
Control of Fair Division

Haris Aziz
Data61 and UNSW

Australia
haris.aziz@data61.csiro.au

Ildikó Schlotter
Budapest University of

Technology and Economics
ildi@cs.bme.hu

Toby Walsh
UNSW Australia

and Data61
tw@cse.unsw.edu.au

Abstract
We initiate the study of control actions in fair di-
vision problems where a benevolent or malicious
central organizer changes the structure of the fair
division problem for self-interest or to benefit one,
some or all agents. One motivation for such control
is to improve fairness by minimally changing the
problem. As a case study, we consider the prob-
lem of adding or deleting a small number of items
to improve fairness. For two agents, we present
polynomial-time algorithms for adding or deleting
the minimum number of items to achieve ordinal
envy-freeness. For three agents, we show that both
problems, as well as the more basic problem of
checking whether an envy-free allocation exists,
are NP-complete. This closes a problem open for
over five years. Our framework leads to a number
of interesting directions in the area of fair division.

1 Introduction
When allocating resources to agents, a basic and widely
sought after requirement is fairness [Bouveret et al., 2016;
Brams and Taylor, 1996; Moulin, 2003]. Fairness has been
formalized in a number of ways such as envy-freeness, pro-
portionality, max-min fair share. A fundamental problem
with indivisible items is that a fair allocation may not ex-
ist. However, with small changes to the given instance, a
fair allocation might exist. This can also be viewed as the
minimal compromise required to achieve fairness. We pur-
sue this thought by considering control in fair division. More
generally, we identify various control actions that a central or-
ganizer may use to benefit himself or herself, benefit or harm
other agents, or simply to meet some goal.

We will typically assume that the chair has full knowledge
of the ordinal preferences of the different agents. This may
be appropriate for several reasons. First, this models the sit-
uation where the chair collects preferences, and then runs a
fair division algorithm. This is the case in allocating courses
at the Harvard Business School. Second, this is a special case
of partial information. It therefore provides a lower bound
on the complexity in the presence of partial information. If a
problem is computationally intractable with complete infor-
mation, then it is at least as hard with incomplete.

Contributions: We propose the study of control actions in
fair division problems. This aligns with the direction pro-
posed by Bartholdi, III et al. [1992] who initiated the com-
putational study of control actions in voting. As a case
study, we focus on adding or deleting a few items to en-
sure that an envy-free allocation exists. For the case of two
agents, we present polynomial-time algorithms for adding
and deleting the minimum number of items so as to ensure
that an ordinal envy-free allocation exists. For the case of
three agents, we show that both problems are NP-complete,
as well as the more basic problem of checking whether
there exists an ordinal envy-free allocation. The latter prob-
lem was previously open not just for three agents, but in
fact for any constant number of agents [Aziz et al., 2015b;
Bouveret et al., 2010].

2 Related Work
When fairness cannot be achieved, one approach is to relax
the fairness notion by using approximation [Procaccia and
Tennenholtz, 2013; Procaccia and Wang, 2014]. In this paper,
we consider problems in which we do not relax the fairness
concept but relax the problem by adding or deleting items to
ensure fairness. In recent work, Nguyen and Vohra [2014]
showed that for the problem of stable matching with cou-
ples, perturbing the capacities of schools results in an instance
with a stable matching. There is also related work where cer-
tain items are duplicated in housing markets [Cechlárová and
Schlotter, 2010]. Segal-Halevi et al. [2015] considered the
idea of not allocating all the divisible resource not for the
sake of achieving fairness but in order to obtain faster proto-
cols for allocating cake in a fair manner. Finally, we present
results on envy-freeness when agents have preferences over
individual items. The notion is equivalent to itemwise envy-
freeness considered by Brams et al., necessary envy-freeness
as defined by Bouveret et al. [2010] or SD envy-freeness by
Aziz et al. [2014].

3 Control of Fair Division
The control actions available to the chair are similar to those
studied in voting [Bartholdi, III et al., 1992]. There are also
some new control actions specific to fair division.
Item addition/deletion/replacement: The chair might add,

delete or replace items. For example, can the chair en-

sure the existence of a fair allocation by donating some
additional items?

Agent addition/deletion/replacement: The chair might
add, delete or replace agents. For example, in the
FoodBank local problem [Aleksandrov et al., 2015a],
can we introduce a new charity without lowering greatly
the egalitarian social welfare?

Item/agent partitioning: The chair might partition the
items and/or agents into disjoint sets. For example, when
allocating rooms in St John’s College at the University
of Cambridge, the (typically more desired) rooms in the
College are allocated before the rooms outside of the
College, and first year students are considered before
second year students.

One possible goal of the chair might be to improve fairness.
For instance, with indivisible goods, an envy-free allocation
may not exist (consider two agents and a single good). How-
ever, the chair might be able to add or delete a small number
of items to ensure envy-freeness. This gives rise to a num-
ber of natural computational questions. For instance, can we
delete k or fewer items so that an envy-free allocation exists?
Similar questions can be asked to ensure other fairness prop-
erties like proportionality, max-min fair share, etc. In general,
if it is computationally intractable to check if an allocation
exists with a given property, then adding or deleting items to
ensure this property is also computationally intractable.
Observation 1. If checking whether an allocation exists with
property Φ is NP-hard, then adding/deleting/replacing the
minimum number of items to ensure Φ is also NP-hard.

