths and improved
as well in [22]. Besides obeying a delay bound for each individual path,
in [21] a more general network programming based approach was presented
for finding k constrained shortest link-disjoint paths, such that the overall
delay of these paths should be lower than a specified bound (kD). Note that,
the approximation algorithms in [12] also relax the problem of 2DP with
delay constraint D on both paths to a minimum constrained flow problem
with a total delay constraint of 2D on the solution.

2.2. Differential Delay Aware Routing

Although the delays of individual paths in QoS routing is an important
question, from a practical point of view the difference between the path de-
lays could be a more serious issue in some application environments. For
example, with the deployment of next-generation SONET/SDH technology
virtual concatenation (VC) enabled service providers to split the traffic of
a single circuit into multiple finer granularity parts, and route these parts
along multiple paths. However, besides of the several advantages the ap-
plication of VC provides, it introduces differential delay (DD) among the
diversely routed paths as well, which boiled down to the issue of increased
buffer size at the destination node for DD compensation. In order to avoid
service degradation, differential delay of the paths should be considered in
the routing problem, as in optical networks the maximal DD compensation
is about 125 ms with off-chip SDRAM technology [13].

The authors in [23] introduced the Two-Sided Constrained Path (TSCP)
problem, where the task is to decide whether a new VC can be added to
a VC group. Formulating with the DD constraint, the task is finding a
path with overall delay of D between a given minimum and a maximum
bound, i.e., Dmin < D < Dmax. It was proved that the TSCP problem is
NP-hard [23]. In [24], the DD is defined as the difference between the delay
of the highest and smallest delay paths. In their Differential Delay Routing
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(DDR) problem the task is to find a given number of paths, while their DD
is lower than a pre-defined delay bound. It was shown that minimizing the
delay difference of paths in DDR is not only NP-hard but provably hard to
approximate within a constant factor. In [25] the same authors introduce the
cumulative differential delay, which is the sum of the differences of delays
of all the paths of a solution compared to the highest delay path. Also
heuristic approaches were introduced like the Sliding-Window Algorithm
and the Cost-Based Algorithm, which are based on finding k-shortest paths.

In the previous works the objective function was to minimize the differ-
ential delay, while neither link costs nor the disjointness of the paths were
considered in the optimization. The study in [13] extended DD aware multi-
path routing with survivability. Contrary to the differential delay problems
above, their goal is to minimize the total cost of the paths while the dis-
jointness of these paths is required in order to ensure single link failure
resilience. The mathematical formulation of the survivable multi-path DD
constrained routing problem has been presented in [13], where a DD bound
have to be satisfied between each pair of the k paths. The NP-completeness
of this problem follows from the DDR problem [24]. Thus, two heuristic
approaches were introduced based on k-shortest link-disjoint paths, both of
them following the Shared Protection of the Largest Traversed link (SPLIT)
approach.

3. Problem Formulation

In the Delay Aware Routing with Coding (DARC) problem [11] the net-
work is represented by a directed graph G = (V,E, k, c, d) with node set V ,
arc set E, and three additional attributes for each arc e ∈ E:

• the capacity k(e) ∈ N, i.e., the number of bandwidth units available
for data transmission;

• a non-negative cost function c(e) ∈ R+, which is defined as the cost of
using one unit of bandwidth along arc e;

• and the delay d(e) ∈ R+, which corresponds to the time transmitting
data between the end nodes of the arc.

Note that, arc defines the direction of the communication between two
adjacent nodes. We will use the more general term “link” if the direction
of the arc or (anti-)parallel arcs between two nodes is not relevant. We
consider a dynamic routing scenario, where traffic demands arrive one after
the other, without any knowledge of further incoming requests, i.e., each
request is routed independently. Thus, as part of the input of the delay
aware survivable routing problem a single connection request C = (s, t, b,D)
is given, which consists of the source node s ∈ V , destination node t ∈ V ,
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Figure 1: A survivable SRDC solution for request C = (s, t, 2,−) with the corresponding
routing DAGs EA, EB and EA⊕B . Arcs with f(e) = 2 are duplicated. Arc costs are unit.
The arc delays are d(e) = 1, otherwise written next to the arc.

the number of bandwidth units b requested for data transmission, and a
maximal delay bound D which have to be satisfied by the routing of the
request to ensure a given QoS or differential delay for the connection.

3.1. Preliminaries

In this section we recall the main findings of SRDC, which gives the
starting point of our work. Throughout this paper, we build on the following
definition of survivable routing [7]:

Definition 1. We say that R = (V R, ER, f) is a survivable routing of
a connection C = (s, t, b,D) in G with flow values f (where V R ⊆ V ,
ER ⊆ E), if there is an s − t flow of value F ≥ b in R, even if we delete
any single arc of R.

In SRDC, our objective is to minimize the total bandwidth cost of the
survivable routing solution for connection request2 C = (s, t, b = 2,−),
formally:

min
R

∑
e∈ER

c(e) · f(e). (1)

A minimum cost SRDC solution for the input C = (s, t, 2,−) with
respect to Eq. (1) has ∀e ∈ ER : f(e) ≤ 2 (consequence of [8, Theo-
rem 1]). Furthermore, ER always can be decomposed into three arc sets
EA, EB, EA⊕B, respectively transmitting data parts A and B and A ⊕ B,
called routing DAGs. Thus, if we delete an arbitrary arc e ∈ ER from an
SRDC solution, there remains at least two routing DAGs in which a path
connects s to t (satisfying [8, Theorem 2]) in order to guarantee instanta-
neous recovery (i.e., no flow rerouting is required on the intact arcs).

2Remember that in SRDC we divide user data into two equal-sized parts A and B –
e.g., packets with odd and even sequence number – represented by b = 2, while no delay
bounds are given.
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An example is presented in Fig. 1. If an arc with f(e) = 1 fails, e.g.,
(s, v1), it disrupts only a single routing DAG (EB) and the above claim
trivially holds. Further note, that the failure of an arc with f(e) = 2, e.g.,
(v1, v3) affects two routing DAGs, but in different ways: while routing DAG
EB is disrupted, only the end-to-end delay increases for the other routing
DAG EA⊕B. This is because EB is simple path s→ v1 → v3 → v5 → v7 → t
in Fig. 1, and when arc (v1, v3) fails, the path is disrupted. On the other
hand, EA⊕B is not a simple path, it contains a segment between v0 and v9
which is a link-disjoint path-pair. In the operational state (i.e., no failure
occurs) the data is transmitted along the lower delay path between v0 and
v9, that is v0 → v1 → v3 → v6 → v8 → v9 with total delay of 5 units. If
(v1, v3) fails this path can not be used anymore, but the data flow of EA⊕B
still reaches destination t on the other path of the segment between v0 and
v9, that is v0 → v2 → v4 → v5 → v7 → v9 with total delay of 7 units. Thus,
s−t connectivity is still ensured without any reconfiguration of the network.
Note that, in this example the end-to-end delay between s and t increased
from 7 to 9 units on routing DAG EA⊕B in Fig. 1 upon the failure of arc
(v1, v3).

It has been proven in [7] that the structure shown in Figure 1 is general
for each minimum cost SRDC solution, i.e., each routing DAG Ej : j ∈
{A,B,A⊕B} consists of a series of paths (denoted as PEj ) and disjoint path-
pairs, called islands (referred to as IEj ). Furthermore, each island is part
of at most one routing DAG. In Figure 1 routing DAGs EA and EB consist
of a single PEA

= PEB
= {s → t} path. On the other hand, routing DAG

EA⊕B consist of PEA⊕B
= {s→ v0, v9 → t} paths, and IEA⊕B

= {v0 → v9}
disjoint path-pair (island with splitter node v0 and merger node v9). As
the same routing structure must be satisfied by DARC, we assume that the
routing DAGs in a DARC solution can be decomposed into subsequent paths
and islands, too. After defining the delay of a routing DAG in Section 3.2,
we introduce a graph transformation in Section 3.3 which traces back the
survivable routing problem to finding minimal cost routing DAGs composed
of paths and islands obeying specific delay bounds.

3.2. Defining the Delay of a Routing DAG

Note that, the implementation of the merger node (i.e., which selects
among the two identical copies of the same data part arriving on the two
paths of an island, e.g., v9 of EA⊕B in Fig. 1) is crucial to ensure instanta-
neous recovery [4]. In order to eliminate signaling from the recovery process,
a link failure should be oblivious to the merger node, i.e., the merger has
to switch from the failed path autonomously to the operating path. The
merger node implementation in [4] solves this issue by tracking of the high-
est sequence number of the forwarded packets (SEQFW ). A packet p is only
forwarded on the merger’s outgoing arc if its sequence number SEQp is larger
than SEQFW , and it sets SEQFW = SEQp upon forwarding. As a result,
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a merger forwards the packets from the “faster” path from the two disjoint
paths of an island (Imin) in a failure-less state, and discards the duplicates
that arrive on the “slower” path of the island (Imax). On the other hand, if
a failure occurs on the faster path (as we have seen in Fig. 1 after the failure
of (v1, v3)), the merger will forward the packets arriving on the slower path
on its outgoing arc automatically. Note that, at switching some jitter could
occur on the routing DAG owing to the delay difference between the last
packet arrived on Imin and the first forwarded packet from Imax.

In order to capture the before- and after-failure delay characteristics of
the routing DAGs, we introduce two delay values for each island I: dImin =∑
e∈Imin

d(e) corresponding to the delay of the island in the failure-less state

(i.e., the faster path); and the delay difference between the two disjoint paths
∆I =

∑
e∈Imax

d(e) −
∑

e∈Imin

d(e) corresponding to the delay increase between

the splitter and merger node of the island upon a failure occurs on the faster
path. Thus, the end-to-end delay of a routing DAG can be modeled as

δEj =
∑

P∈PEj

∑
e∈P

d(e) +
∑
I∈IEj

dImin (2)

in the failure-less state, while it increases to

∆Ej = δEj + max
I∈IEj

∆I (3)

in worst case upon a failure along the island with the largest delay difference
between its two paths3.

In the example in Figure 1, δEA⊕B
= 7 because the delay of s → v0 →

v1 → v3 → v6 → v8 → v9 → t is 7 units. For EA⊕B max ∆I = 2, because
the delay difference between the two disjoint paths v0 → v1 → v3 → v6 →
v8 → v9 and v0 → v2 → v4 → v5 → v7 → v9 of the single island in IEA⊕B

is
2 units. Of course this means ∆EA⊕B

= 9.
Further note that, besides instantaneous recovery diversity coding pro-

vides additional benefits to the connections in the failure-less state as well.
On one hand, in multi-path routing (or shared path protection approaches [13,
6]) we have to wait for the highest delay path to reconstruct user data. On
the other hand, the additional redundancy provided by diversity coding en-
sures that the two lower delay paths determine the delay of the connection
(as we can reconstruct user data from arbitrary two of the three routing
DAGs with low additional coding complexity owing to the applied simple
XOR codes [4]). This may lead to lower overall end-to-end delay for the
applications in the failure-less state, and also results lower jitter and differ-
ential delay increase caused by protection switching.

3Note that, ∆Ej − δEj gives also the largest jitter we might expect along the routing
DAG caused by protection switching.
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3.3. An Equivalent Survivable Routing Problem

Using the polynomial-time graph transformation proposed in [7] the min-
imum cost survivable routing problem of SRDC was traced back to finding
three link-disjoint s− t paths with minimum total cost in an auxiliary graph
G∗. In this section we extend the transformation with the delays of the rout-
ing DAGs, which enables the incorporation of additional delay constraints
for survivable QoS routing and DD aware routing.