For example, it is NP-complete to check if every agent can
receive the max-min fair share. Hence, it is NP-hard to add
the minimum number of items to ensure a max-min fair share
allocation exists. We might also consider control actions to
achieve other goals (e.g. a minimum egalitarian welfare).
Given a particular mechanism, we might also use control ac-
tions to achieve a particular outcome (e.g. that a given agent
gets a certain item or set of items).

4 Envy-freeness
We focus now on the well-known fairness property of envy-
freeness (EF). Formally, the input of the ENVY-FREENESS
problem can be described as a triple (N, I, L), where N is a
set of agents, I a set of indivisible items, and L is a collection
of preference listsLA for each agentA ∈ N . Each preference
list LA is a strict linear ordering over the set I of items. For
a linear ordering L = (s1, . . . , sm) over a set S = ∪mi=1si of
items, we let L(i : j) = (si, si+1, . . . , sj) for any 1 ≤ i ≤
j ≤ m. For X ⊆ S, we let L|X be the restriction of L to X ,
and write [L|X] for the set of elements in L|X .

When there are only two agents, we will denote them by A
and B. An assignment π of items to agents is an allocation,
and π is complete if it assigns each item of I to some agent.

When reasoning about preferences over bundles of items,
an agent may be required to express preferences over an ex-
ponential number of bundles. A compact way of expressing
preferences over bundles is for agents to express preferences
over individual items and then extend them over bundles of

items with respect to the responsive set extension. In this no-
tion, we say that an agent A prefers a set I1 of items over a
set I2 of items if there exists an injection f from I2 to I1 such
that for each item x ∈ I2, agent A prefers the item f(x) over
x. An allocation is (itemwise) envy-free if each agent prefers
its own set of items over any set of items allocated to some
other agent. In the ENVY-FREENESS problem, the task is to
find a complete envy-free allocation.
Example 1. Suppose agents A and B have the following
preferences over items 1, 2, 3, 4.

A : 1 � 2 � 3 � 4

B : 2 � 1 � 4 � 3

In that case, the unique itemwise envy-free allocation is one
in which A gets 1 and 3, while agent B gets 2 and 4.

An immediate result of Observ. 1 is that, when the number
of agents is not bounded, adding/deleting/replacing items to
ensure envy-freeness is NP-hard, because finding an envy-
free allocation is NP-hard in this case [Bouveret et al., 2010].
Theorem 1. The problems of adding/deleting/replacing items
to ensure envy-freeness are NP-hard to decide.

4.1 Two Agents
With two agents, the problem of deleting the fewest items to
ensure envy-freeness is solved by Brams, Kilgour and Klam-
ler’s AL mechanism. Thus, with two agents, deciding if we
can delete k items to ensure envy-freeness takes linear time.
Theorem 3 of Brams et al. [2014] states that the AL mech-
anism returns a maximal envy-free allocation. Though it is
clear that their algorithm returns an envy-free allocation, their
reasoning does not in fact prove that it allocates the maximum
number of items possible in any envy-free allocation. For
completeness, we prove that AL indeed satisfies this property.
Notation: Before proceeding with our technical results, let
us introduce some notation, some of it based on the pa-
per [Brams et al., 2014]. For some subset X ⊆ I of items,
we may compute those indices i for which [LA|X(1 : i)] =

[LB|X(1 : i)]; let i1, i2, . . . , is denote these indices in an in-
creasing order (observe that is = |X| must hold), and we set
i0 = 0. We define the equality segments S1, . . . , Ss for X by
letting the segment Sj equal the set [LA|X(ij−1 + 1 : ij)] =

[LB|X(ij−1 + 1 : ij)], for each j = 1, . . . , s. In Example 1
above, the equality segments of the item set are {1, 2} and
{3, 4}. Notice that any item set X ′ ⊆ X is an equality seg-
ment for X if and only if there are indices ` and k, with 1 ≤
` ≤ k ≤ |X| such that X ′ = [LA|X(` : k)] = [LB|X(` : k)],
andX is inclusion-wise minimal with respect to this property.

We will make heavy use of the following characterization
proposed by Brams et al. [2014]: there is an envy-free alloca-
tion of the items of X ⊆ I to agents A and B if the condition
[LA|X(1 : i)] = [LB|X(1 : i)] (called condition Ci in [Brams et
al., 2014]) holds only for even values of i, or equivalently, if
each equality segment for X has even size.
Theorem 2. With two agents, deleting a minimum number of
items to ensure envy-freeness can be decided in time linear in
the number of items.