The input of DARC is the graph G = (V,E, k, c, d) with delay values
d(e) for every arc e. An auxiliary (multi-)graph G∗ = (V,E∗, c∗, dmin,∆) is
created, where:

• node set V in G∗ is the same as in G, while

• arc set E∗ contains the original arcs of G. Additional virtual arcs
e(u,v) are added between every pair of distinct node-pairs for which a
link-disjoint path-pair exist, i.e., representing a potential island I with
splitter node u and merger node v.

• The cost of c∗(e(u,v)) is set to the cost of a minimum cost link-disjoint
path-pair between nodes u and v in G (calculated with Suurballe’s
algorithm [26]). The original arcs of G have the same cost (∀e ∈ E :
c∗(e) = c(e)).

• In addition to the previous transformation for SRDC, in DARC we
have to capture the routing DAG delays in Eq (2)-(3). Thus, two
variables dImin and ∆I are introduced for each virtual arc (island)
I = e(u,v) (i.e., the delay of Imin and the delay difference between Imin
and Imax). For original arcs e ∈ E we define demin = d(e), and ∆e = 0.

For G = (V,E) in Fig. 1 ten virtual arcs should be added during the
transformation. For example, a virtual arc e = (v0, v9) represents potential
island with splitter v0 and merger v9, and it has c∗(e) = 10, demin = 5,
∆e = 2. Note that, if the original graph G was 2-link-connected, then G∗

contains the original arcs and a full mesh of virtual arcs.
An optimal survivable routing in G∗ – that is, three link-disjoint paths

with minimum total cost – either with or without obeying delay bounds
can be easily transformed back to the routing DAGs in G. The arcs of the
routing DAGs are the arcs of the three paths in G∗, with the difference
that the virtual arcs e(u,v) in G∗ are replaced with the original arcs of the
corresponding disjoint path-pairs (islands). As in a minimum cost survivable
routing solution ∀e ∈ ER : f(e) ≤ 2 (consequence of [8, Theorem 1]) [7],
the replacement of virtual arcs with original arcs can always be done if
∀e ∈ E : k(e) = 2 (or greater). We argue that this assumption is reasonable,
as the bandwidth of the connection request itself is b = 2 units (or can
be scaled accordingly). In other words we only assume that each arc of
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the network is capable of carrying the whole data of the connection request
(can be removed from the input graph G otherwise). Thus, without loss of
generality, in the rest of the paper we assume that ∀e ∈ E : k(e) ≥ 2 at the
arrival of each connection request.

Finding link-disjoint paths with minimum total cost in G∗, thus, the
SRDC problem is polynomial-time solvable [26]. However, this won’t be
true for DARC with additional delay constraints, as we have seen that find-
ing link-disjoint paths while obeying some additional delay constraint is
already an NP-complete problem [12, 15, 24, 13]. We note here that, we
can use the transformed graph to run algorithms, but owing to the corre-
lation between the arcs and arc parameters of G∗ the hardness results can
not be directly transformed back to our original survivable routing problem.
Thus, further investigation is required to show the complexity of our sur-
vivable QoS routing and DD aware routing problems, done in Section 4 and
Section 5, respectively.

4. Computing Routing DAGs for QoS Routing

In this section we investigate the survivable routing problem when delay
constraints are given for the individual DAGs to ensure QoS routing (DARC-
QoS). Formally, the task is to minimize the total cost in terms of Eq. (1),
while the after-failure delay for each routing DAG is less than a given bound
D [12]:

∀j ∈ {A,B,A⊕B} : ∆Ej ≤ D .

First, the complexity of DARC-QoS is discussed in Section 4.1, and it is
shown that DARC-QoS is NP-complete. Thus, in Section 4.2 we present an
Integer Linear Program (ILP), while in Section 4.3 the approximability of
the problem is discussed.

4.1. Complexity Analysis of DARC-QoS

In this section we show that DARC-QoS is NP-complete. The proof is
based on the reduction from the Three-Way Partition problem [15], which
is known to be NP-hard (following also from the fact that in an optimal
three-way partition the items in arbitrary two subsets are partitioned into
two equal parts).

Theorem 1. To decide whether a ≤ Z cost solution for DARC-QoS exists
is NP-complete.

Proof. DARC-QoS is in NP, a solution with ≤ Z cost with delay ≤ D on
each routing DAG is a proof.

Assuming we are given an instance of the Three-Way Partition Prob-
lem [15], [27], that is, a finite set A of items with size s(a) ∈ Z+ for
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Figure 2: Transformation of Three-Way Partition [15] to DARC-QoS. Arc delays/arc costs
are shown next to the arcs. Each arc has k(e) = 2 units of free capacity.

each a ∈ A. Let us denote T =
∑

a∈A s(a). Is there a perfect three-
way partition of set A, i.e., partitions P1, P2, P3 such that P1 ∪P2 ∪P3 = A,∑

a∈P1
s(a) =

∑
a∈P2

s(a) =
∑

a∈P3
s(a) = T/3 and P1∩P2 = ∅, P1∩P3 = ∅,

P2 ∩ P3 = ∅.
The polynomial time transformation for Three-Way Partition with |A| =

n to DARC-QoS is given as follows (shown in Figure 2). We construct a
graph with n+ 1 nodes using the following gadget for each ai: we add three
arcs (upper, middle and lower) eui = emi = eli = (ai, ai+1), i = 1, 2, . . . , n
(with t = an+1). We define arc delay and arc cost values according to s(ai),
as shown in Figure 2. We define Z = 2T and D = T/3 for the connection
request C = (s = a1, t, 2, D). Next, we show that the two instances are
solvable at the same time.

(⇒) First, we show how to convert a DARC-QoS solution with ≤ Z
cost to a Three-Way Partition of A. From the survivability aspect we know
that for every gadget f(eui ) + f(eli) ≥ 2, as the remaining flow should be
at least two after the failure of emi . If we sum up this for all gadgets, this
leads to

∑
e∈E f(eui ) + f(eli) ≥ 2T . However, the total cost is ≤ 2T , thus,

∀i : f(eui ) + f(eli) = 2 follows. Furthermore, f(emi ) ≥ 1 follows as well
because of the survivability aspect (i.e., the remaining flow should be at
least two either eui or eli fails). On the other hand, from D = T/3 on the
individual routing DAGs we know that the total delay suffered by the three
routing DAGs is ≤ T . Thus, f(emi ) ≤ 1 follows, because otherwise this total
delay bound, hence, the delay bound of the individual routing DAGs could
not be satisfied. So at the end f(emi ) = 1, which leads to f(eui ) = 1 and
f(eli) = 1 to maintain survivability. This means that a DARC-QoS solution
with ≤ Z cost, i.e., the three routing DAGs EA EB and EA⊕B are three
s − t paths in Figure 2. As the total delay of these routing DAGs is T (as
emi is traversed exactly by one routing DAG in each gadget), their delay is
exactly T/3. As the delay of emi was set as the weight s(ai), the partitions
of ai are defined by which routing DAG traverses emi .

(⇐) In the other direction, it is easy to convert a Three-Way Partition
into three routing DAGs with ≤ D delay, i.e., in this case to three s − t
paths. Let assume the three partitions P1, P2 and P3 are given. Without
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loss of generality, we assume that

• the single s− t path in PEA
is using ∀ai ∈ P1 : emi , and eui otherwise,

• the single s− t path in PEB
is using ∀ai ∈ P2 : emi , and eli otherwise,

• and the single s−t path in PEA⊕B
is using ∀ai ∈ P3 : emi , and otherwise

the remaining available arc of the gadget.

Thus, a Three-Way Partition gives a DARC-QoS a solution with ≤ Z
cost. This concludes the proof as the two problems are solvable at the same
time.

4.2. Integer Linear Program for DARC-QoS

Here, we present an ILP formulation for DARC-QoS based on [7, 11] for
finding three minimum cost link-disjoint paths in G∗ = (V,E∗, c∗, dmin,∆)
with additional delay bounds required for QoS routing. The connection
request is C = (s, t, b = 2, D). The three paths corresponding to the routing
DAGs are denoted as w ∈ {A,B,A⊕B} =W, respectively. Binary variables
xw(e) are used to indicate the paths for each routing DAG. Our objective is
to minimize the total bandwidth cost in terms of Eq. (1):

min
∑
w∈W

∑
e∈E

c∗(e) · xw(e). (4)

The following constraints are required to find a survivable routing:

∀w ∈ W, ∀i ∈ V :

∑
(i,j)∈E

xw(i, j)−
∑

(j,i)∈E

xw(j, i) =


1 , if i = s
−1 , if i = t

0 , otherwise
, (5)

∀e ∈ E:
∑
w∈W

xw(e) ≤ 1, (6)

∀w ∈ W, ∀e ∈ E: xw(e) ·∆e ≤ yw. (7)

Constraint (5) formulates the flow conservation for each path w. Con-
straint (6) ensures the disjointness of the paths. Constraint (7) gives a lower
bound for the integer variable yw, which captures the worst case delay in-
crease of path (routing DAG) w upon a single link failure formulated in
Eq. (3). For DARC-QoS, we have to add Constraint (8), which ensures that
the maximal delay of the routing DAGs is less than the specified bound:

∀w ∈ W:
∑
e∈E

xw(e) · demin + yw ≤ D. (8)