Proof. We begin by describing algorithm AL. It repeats the
following step until all items have been allocated to agent A,
B, or placed in the contested pile C. We will refer to an
item as unprocessed if it has not been allocated to A or B, or
placed in C. If the most preferred unprocessed item differs
for agents A and B, then each agent picks its most preferred
item. Otherwise, if the most preferred unprocessed item o
coincides, then we check whether we can give it to agent A:
if the partial assignment where o is given to agent A while
B’s next most preferred unprocessed item is given to B still
satisfies envy-freeness, then we allow such an allocation. If
not, we check in the same way whether we can give o to agent
B. If o cannot be given to either agent, we put it in C.

Let us consider a point during the running of AL when
some item x is placed in the contested pile C. Let SA and
SB be the set of items allocated so far to A and B, respec-
tively. By definition of AL, (1) each agent prefers items al-
ready allocated to it over x, (2) x is the most preferred item
among all unprocessed items for both agents and (3) x cannot
be allocated to any of the agents while allocating another un-
processed item to the other agent without causing envy. This
implies that (4) there is no unprocessed item that either agent
prefers to any item in SA ∪SB ∪{x}. To see this, assume for
contradiction that some agent, say B, prefers an unprocessed
item y over an item z ∈ SA∪SB∪{x}. By (1) and (2), we get
z ∈ SA. However, in this case allocating x to A and y to B
would still yield an envy-free allocation. Indeed, given a bi-
jection f : SA → SB showing that B is not envious of A, we
can create a bijection g : SA ∪ {x} → SB ∪ {y} proving the
envy-freeness of the extended allocation by setting g(z) = y,
g(x) = f(z), and g(o) = f(o) for all items o ∈ SA \ {z}.

Let Pi be the set of all items processed up to the point when
the i-th item xi is placed in C (including xi itself). Claim
(4) implies that for each i, the items in Pi occupy the top
ki positions both in LA and LB for some ki. Hence, the set
Pi\Pi−1 (where we set P0 = ∅) must be the union of equality
segments, and since Pi \Pi−1 consists of an even set of items
allocated to the agents by AL plus the item xi, we know that at
least one of these equality segments must be odd. Hence, any
envy-free allocation must leave at least one item in Pi \ Pi−1
unallocated, proving that AL allocates the maximum number
of items possible in any envy-free allocation.

Similarly, with two agents, we can compute the fewest
number of items to add to ensure envy-freeness in polyno-
mial time. In this setting, we assume that I is partitioned into
a set F of fixed items and a set E of eligible items. The task
is to find a subset E′ ⊆ E of minimum size such that F ∪E′
admits an envy-free allocation (with respect to the preference
lists LA|F∪E′ and LB|F∪E′), or report if no such set exists.

Theorem 3. With two agents, the problem of adding a mini-
mum number of items to ensure envy-freeness can be decided
in time polynomial in the number of items.

Proof. Let F1, . . . , Fs be the equality segments for the set
F of fixed items. Let us fix some eligible item e. W.l.o.g.,
we may assume that e appears at a higher position in LA|F∪{e}
than in LB|F∪{e}; otherwise, we can swap the roles ofA andB
in the following definition. We say that e starts at the equality

segment Fi, if Fi is the first segment such that agentA prefers
e to its least preferred item in Fi. Analogously, e ends at the
equality segment Fj , if Fj is the last segment such that agent
B prefers its most preferred item in Fj to e.

The following key observation describes how the addition
of an item to an instance alters its equality segments.

Proposition 1. Suppose that the equality segments for a set
X of items are F1, . . . , Fs, and some item e ∈ I \ X starts
at Fi and ends at Fj . If j ≥ i, then the equality segments for
X ∪ {e} are F1, . . . , Fi−1,∪jh=iFh ∪ {e}, Fj+1, . . . , Fs. If
j < i, then j = i− 1, and the equality segments for X ∪ {e}
are F1, . . . , Fj , {e}, Fi, . . . , Fs.

Thus, adding an eligible item e to the set of items merges
all segments in between its starting and ending segment into
one new equality segment, containing also e in addition.

Using Prop. 1, we are going to compute a solution E′ by
dynamic programming. Let us define a set M(i, j) for each
pair of indices i and j with 1 ≤ i ≤ j ≤ s as a smallest
possible subset of the set E of eligible items whose addition
to F merges the equality segments Fi, . . . , Fj while not alter-
ing the remaining segments. That is, M(i, j) is a set X ⊆ E
of minimum cardinality such that the equality segments for
F ∪X are exactly F1, . . . , Fi−1,∪jh=iFh ∪X,Fj+1, . . . , Fs.
If there is no such set, we set M(i, j) = ?.

After determining the equality segments, we compute the
sets M(i, j) in polynomial time as follows. Initially we set
M(i, j) = ? for each i and j. Then we take each index
j = 1, . . . , s in an increasing manner, and consider the el-
igible items that end at the segment Fj one-by-one. When
considering an item e, starting at Fi and ending at Fj , we
set M(i, j) = 1 if i < j, and for each pair (i′, j′) where
1 ≤ i′ < i ≤ j′ < j and M(i′, j′) 6= ?, we set M(i′, j) =
M(i′, j′)+1, unless this would increase the value ofM(i′, j).

Next, for each i = 0, . . . , s, we compute a smallest possi-
ble set T (i) such that the family F of equality segments for
F ∪ T (i) are such that (i) Fi+1, . . . , Fs ∈ F , and (ii) all seg-
ments inF\{Fi+1, . . . , Fs} are even; if no such set exists, we
write T (i) = ?. We set T (0) = ∅. For some i, if |Fi| is even,
then we clearly have T (i) = T (i− 1). By contrast, if |Fi| is
odd, then we let T (i) be a smallest possible set of the form
T (j− 1)∪M(j, i) where 1 ≤ j ≤ i (we require M(j, i) 6= ?
and T (j − 1) 6= ? as well in order to get a well-formed set
T (i); if this is not possible, we set T (i) = ?). The correct-
ness of this formula is straightforward using the definitions
of the sets T (i) and M(j, i). Finally, observe that T (s) is the
solution we are aiming for, so the algorithm outputs T (s) if
it is a subset of E, and ‘No’ otherwise. The running time is
clearly polynomial in the input size.

4.2 Three Agents
The complexity of checking if an envy-free allocation ex-
ists for a constant number of agents has been an open prob-
lem [Bouveret et al., 2010; Aziz et al., 2015b].We determine
the complexity of the problem as polynomial-time solvable
for two agents, but NP-complete for three agents. We will
use the following reformulation of envy-freeness.

Proposition 2. For a given set N of agents, a set I of items,
and a preference list LA for each agentA ∈ N , an allocation
π : I → N is envy-free if and only if for each pair of agents
A and B (A 6= B) and index i, 1 ≤ i ≤ |I|:

|[LA(1 : i)] ∩ π−1(A)| ≥ |[LA(1 : i)] ∩ π−1(B)|. (1)

Theorem 4. Deciding whether a complete envy-free alloca-
tion exists is NP-complete for an instance with 3 agents.

Proof. Containment in NP is trivial, and we will show NP-
hardness of our problem by a reduction from the NP-complete
NOT-ALL-EQUAL 3SAT problem [Schaefer, 1978]. The in-
put for NOT-ALL-EQUAL 3SAT is a CNF Boolean formula
ϕ = c1 ∧ · · · ∧ cm with variables x1, . . . , xn, where each
clause contains three literals. The task is to find a truth assign-
ment for ϕ such that each clause contains at least one true lit-
eral and at least one false literal; such an assignment is valid.
We construct an instance (N, I, L) of ENVY-FREENESS with
N = {A,B,C} such that (N, I, L) admits a complete envy-
free allocation if and only if ϕ has a valid assignment.

W.l.o.g. we may assume that each variable occurs an even
number of times in ϕ (this property can be achieved by adding
the clause (xi ∨ xi ∨ xi) for each variable xi with an odd
number of occurrences). We transform ϕ into a formula ϕ′ as
follows: for each clause ci = (`u∨ `v ∨ `z) we add the clause
c′i = (`u ∨ `v ∨ `z). Clearly, any truth assignment is valid
for ϕ if and only if it is valid for ϕ′. Moreover, each variable
xi has the same (even) number, say µi, of occurrences as a
positive and as a negative literal in ϕ′; note

∑n
i=1 µi = 3m.

We are going to define the preferences of the agents
through several types of “building blocks”. To this end, we
define a block as a triple of lists where each list is a lin-
early ordered subset of I . The concatenation of two blocks
L = (L1, L2, L3) and L′ = (L′1, L

′
2, L
′
3) is the block

L + L′ = (L1 + L′1, L2 + L′2, L3 + L′3), where Li + L′i
denotes the (standard) concatenation of lists.

We begin with a single initial block I0. Then, for each
variable xi, 1 ≤ i ≤ n, we define the following blocks. For
each occurrence of xi, we construct a literal block: for some
j, 1 ≤ j ≤ µi, we denote the literal block corresponding to
the j-th occurrence of variable xi by Xi,j . Then we construct
µi/2 equivalence blocks Ei,2j , 1 ≤ j ≤ µi/2. We denote
the concatenation Xi,1 + · · · + Xi,µi + Ei,2 + · · · + Ei,µi

by Yi. Intuitively, each literal block represents the choice
of a truth assignment for the given occurrence of a variable,
while the equivalence blocks will ensure that these choices
are consistent. Thus, the blocks in Yi represent the choice
of a truth assignment for the variable xi. Next, for each
clause ci of ϕ, we define a validity block Vi; this block will
make sure that any complete envy-free allocation corresponds
to a truth assignment that is valid for the clauses ci and c′i.
Finally, we define a closing block Z. The full preference
lists of the agents are then obtained by the concatenation
I0 + Y1 + · · ·+ Yn + V1 + · · ·+ Vm + Z.