From the paths defined by the binary variables xw(e) in G∗ the routing
DAGs in G can be easily obtained by replacing the virtual arcs by the
original arcs of the corresponding link-disjoint path-pair.
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Table 1: The end-to-end delay difference on the two fastest routing DAGs upon a single
link failure (wlog δEA ≤ δEB ≤ δEA⊕B ).
`````````````̀disrupted

inc. delay ∅ EA EB EA⊕B

∅ |δEA
− δEB

| |δEB
−min {∆EA

, δEA⊕B
}| |δEA

−min {∆EB
, δEA⊕B

}| |δEA
− δEB

|
EA |δEB

− δEA⊕B
| – |∆EB

− δEA⊕B
| |δEB

−∆EA⊕B
|

EB |δEA
− δEA⊕B

| |∆EA
− δEA⊕B

| – |δEA
−∆EA⊕B

|
EA⊕B |δEA

− δEB
| |∆EA

− δEB
| |δEA

−∆EB
| –

4.3. Approximability of DARC-QoS

It was shown that it is NP-hard to find two link-disjoint paths that
does not violate the delay constraint D of at least one of the paths [12],
and this problem even can not be approximated within a factor of 2 on
the delay-bound. However, Suurballe’s [26] algorithm which minimizes the
total delay of the two paths provides a 2-approximation on the delay. On
the other hand, for our survivable routing problem – finding three link-
disjoint paths which minimizes the average (or total) delay of the routing
DAGs – the same algorithm [26] provides only a 3-approximation on the
delay, without considering the solution cost in the optimization problem.
Although the solutions of the bifactor approximation algorithms [12, 22]
gives bound on the total cost of the solution, the two delay parameters on the
arcs in DARC-QoS can not be easily incorporated in the path augmentation
approach for finding restricted shortest paths. Thus, we cannot hope an
efficient algorithm which obeys the delay bound in G∗ on each of the three
paths. Hence, if strict delay bounds have to be satisfied in DARC-QoS, we
suggest the usage of the ILP in Section 4.2, which runs in reasonable time
for several instances owing to the small number of constraints on the path
delays.

5. Computing Routing DAGs for Differential Delay Aware Rout-
ing

In this section we investigate the survivable routing problem when delay
bounds are given on the end-to-end delay differences of the routing DAGs
(DARC-DD). The task is to minimize the total cost in terms of Eq. (1), while
all possible DD bounds in Table 1 have to be satisfied. These constraints en-
sure that the delay difference between the two fastest routing DAGs is under
a specific bound ≤ D [13] corresponding to the maximal buffer size when an
arbitrary single link failure occurs. Note that, a single link failure can cause
the disruption of a routing DAG (if an arc in a path is failed) or increase it’s
end-to-end delay (if the arc failure affects one of its islands). Furthermore, if
an arc with f(e) = 2 fails (e.g., (v1, v3) in Fig. 1), it could happen that one
routing DAG is disrupted while the end-to-end delay increased for another
routing DAG.
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Figure 3: Polynomial-time reduction of the Longest Path problem to DARC-DD. Arc
delays are depicted next to the additional arcs, while it is set to the length of the arcs in
G = (V,E). Each arc has k(e) = 2 units of free capacity.

First, the complexity of the problem is discussed in Section 5.1, and it
is shown that DARC-DD is NP-complete. Thus, in Section 5.2 we present
an Integer Linear Program (ILP), while in Section 5.3 its approximability
is discussed. Finally, in Section 5.4 heuristic approaches are proposed to
solve the DD-aware survivable routing problem on the transformed graph
introduced in Section 3.3.

5.1. Complexity Analysis of DARC-DD

In this section the NP-completeness proof of DARC-DD is provided.
The proof is based on the polynomial reduction from the Longest Path
Problem [15], which is known to be NP-complete.

Theorem 2. To decide whether a ≤ Z cost solution for DARC-DD exists
is NP-complete.

Proof. DARC-DD is in NP, a solution with ≤ Z cost with ≤ D delay
difference between the routing DAGs is a proof.

Assuming we are given an instance of the Longest Path Problem [15],
that is, a directed graph G = (V,E) with length l(e) ∈ Z+ for each e ∈ E,
a positive integer K, and specified vertices s and t. It should be decided
whether there is a simple path in G from s to t of length K or more? We
use the version of the problem when ∀e ∈ E : l(e) = 1, which is still NP-
complete [15].

The polynomial time transformation for Longest Path Problem to DARC-
DD is given as follows (shown in Figure 3). We add two nodes s′ and t′ to
graph G, and connect them to node s and t with arcs es = (s′, s) and
et = (t, t′), respectively. Also an arc en = (s′, t′) is added between s′ and t′.
The transformed graph is denoted as G′ = (V ′, E′). The cost of all arcs in
G′ is ∀e ∈ E′ : c(e) = 1. The delay of the arcs in G′ is set to the length of
the arcs in G (i.e., ∀e ∈ E : d(e) = 1), while the delay of additional arcs es
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and et is set to zero. The delay of en = (s′, t′) is set to value n = |V |, which
is larger than the length of the longest simple path in G (if the graph is
Hamiltonian the longest path has length of n− 1). The DARC-DD problem
can be formulated in G′(V ′, E′) as follows: Does there exist a DARC-DD
solution with ≤ Z = 2n + 4 cost and ≤ D = n − K differential delay
bound for all possible failure scenarios in Table 1 for the connection request
C = (s′, t′, 2, D)? We show that the two problems have a positive answer at
the same time.

(⇒) First, we show how to obtain a longest path in G from a DARC-DD
solution in G′. Because of the survivability aspect we know that the arcs
en, es and et have the flow value of f(en) = f(es) = f(et) = 2 in any DARC-
DD solution (as upon the removal of either of them there should remain an
s′ − t′ flow with at least value 2). Thus, s′ is a splitter node of an island
and a starting node of two path segments. Hence, a routing DAG, without
loss of generality EA⊕B consists of a single path segment PEA⊕B

= {en}
with δEA⊕B

= ∆EA⊕B
= n. Note that, EA⊕B has the highest δ and ∆ delay

among the routing DAGs (the delay of simple paths not containing en is at
most n− 1). Thus, in order to satisfy all constraints in Table 1 it is enough
if both δEA

≥ K and δEB
≥ K.

The second routing DAG, e.g., EA is a single island IA = {s′ → t′} with
link-disjoint path-pair IAmax and IAmin, where ∆EA

= n (delay of IAmax = en).
In order to satisfy the DD bound the delay δEA

of the simple IAmin = s′ →
s→ t→ t′ path in G′ should be at least K. This is exactly the delay of the
s → t segment of IAmin in G as both d(es) = d(et) = 0. The third routing
DAG EB has path segments es and et, and could have an arbitrary structure
of paths and islands inside G. However, we only have to show that a routing
DAG with δEB

≥ K exists. In fact, path PEB
= {IAmin} is always a feasible

option as routing DAG EB, as ∀e ∈ E′ : k(e) = 2. Thus, all constraints in
Table 1 is satisfied with the above routing DAGs with a maximal cost of