We give the definitions of the building blocks below. For
better readability, we give each block as subsequences of the
preference lists of the agents in N = {A,B,C}. More-
over, we define a triad as a group of three items contained
in LX [3k + 2 : 3k + 4] for some k ∈ Z and X ∈ N . In the

arguments below, it will be crucial to view the list contained
in some block (other than I0 and Z) as sequences of triads.

Block I0: A: a31,0
B: b31,0
C: c31,0

Block Xi,j :

A: b3i,j−1, c
3
i,j−1, a

1
i,j , b1i,j , [ca]1i,j , [ca]2i,j ,

c1i,j , βi,j , a
2
i,j , c2i,j , [ab]

1
i,j , [ab]

2
i,j ,

b2i,j , γi,j , a
3
i,j , [bc]2i,j , [ab]

0
i,j , [ca]0i,j

B: a3i,j−1, [bc]
1
i,j , [bc]

2
i,j , c

3
i,j−1, αi,j , b

1
i,j ,

a1i,j , c
1
i,j , b

2
i,j , c2i,j , [ab]

1
i,j , [ab]

2
i,j ,

a2i,j , γi,j , b
3
i,j , [ca]2i,j , [ab]

0
i,j , [bc]

0
i,j

C: a3i,j−1, [bc]
1
i,j , [bc]

2
i,j , b

3
i,j−1, αi,j , c

1
i,j ,

b1i,j , [ca]1i,j , [ca]2i,j , a1i,j , βi,j , c
2
i,j ,

a2i,j , b
2
i,j , c

3
i,j , [ab]2i,j , [ca]0i,j , [bc]

0
i,j

To “attach” the blocks of some variable xi to the blocks
of the previous variable xi−1, we let a3i,0 = a3i−1,µi−1

,
b3i,0 = b3i−1,µi−1

, and c3i,0 = c3i−1,µi−1
whenever i ≥ 2; we

only have duplicate names for these items to ease the for-
malization. For similar reasons, we let [ab]0i,µi+1 = [ab]0i,1,
[ab]1i,µi+1 = [ab]1i,1, and γi,µi+1 = γi,1 in the definition of
Ei,2j below (indices are taken modulo µi for these items).

Block Ei,2j :
A: −
B: [ca]1i,2j−1, [ca]0i,2j , βi,2j−1, [ca]0i,2j−1, [ca]1i,2j , βi,2j
C: [ab]1i,2j , [ab]

0
i,2j+1, γi,2j , [ab]0i,2j , [ab]

1
i,2j+1, γi,2j+1

For defining the validity block Vi, let us assume that clause
ci contains the ju-th, jv-th, and jz-th occurrence of the vari-
ables xu, xv , xz , respectively, in the formula ϕ. If xu ap-
pears in ci as a positive literal, then we define the object `u as
`u = [bc]1u,ju , otherwise we set `u = [bc]0u,ju . We define `v
and `z analogously, and we denote the items corresponding
to the negated form of these literals by `u, `v , and `z (thus, if
`u = [bc]1u,ju , then `u = [bc]0u,ju , and vice versa). Now we
are ready to describe the validity block Vi.

Block Vi: A: si, `u, `v, `z, t
1
i , αu,ju ,

αv,jv , `u, `v, `z, t
2
i , αz,jz

B: si, t
1
i , t

2
i

C: si, t
1
i , t

2
i

Block Z: A: b3n,µn
, c3n,µn

B: a3n,µn
, c3n,µn

C: a3n,µn
, b3n,µn

It is straightforward that the construction takes polynomial
time; note that |I| = 66m + 3. To verify its correctness,
let us first suppose that π : I → N is a complete envy-free
allocation. We need the following statements.

Lemma 1. Suppose π is a complete envy-free allocation for
(N, I, L).

(i) For all indices i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ µi, for each
h ∈ {1, 2, 3}, and for each k with 1 ≤ k ≤ m, we have

π(ahi,j) = A, π(αi,j) = A, π(sk) = A.
π(bhi,j) = B, π(βi,j) = B,
π(chi,j) = C, π(γi,j) = C,

(ii) In any literal block Xi,j , one of the followings hold:
(C1) Xi,j is of type 1, meaning

π([bc]1i,j) = C, π([bc]2i,j) = B, π([bc]0i,j) = B,
π([ca]1i,j) = A, π([ca]2i,j) = C, π([ca]0i,j) = C,
π([ab]1i,j) = B, π([ab]2i,j) = A, π([ab]0i,j) = A,

(C2) Xi,j is of type 2, meaning

π([bc]1i,j) = B, π([bc]2i,j) = C, π([bc]0i,j) = C,
π([ca]1i,j) = C, π([ca]2i,j) = A, π([ca]0i,j) = A,
π([ab]1i,j) = A, π([ab]2i,j) = B, π([ab]0i,j) = B.

(iii) For any i, 1 ≤ i ≤ n, all literal blocks in Yi are of the
same type; we call this the type of Yi.

(iv) Let S be the listLX [1 : 3k+1] for some k ∈ N and agent
X , where either X = A and k ≤ 18m, or X ∈ {B,C}
and k ≤ 21m. Then [S] contains exactly k + 1 items
allocated to X by π, and exactly k items allocated to
each of the other two agents.

(v) Let S be the list LA[1 : 54m + 6k + 1] for some k ∈
{1, . . . , 2m}. Then [S] contains exactly 18m + 2k + 1
items allocated to A by π, and exactly 18m + 2k items
allocated to each of the agents B and C.

Proof. We prove the lemma in an inductive manner, block
by block. Within a block, however, we will move from triad
to triad. Let us consider such prefixes SA, SB , and SC of
the preference lists LA, LB , and LC , respectively, for which
B = (SA, SB , SC) is the concatenation of the first few blocks
in our constructed instance, and let Bnext be the next block.
We prove the lemma by induction, so we assume that the
statements of (i) and (ii) hold for all items appearing in B, and
that (iv) and (v) hold for all lists S contained in B.1 We re-
fer to these claims as the induction statements, to distinguish
them from the statements of the lemma.

First observe that the induction statements indeed hold if
B = I0. To see this, observe that in an envy-free complete
allocation each agent must get its most preferred item.

Now, we are going to prove that the induction statements
also hold for B+Bnext. We distinguish between the following
cases, depending on Bnext.

Case for a literal block: Bnext = Xi,j for some i and j.
By the induction, we know π(a3i,j−1) = A, π(b3i,j−1) = B

and π(c3i,j−1) = C. Also, (iv) holds for SA, SB , and SC ,
so each of the agents has to obtain at least one item from

1More precisely, we assume that (iv) and (v) hold for all lists S
that are of the form specified by the corresponding statement, and
which, additionally, are contained in one of SA, SB , or SC . Note
that the statement of (v) is empty if |SA| ≤ 54m+ 1, meaning that
B does not contain any validity blocks.

his or her three most preferred items in Xi,j to ensure envy-
freeness. Therefore, the first triad for A shows that π must
allocate a1i,j to A. Also, one of [bc]1i,j and [bc]2i,j must be
allocated to B, and the other to C. Then, looking at the sec-
ond triads for B and C in Xi,j , we get that αi,j can only be
allocated to A, so as not to create too many items in the pref-
erence list of B allocated to C, or vice versa. This yields also
π(b1i,j) = B and π(c1i,j) = C. Now, considering agents A
and C and their second and third triads in Xi,j , resp., we
get that one of [ca]1i,j and [ca]2i,j must be allocated to A,
and the other to C. Considering the third triad for agent B,
π(b2i,j) = B follows. Next, looking at the third triad for A
and the fourth triad for C, we can observe that βi,j must be
allocated to B to ensure envy-freeness, and π(a2i,j) = A and
π(c2i,j) = C follow as well. By the fourth triads for A and
B, one of [ab]1i,j and [ab]2i,j must be allocated to A, and the
other to B. Considering the fifth triads, arguing as above we
get π(a3i,j) = A, π(b3i,j) = B and π(c3i,j) = π(γi,j) = C.
This shows the induction statement for (i).

Now, consider the last triads of Xi,j . Clearly, each agent
has to be allocated at least one item from his or her triad,
and there are exactly three items ([bc]0i,j , [ca]0i,j , and [ab]0i,j)
that they can get. Supposing that π allocates both [bc]2i,j and
[ca]2i,j to C, one can see that neither [bc]0i,j , nor [ca]0i,j can be
allocated to C, as that would create too many items allocated
by π to C in the list of either A or B. Analogously, we obtain
that neither π([bc]2i,j) = π([ab]2i,j) = B, nor π([ca]2i,j) =

π([ab]2i,j) = A is possible. Hence, we must have that ei-
ther π([bc]2i,j) = C, π([ca]2i,j) = A and π([ab]2i,j) = B,
or π([bc]2i,j) = B, π([ca]2i,j) = C and π([ab]2i,j) = A. In
the former case, we quickly get that A cannot have [ab]0i,j
(as otherwise B would have two items in his last triad of
Xi,j allocated to A), yielding π([ab]0i,j) = B. Similarly,
we get π([bc]0i,j) = C and π([ca]0i,j) = A as well. In the
latter case, the analogous arguments prove π([bc]0i,j) = B,
π([ca]0i,j) = C and π([ab]0i,j) = A. Thus, we get that the
induction statement for (ii) holds as well.

It remains to observe that π allocates exactly one item to
each of the agents from every triad. Therefore, all the induc-
tion statements hold for B +Bnext.

Case for an equivalence block: Bnext = Ei,2j for some i
and j.

Since the induction statements for claims (ii) and (iv) hold
for SB , and both [ca]1i,2j−1 and [ca]0i,2j appear in the first
triad for B, we obtain that either π([ca]1i,2j−1) = A and
π([ca]0i,2j) = C, or vice versa. Hence, Xi,2j−1 and Xi,2j

must have the same types, which shows also that each agent
obtains exactly one item from both triads for B (using also
that we have π(βi,2j) = π(βi,2j−1) = B by induction). Sim-
ilarly, the triads for C show that Xi,2j and Xi,2j+1 have the
same type, and that π allocates an item from each triad for C
to each agent. This proves that claim (iv), and therefore all
the induction statements as well, hold for B +Bnext.