2n+ 4. Furthermore, the s→ t segment of IAmin is a path in G with at least
length K.

(⇐) In the other direction, it is easy to convert the longest path solution
to three routing DAGs. Let the longest path between s and t be denoted
with Ps−t. The three routing DAGs are the following: PEA⊕B

= {en},
PEB

= {s′ → Ps−t → t′} and the third DAG is an island IEA
= {s′ → t′}

with link-disjoint path-pair en and s′ → Ps−t → t′. This solution has ≤ Z
cost and satisfies delay bound D for all routing DAGs, which concludes the
proof.

5.2. Integer Linear Program for DARC-DD

Here, we present an ILP for DARC-DD based on the mathematical for-
mulation of [13] and correcting the one in [11] for finding three minimum
cost link-disjoint paths in G∗ with additional delay bounds required for DD-
aware routing on DAGs. The connection request is C = (s, t, b = 2, D). The
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notations are the same as in Section 4.2. Our objective is to minimize the
total bandwidth cost as formulated Eq. (4). Similarly to DARC-QoS, Con-
straint (5) formulates the flow conservation for each path w. Constraint (6)
ensures that the disjointness of the paths. Constraint (7) gives a lower bound
for the integer variable yw, which captures the worst case delay increase of
path (routing DAG) w upon a single link failure formulated in Eq. (3).

In contrast with the ILP for DARC-QoS, in DD aware routing we can
not implicitly assume that the minimum cost flow follows a simple path, as
loops or disjoint cycles may be added by the ILP to ensure that the DD
bound of the routing DAGs is satisfied. Thus, in order to explicitly ensure
that no loops in the path or no disjoint cycles are formed we used the voltage
analysis [28]. For this, we have to introduce the following variables:

• di indicates if node i is the target node, i.e., if yes di = 1, otherwise
zero.

• zwi is a binary variable, zwi has value 1 if node i is traversed by flow
w, otherwise zero.

• qw(e) is a non-negative continuous fractional variable, i.e., the voltage
assigned to a given arc e and flow w.

• ε is a predefined small positive constant, which determines the mini-
mum step of the voltage. In our case it is set to 1/|V |, to ensure that
even the longest simple path can be found.

First, we set the variables zwi to one if flow w traverses node i in Con-
straint (9). Constraint (10) says that only an arc with a non-zero flow value
can have non-zero voltage. The main idea of the voltage constraint, i.e.,
eliminate cycles is formulated in Constraint (11). It says that for each node
in the flow the sum of the voltages on the outgoing arcs has to be higher than
on the incoming arcs. Finally, to avoid loops in the path Constraint (12)
ensures that each node could have at most one outgoing arc with non-zero
flow value. Thus, we restricted the solution to simple paths.

∀w ∈ W, ∀i ∈ V,∀{e ∈ E|e = (i, j) ∨ e = (j, i)}: zwi ≥ xw(e), (9)

∀w ∈ W,∀i ∈ V,∀{e ∈ E|e = (i, j) ∨ e = (j, i)}: qw(e) ≤ xw(e), (10)

∀w ∈ W,∀i ∈ V : di +
∑

(i,j)∈E

qw(i, j)−
∑

(j,i)∈E

qw(j, i) ≥ ε · zwi , (11)

∀w ∈ W, ∀i ∈ V :
∑

(i,j)∈E

xw(i, j) ≤ 1, (12)
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In order to capture the delay difference between the two fastest (i.e.,
lowest delay) routing DAGs in DARC-DD, we formulate the order of the
DAGs (wlog δEA

≤ δEB
≤ δEA⊕B

) in Constraints (13)-(14).∑
e∈E

xA(e) · demin ≤
∑
e∈E

xB(e) · demin, (13)

∑
e∈E

xB(e) · demin ≤
∑
e∈E

xA⊕B(e) · demin, (14)

The differential delay bound D corresponds to paths xA and xB in the
failure-less state, is formulated in Constraint (15).∑

e∈E
[xB(e)− xA(e)] · demin ≤ D. (15)

In order to formulate all possible delay differences between the two fastest
paths upon a single link failure occurs, we have to formulate all possible
situations in Table 1. For example, Constraints (16)-(17) formulate when
EB is disrupted while the end-to-end delay of EA is increased (as we don’t
know which one has lower delay we need two constraints):

yA +
∑
e∈E

[xA(e)− xA⊕B(e)] · demin ≤ D, (16)

−yA +
∑
e∈E

[xA⊕B(e)− xA(e)] · demin ≤ D. (17)

5.3. Approximability of DARC-DD

The NP-hardness of finding paths with obeying a given differential delay
bound (DDR problem) was proven in [24], and in Section IV C of [24] its
approximability was investigated. It was shown that the DDR problem can
not be approximated within a factor of nε for any ε < 1 for Hamiltonian
graphs, where n = |V | is the number of vertices in graph G. Note that,
the DDR problem is defined strictly for paths (and not DAGs). Further-
more, it does not require the disjointness of paths, thus, it does not provide
any survivability for the connection. Meanwhile, DARC-DD is defined for
the three routing DAGs which have to satisfy survivability and delay re-
quirements simultaneously. Despite the relevant differences of DDR and
DARC-DD, their NP-completeness proofs follow similar reasoning. Thus,
we claim that constant factor approximation of DARC-DD is NP-hard as
well based on [24]:

Claim 1. The DARC-DD problem can not be approximated within nε for
any ε < 1 for Hamiltonian graphs.

Proof. See the reasoning of [24][Section IV C] for DDR built on the hard-
ness of finding paths longer than a given constant in Hamiltonian graphs [29].
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Figure 4: Path generation in the DARC-DD heuristic of Algorithm 1 (illustrating the
differences between SPLIT [13] and our approach). The numbers next to the arcs represent
the dmin value of the arc.

5.4. Heuristic Approach for DARC-DD

Because the problem is hard to approximate, it is legitimate to use a
heuristic approach, which leverages the computational complexity of the
presented ILP. In [13] two heuristic approaches were introduced based on
k-shortest link-disjoint paths, both of them following the SPLIT approach.
These methods are based on finding the so called merger nodes (two or more
paths crossing at a given node), dividing the paths into segments (starting
and ending at these merger nodes), and creating all possible combinations
of s − t paths by cascading the path segments. Finally, they distract all
maximum disjoint sets of these paths and check whether they satisfy a de-
lay constraint or not. Of course, the SPLIT approach could be modified
for finding three disjoint paths in the transformed graph G∗ for DARC-DD,
which satisfies the delay constrains in Table 1. However, it is obvious that
owing to the huge problem space introduced by the investigation of all pos-
sible combination of segments, the SPLIT approach would not be a good fit
in G∗, where original arcs and a full mesh of virtual arcs are present, leading
to a large k in the initial link-disjoint k-shortest path search. This moti-
vated us to create new heuristic in Algorithm 1, which reduces the problem
space of SPLIT with a smart and intuitive way of path generation instead
of enumerating all possible paths.

Our path generation method is illustrated in Fig. 4 on graph H, which is