Case for a validity block: Bnext = Vi for some i.
By the induction statement for claim (ii), we know that

each of the items `u, `v , and `z is allocated to one of B

or C by π. Thus, at least two of these items must be al-
located to the same agent, and since (iv) and (v) hold for
SA, we obtain π(si) = A. Thus, from the triads for B and
C, we get that π allocates one of t1i and t2i to B, and the
other to C. By the induction statement for claim (i) we know
π(αu,ju) = π(αv,jv) = π(αz,jz) = A, from which it fol-
lows that π allocates exactly two items to each of the agents
from the first two triads for A. Similarly, each agent gets two
items from the last two triads forA. This proves the induction
statements for this case.

Case for the closing block: Bnext = Z.
Notice that we only need to prove the induction statements

for claims (iv) and (v) here, which hold trivially. Using the
induction statements for the whole instance we obtain claims
(i), (ii), (iv), and (v) immediately. Finally, our arguments for
the case of an equivalence block also prove claim (iii).

Using Lemma 1 we can construct a valid truth assignment
for ϕ′ based on the allocation π. Namely, we set xi to true if
and only if the literal blocks in Yi are of type 1; by Claim (iii)
of Lemma 1 π is well-defined.

Consider the validity block Vi for some 1 ≤ i ≤ m, in-
volving the ju-th, jv-th, and jz-th occurrence of the vari-
ables xu, xv , and xz , respectively. Note that there are exactly
54m+ 12(i− 1) + 1 items preceding block Vi in the prefer-
ence list LA of agent A. By Claim (v) of Lemma 1, we know
that among these items exactly 18m+ 4(i− 1) + 1 are allo-
cated to A by π, and exactly 18m+ 4(i− 1) are allocated to
each of the other two agents. By Claim (i) of Lemma 1, we
also know π(si) = π(αu,ju) = π(αv,jv) = π(αz,jz) = A,
and from Claim (ii) we also get that each of `u, `v , and `z is
allocated to one of the agentsB or C. By Claim (v), we know
that π allocates exactly two of the items `u, `v , `z , and t1i to
B, leaving the other two items for C. Similarly, the same
holds for the items `u, `v , `z , and t2i .

Using now the definition of these items, and that condition
(C1) holds for the variables set to true, we get that the number
of true literals in the clause ci equals the number of items in
{`u, `v, `z} allocated to C by π. Since this value must be
either 1 or 2 (as argued above), we get that ci contains at least
1 but at most 2 true literals. Similarly, we obtain the same for
c′i, which proves that our truth assignment is indeed valid for
ϕ′, and hence for ϕ.

For the converse direction, suppose that we are given a
valid truth assignment ρ for ϕ. We construct an allocation
π as follows. First, we allocate all items appearing in Claim
(i) of Lemma 1 as required there. Next, for each variable xi,
we let Yi have type 1 exactly if ρ sets xi to true, and we let
Yi have type 2 otherwise (yielding the allocations as given
in Claim (ii) of Lemma 1). Finally, we set π(t1i) = B and
π(t2i) = C if there are 2 true literals in the clause ci accord-
ing to ρ, and we set π(t1i) = C and π(t2i) = B otherwise. It
is straightforward to verify the envy-freeness of π, using the
characterization given in Prop. 2.

Corollary 1. With three agents, adding/deleting/replacing
the minimum number of items to ensure the existence of an
envy-free allocation is NP-hard.

5 Proportionality
Assuming cardinal utilities, an assignment is proportional if
each agent gets at least 1/|N |-th of the utility of all the items.
In ordinal settings, we will say that an assignment is neces-
sarily proportional if it is proportional for all cardinal utilities
consistent with the ordinal preferences. Aziz et al. [2015b]
showed that itemwise envy-freeness implies necessary pro-
portionality, and that for two agents, necessary proportional-
ity is equivalent to (itemwise) envy-freeness. Hence, all the
results for envy-freeness for two agents carry over for neces-
sary proportionality for two agents.

Corollary 2. With two agents, the problem of adding/deleting
the minimum number of items to ensure the existence of a nec-
essarily proportional allocation is polynomial-time solvable.

With more than two agents, there exists a polynomial-time
algorithm to check whether there exists a necessarily propor-
tional assignment. This raises the question whether the prob-
lem of adding/deleting items to achieve necessary proportion-
ality is also polynomial-time solvable.

6 Envy and utility
A weaker form of envy-freeness considers the utilities that
agents have for their items. We say that an allocation is envy-
free w.r.t. utilities if for each agent A, the sum of utilities that
A has for its items is at least as great as the sum of utilities
that A has for the items allocated to any other agent. Suppos-
ing additive utilities, itemwise envy-freeness ensures envy-
freeness w.r.t. any utilities consistent with the preference or-
derings of the agents over the items. As envy-freeness w.r.t.
utilities is a weaker property than itemwise envy-freeness, it
may be easier to achieve and may require adding or deleting
fewer items.