obtained with a run of the Suurballe algorithm for finding h = 3 link-disjoint
paths in G∗ (Step 4 of Algorithm 1). First the merger node v1 is processed
in Step 7 (this node has the maximum in-degree m = 2). In Step 9 the
paths P 1

s−v1 and P 2
s−v1 are found in Fig 4 between s and merger node v1 with

minimum delay 3 and 9, respectively. Next, paths P 1
v1−t and P 2

v1−t are found
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Algorithm 1: DARC-DD Heuristic

Input: G = (V,E, k, c, d), C = (s, t, b,D)
Result: Routing DAGs EA, EB and EA⊕B

1 begin
2 Initialize the number of searched link-disjoint paths h = 3.

// Create graph G∗ = (V,E∗, c∗, dmin,∆).
3 Create graph G∗ according to Section 3.3.

// Finding link-disjoint paths in G∗.
4 while h-link-disjoint paths with minimum total cost exist between s and t

in G∗ do
5 Let H = (V H , EH) denote the subgraph defined by the link-disjoint

paths.
6 while EH is not empty do
7 Find the merger node u with the largest in-degree m in V H \ {s, t} (or

t if no merger with m > 0 exists).
8 while u has incoming arcs in H do
9 Find a path Ps−u with minimal total dmin between s and u.

10 Remove the arcs of Ps−u from EH .

11 Sort the Ps−u paths from lowest delay to the highest (increasing
order). Denote this sorted set as Ps−u.

12 while u has outgoing arcs in H do
13 Find a path Pu−t with minimal total dmin between u and t.
14 Remove the arcs of Pu−t from EH .

15 Sort the Pu−t paths from highest delay to the lowest (decreasing
order). Denote this sorted set as Pu−t

16 Take the ith path segments from Ps−u and Pu−t and create path
P i
s−t from them. Add P i

s−t to set Ph.

17 Generate all combination of triplets in Ph, and add the one which
satisfies D with minimal cost to P.

18 Increase h by 1.

// Save routing DAGs in G.
19 Select the solution with minimal cost from P (if P 6= ∅).
20 Build routing DAGs from the paths in G∗ by replacing virtual arcs with

their corresponding islands in G.
21 Save the routing DAGs EA, EB and EA⊕B .

19



in Step 13 between nodes v1 and t with minimum delay 3 and 8, respectively.
Next, in Step 16 s − t paths are created from the lowest delay segment
between s − v1 and the highest delay segment between v1 − t, from the
second lowest and second highest delay segment, etc. Hence, in Fig 4 paths
P 1
s−t = {s→ v0 → v1 → v4 → t} and P 2

s−t = {s→ v3 → v1 → t} are created
with total delay of 11 and 12, respectively. Note that, the corresponding arcs
are removed, leaving node v5 as the only node v ∈ V H \{s, t} with in-degree
m > 0. This means, that the second merger node which is processed in
Step 7 has to be v5. Paths P 1

s−v5 and P 1
v5−t are found, and glued together in

Step 16 to create P 3
s−t = {s→ v5 → t} with delay minimum of 9. As P 1

s−t,
P 2
s−t and P 3

s−t is the only triplet which can be created for h = 3 paths, we
save it to P as the minimal cost solution which satisfies the delay bound for
h = 3 in Step 17. After repeating this procedure while h-link-disjoint paths
exist, we select from P the minimum cost solution in G∗, and obtain the
routing DAGs from it.

Note that, the rearrangement of paths in Step 16 of Algorithm 1 is
based on dmin(e). However, we have two other attributes on the arcs in
DARC which can be used in Step 4 to calculate H, i.e., the initial minimum
“cost” h-link-disjoint paths. If the c(e) is used as the metric, then we speak
about the DD-CH (Differential Delay - Cost Heuristic). However, if the
delay maximum, i.e., dmin(e) + ∆(e) is considered as the cost metric on the
arcs in Step 4, then we talk about the DD-DH (Differential Delay - Delay
Heuristic). Note that, DD-CH minimizes the cost on expense of no control
over the delay. Meanwhile DD-DH minimizes the maximal delay, which may
result in lower blocking probability but without any control on the cost of
the solution. With rearranging the paths at merger nodes based on the delay
minimum (dmin) value we get a feasible solution with a higher probability
than purely using the link-disjoint paths found in Step 4 based on either
metric, as the delay differences are reduced to the lowest possible value.

6. Experimental Results

In this section we investigate the total bandwidth cost of diversity cod-
ing based survivable routing DARC, i.e., when not only bandwidth cost is
considered but also additional QoS routing and differential delay bounds are
given for every connection request. We compare our methods with SRDC,
i.e., with the polynomial-time algorithm where only the bandwidth cost is
minimized with ∀e ∈ E : k(e) ≥ 2, and no additional constraints are given4.
Of course the solution cost of SRDC increases by introducing additional
bounds, but in exchange for that we can guarantee a certain level of QoS,

4Note that, the solution cost of SRDC ranges between 1 + 1 dedicated path protection
(i.e., two link-disjoint paths with flow value two) and 1 : 2 shared path protection (i.e.,
three link-disjoint paths for diversity coding) as the two extremes.
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Figure 5: Blocking probability and average cost per connection of the DARC-QoS problem
as a function of the delay bound in a maximal planar graph with node number 20 and 40,
respectively.

not only in terms of reliability but also in terms of end-to-end and differential
delay. This could dramatically improve the user experience of video stream-
ing, which leads in long term to higher revenue and competitive advantage
(compared to other providers).

We investigated random generated real-like planar G = (V,E, k, c, d)
network topologies with different sizes and densities, and some real world
optical backbone topologies, too. Bidirectional communication channels are
assumed, thus, each link is replaced with two anti-parallel arcs in the topolo-
gies5. All of the arcs have unit cost (∀e ∈ E : c(e) = 1). The arc capacities
were set high enough so that no blocking occurs due the capacity deficit (i.e.,
∀e ∈ E : k(e) ≥ 2 satisfied for all requests). Furthermore, the delay of the
arcs d(e) is a function of the distance between its adjacent nodes, and scaled
into the range of 1 and 25 ms. These values are based on the measurements
taken in optical transport networks [4, 13]. Note that, a single random net-
work is generated for each size and density (i.e., 15 different topologies for
Sections 6.1-6.2) on the same (unit) square. Up to 600 connection requests
C = (s, t, 2, D) were generated randomly for each simulation scenario with
a given delay bound (while the same demands were considered for SRDC
without the delay parameter), thus, we enabled our ILP to run for middle-
scale topologies in a reasonable time. Note that, the limited request number
is a consequence of the high computational complexity of our ILPs. Fur-
thermore, in order to understand the variability of the results on the traffic
in random networks, connection requests were generated in groups of 20 and

5Note that, a single link failure disrupts the anti-parallel arcs at the same time.