There are, however, several disadvantages to considering
envy-freeness w.r.t. utilities compared to itemwise envy-
freeness. First, the chair would need to elicit utilities from the
agents. Even supposing additive utilities, this is more chal-
lenging than eliciting just a preference ordering over items.
Second, even with just two agents and identical utilities for
the agents, deciding if there is an envy-free allocation w.r.t.
utilities is NP-hard (by a simple reduction from integer parti-
tioning). Therefore, adding or deleting a minimum number of
items to ensure envy-freeness w.r.t. utilities is NP-hard even
with only two agents. This contrasts our results that, with two
agents, it takes polynomial time to add or delete a minimum
number of items to ensure itemwise envy-freeness.

7 Discussion
In this paper, we have proposed a new research direction: the
algorithmic and computational aspects of control in fair al-
location. As a case study, we presented algorithmic results
for ensuring envy-freeness by adding or deleting items for
the case of two agents. We also settled an open problem, by
proving that checking whether there exists an envy-free allo-
cation is NP-complete for the case of three agents. Our dis-
cussion raises a number of interesting research questions for
other control problems with other possible goals.

Acknowledgments
Data61 (formerly known as NICTA) is funded by the Aus-
tralian Government through the Department of Communica-
tions and the Australian Research Council through the ICT
Centre of Excellence Program. Ildikó Schlotter is supported
by the Hungarian Scientific Research Fund (OTKA grants no.
K-108383 and no. K-108947).

References
[Aziz et al., 2014] H. Aziz, S. Gaspers, S. Mackenzie, and

T. Walsh. Fair assignment of indivisible objects under or-
dinal preferences. In Proceedings of the 13th International
Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), pages 1305–1312, 2014.

[Aleksandrov et al., 2015a] M. Aleksandrov, H. Aziz,
S. Gaspers, and T. Walsh. Online fair division: Analysing
a food bank problem. In Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
pages 2540–2546, 2015.

[Aziz et al., 2015b] H. Aziz, S. Gaspers, S. Mackenzie, and
T. Walsh. Fair assignment of indivisible objects under or-
dinal preferences. Artificial Intelligence, 227:71–92, 2015.

[Bartholdi, III et al., 1992] J. Bartholdi, III, C. A. Tovey, and
M. A. Trick. How hard is it to control an election? Math-
ematical and Computer Modelling, 16(8–9):27–40, 1992.

[Bouveret et al., 2010] S. Bouveret, U. Endriss, and J. Lang.
Fair division under ordinal preferences: Computing envy-
free allocations of indivisible goods. In Proceedings of
the 19th European Conference on Artificial Intelligence
(ECAI), pages 387–392, 2010.

[Bouveret et al., 2016] S. Bouveret, Y. Chevaleyre, and
N. Maudet. Fair allocation of indivisible goods. In
F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D.
Procaccia, editors, Handbook of Computational Social
Choice, chapter 12. Cambridge University Press, 2016.

[Brams and Taylor, 1996] S. J. Brams and A. D. Taylor. Fair
Division: From Cake-Cutting to Dispute Resolution. Cam-
bridge University Press, 1996.

[Brams et al., 2014] S. J. Brams, D. M. Kilgour, and
C. Klamler. Two-person fair division of indivisible items:
An efficient, envy-free algorithm. Notices of the AMS,
61(2):130–141, 2014.

[Cechlárová and Schlotter, 2010] K. Cechlárová and
I. Schlotter. Computing the deficiency of housing markets
with duplicate houses. In Proceeding of the 5th Interna-
tional Symposium Parameterized and Exact Computation
(IPEC), pages 72–82, 2010.

[Moulin, 2003] H. Moulin. Fair Division and Collective
Welfare. The MIT Press, 2003.

[Nguyen and Vohra, 2014] T. Nguyen and R. Vohra. Near
feasible stable matchings with complementarities. Techni-
cal report, SSRN, 2014.

[Procaccia and Tennenholtz, 2013] A. D. Procaccia and
M. Tennenholtz. Approximate mechanism design without

money. ACM Transactions on Economics and Computa-
tion, 1(4), Article no. 18, 2013.

[Procaccia and Wang, 2014] A. D. Procaccia and J. Wang.
Fair enough: Guaranteeing approximate maximin shares.
In Proceedings of the 15th ACM Conference on Economics
and Computation (ACM-EC), pages 675–692. ACM Press,
2014.

[Schaefer, 1978] T. J. Schaefer. The complexity of satisfia-
bility problems. In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing (STOC), pages 216–
226. ACM Press, 1978.

[Segal-Halevi et al., 2015] E. Segal-Halevi, A. Hassidim,
and Y. Aumann. Waste makes haste: Bounded time
protocols for envy-free cake cutting with free disposal.
In Proceedings of the 14th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 901–908. IFAAMAS, 2015.