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Figure 6: Bandwidth cost of the DARC-DD problem as a function of the delay bound in
real-world topologies.

200 demands, and 95% confidence intervals were added to the corresponding
figures.

6.1. Performance Evaluation of DARC-QoS

For the performance evaluation of DARC-QoS total 300 random connec-
tion requests were generated in groups of 20 demands. In QoS routing the
bound given the on path-length might be too strict to satisfy, which depends
purely on the physical topology. Thus, if there is no path obeying this bound
in the network, then the connection request has to be blocked. This leads us
to the recognition that in QoS routing the blocking probability characterizes
the problem better than total cost. This value could be an indicator for the
network operator, i.e., what percentage of the request can be satisfied with
a given QoS level. According to that, in Fig. 5 the blocking probability and
the average cost of the routed demands of DARC-QoS is shown for differ-
ent QoS bounds. One can observe that the blocking probability increases
rapidly after a given delay bound is reached. As mentioned before, this is
due the fact that if there are no paths shorter than a given bound, then
the request gets blocked. If the delay bound is not so strict (e.g., 70 ms),
than the blocking probability of DARC-QoS is low, as it is already able to
route almost all requests. However, only for the price of longer paths, hence,
for higher average cost than SRDC. Finally, if we set D large enough (i.e.,
90 ms in the investigated topologies), than we get back the SRDC solution.
Note that the results of DARC-QoS do not vary significantly more on traffic
than the results of SRDC.
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6.2. Performance Evaluation of DARC-DD

For the performance evaluation of DARC-DD 200 connection requests
were generated randomly in real-world topologies, while three different sets
of 200 requests were used in random networks. In Figure 6 the total band-
width cost of the DARC-DD ILP is shown depending on the delay bound
in real-world topologies. It can be observed that as the delay bound de-
creases the total cost of DARC-DD increases dramatically. It is foreseeable
because DARC-DD takes all possible failure scenarios into account and none
of the requests were blocked. This means that if any single link failure event
occurs, DARC-DD provided a solution within the given differential delay
bound. Therefore, it sacrifices the cost efficiency in order to find three rout-
ing DAGs approximately with the same delay. Note that, in Fig. 6b with
DD bound of 9 ms DARC still has the same solution as SRDC, while in the
larger network in Fig. 6a it already requires longer paths for 19 ms.

Fig. 7 shows the total bandwidth cost in networks with different sizes
and densities for a given delay bound (9 ms). The tendencies are the same
as in real world topologies, i.e., DARC-DD needs much more resources than
SRDC to satisfy all of the constraints related to all single link failures,
independently from network size. As mentioned before the networks are
generated on a unit square. This means that the average delay parameters
(on arcs) for the smaller networks are higher than by larger ones, because
the average distance is greater between two adjacent nodes. Furthermore
in denser networks (i.e., networks with more arcs) there are more candidate
paths than in sparser networks for finding the DARC-DD solution. This
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Figure 8: Blocking probability and average cost per connection of the DARC-DD heuristics
in dense networks, with delay bound of 9 ms.

leads to the fact that in small sparse networks blocking occurs (resulting
also in lower average cost in Fig. 7 (b)). Some bandwidth cost fluctuation
can be observed owing to the randomly generated traffic and networks, too,
as in larger networks not all s− t pairs are considered as requests.

In Figure 8 the blocking probability and the average cost of the two
DARC-DD heuristics are presented in dense networks. One can observe,
that the blocking probability is above 50% for smaller networks, thanks to
the limited number of link-disjoint k-shortest paths. However, the heuristics
get effective when the number of alternative paths increases. Further note
that, by design, there is a trade off between the two DARC-DD heuristic
versions. On one hand, if our objective is to minimize the blocking proba-
bility, then DD-DH is the better choice for the price of higher average cost
per connection. On the other hand, DD-CH provides lower average cost per
connection, but in this case the blocking probability increases.

Although block several connections, the heuristic approaches decrease
the running time of the DARC-DD ILP significantly. For example, in the 30
node sparse network the average running time of the heuristics is less than a
second per demand, while on the other hand, the ILP needs an average time
of about 40 minutes for one single demand. In other words, the heuristic is
about 2400 times faster than the ILP.

7. Conclusion

In this paper we introduced Delay Aware Routing with Coding (DARC)
which captures several QoS routing and differential delay aware bounds of
diversity coding-based survivable routing. Our work is built on the fact that
the optimal solution of this routing problem has a well-defined structure, i.e.,
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can be decomposed into three routing DAGs between the source and target
node. In order to reach the benefits provided by this redundancy, we defined
the delay of routing DAGs capturing all possible single-link failure scenar-
ios. Although DARC inherits several results from previous works on find-
ing three link-disjoint paths between the communication end-points obeying
some additional delay bounds, the two delay parameters (i.e., before- and
after-failure end-to-end delay) of the routing DAGs leads to a more complex
routing problem (even if the problems were already hard for paths both for
QoS and differential delay bounds). Thus, we gave NP-completeness proofs
for these problems, and demonstrated that although minimizing the total
bandwidth cost of routing DAGs is polynomial time solvable, it leads to a
hard problem when an additional delay bound introduced on the routing
DAGs. We gave an Integer Linear Program for DARC-QoS and DARC-DD
to find a minimal cost solution while obeying additional QoS and differen-
tial delay bounds, respectively. We discussed the approximability of both
problems, while a heuristic approach was proposed for DARC-DD to select
paths with appropriate delay differences. Through simulations on small- and
medium-scale network topologies we demonstrated the effect of the differ-
ent delay bounds on the total bandwidth cost of the optimal and heuristic
solution.
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