
Chapter 1

A parallel numerical solution approach
for nonlinear parabolic systems arising
in air pollution transport problems

János Karátson and Balázs Kovács

1.1 Introduction

The subject of this paper is the numerical treatment of nonlinear parabolic
systems, which arise in various situations in the mathematical modeling of
time-dependent reaction-convection-diffusion transport systems, in particu-
lar those describing meteorological phenomena and the effect of air pollution
[16, 7, 8, 14, 15]. Such systems normally lead to large-scale and computa-
tionally complicated problems, hence it is important to develop efficient and
mathematically solid numerical solution algorithms.

We consider systems which contain nonlinear coupling in the reaction
terms, further, involving mixed boundary conditions and localized interface
conditions as well. That is, in the general case we consider a system of the
form
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∂ui

∂t − div (Ki∇ui) + bi · ∇ui +Ri(x, u1, . . . , u`) = fi

Ki∇ui · ν
∣∣
ΓN×R+ = γi

ui
∣∣
ΓD×R+ = gi

[Ki∇ui · ν]Γint×R+ = %i

[ui]Γint×R+ = 0

ui
∣∣
t=0

= u
(0)
i


(i = 1, . . . , `),

(1.1)
where t ≥ 0 is the time variable and x is the space variable in a d-dimensional
bounded domain Ω (where d = 1, 2 or 3). A precise formulation of the con-
ditions and notations of the problem will be given in the next section. Such
coupled nonlinearities frequently arise in environmental modeling, in particu-
lar, in the study of the transport of air pollutants, where ui are concentrations
of chemical species. These systems may consist of a huge number of equa-
tions, e.g. in [15] a model with more than 70 chemical reaction is analysed in
details, but larger models can also occur. We have considered such problems
with only Dirichlet boundary conditions and without interface conditions
in [11]. Thereby a compound algorithm was defined and its efficiency was
demonstrated by numerical tests.

Our goal is to extend the approach of [11] to problems with mixed bound-
ary conditions and interface conditions. The mixed boundary conditions allow
that the flux is prescribed on a part of the boundary, whereas the presence
of interface conditions allows the inclusion of a localized reaction on some
subdomain modelled by a curve or polygon. Similarly as in [11], we first ap-
ply time-discretization, thus a coupled elliptic system has to be solved on
each time level. Since the system of ODEs that stems from the chemical
part is generally stiff, the usage of implicit time-discretization schemes is in-
evitable, hence a nonlinearity appears in the elliptic problems. We propose
an outer-inner iteration (outer damped inexact Newton method with inner
preconditioned conjugate gradient, CG, method) for solving the FEM dis-
cretization of the nonlinear elliptic problems. The main part of this method
is preconditioning using the discretization of an `-tuple of independent scalar
elliptic operators as preconditioner. This implies that the preconditioning ma-
trix has a block-diagonal structure, and the auxiliary problems can be solved
with a cost proportional to that of a single PDE, in contrast to solving the
linearized PDE systems. The advantages of such operator preconditioning is
discussed in [2]. In particular, the usage of independent scalar operators as
preconditioner allows parallelization of the method, which was illustrated for
linear elliptic systems in [12].

We note that when similar problems are handled numerically on comput-
ers, a very popular and often used approach in this field involves some kind of
splitting technique (for example, the Marchuk-Strang splitting). Thereby the
problem is split into proper subproblems. In our method no splitting is used,
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since the role of separation to subproblems is played by the above mentioned
preconditioning via parallel scalar operators.

The description of the method will consist of four parts: time discretiza-
tion, space discretization, outer iteration for the nonlinear systems and inner
iteration for the linearized systems. The preconditioning step arises in the
last part, and we derive mesh independent superlinear convergence of the
preconditioned iteration.

1.2 The numerical solution process and its convergence

We consider system (1.1) under the following conditions.

Assumptions 1.2.1.

(i) (Domain:) the domain Ω is a bounded polytope in Rd with Lipschitz
boundary; ΓN , ΓD ⊂ ∂Ω are disjoint subsets, relatively open with respect
to ∂Ω and with piecewise C1 boundary, such that ∂Ω = ΓD∪ΓN , further,
the interface Γint ⊂ Ω is a piecewise C1 surface lying in Ω. Here ν is the
outward normal vector and [ .]Γint

denotes the jump (i.e., the difference of
the limits from the two sides of the interface Γint) of a function.

(ii) (Smoothness:) for any i = 1, . . . , `, Ki ∈ L∞(Ω), bi ∈ C1(Ω)d, fi ∈
L2(Ω), gi is the trace of a Dirichlet lift g̃i ∈ H1(Ω), γi ∈ L2(ΓN ) and
%i ∈ L2(Γint). Further, the function R = (R1, . . . , R`) : Ω ×R` → R` is
measurable and bounded w.r. to the variable x ∈ Ω and C1 in the variable
ξ ∈ R`.

(iii) (Boundedness from below:) there is m > 0 such that Ki ≥ m holds for all

i = 1, . . . , `, further, using the notation R′ξ(x, ξ) := ∂R(x,ξ)
∂ξ , there exists

α ∈ R such that

R′ξ(x, ξ) η · η −
1

2

(
max
i

div bi(x)
)
|η|2 ≥ α |η|2 (1.2)

for any (x, ξ) ∈ Ω ×R` and η ∈ R`.
(iv) (Local Lipschitz continuity:) let 3 ≤ p (if d = 2) or 3 ≤ p ≤ 6 (if

d = 3), then there exist constants c1, c2 ≥ 0 such that for any (x, ξ1) and
(x, ξ2) ∈ Ω ×Rl,∥∥R′ξ(x, ξ1)−R′ξ(x, ξ2)

∥∥ ≤ (c1 + c2 (max |ξ1|, |ξ2|)p−3
)
|ξ1 − ξ2|.

First let us formulate our problem using a vector notation, i.e. we set for
brevity

u := u(x, t) = (u1(x, t), u2(x, t), . . . , u`(x, t)),

which satisfies the semilinear parabolic system
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∂u

∂t
− div (K∇u) + b · ∇u+R(x,u) = f ,

K∇u · ν
∣∣
ΓN×R+ = γ,

u
∣∣
ΓD×R+ = g,

[K∇u · ν]Γint×R+ = %,

[u]Γint×R+ = 0.

(1.3)

The numerical solution starts by using Röthe’s method, see [9], where the
PDE system is first discretized in time, in general by a Runge–Kutta method,
but in our situation it is proper to use the implicit (backward) Euler method.
Then the resulting nonlinear equation will be discretized by finite elements
and solved by an iterative method combined with a preconditioning process
(as an inner iteration).

1.2.1 Time discretization

First we apply time discretization on the continuous level to system (1.3).
For stability reasons we apply the implicit Euler method. The convergence
for general time discretizations of quasilinear Cauchy problems is found e.g.
in the paper [13]. For ease of presentation we use constant step size τ . (We
denote vn := v(., nτ) for any continuous function.)

This results in the following nonlinear elliptic system on each time level,
for n ≥ 1:

−τ div
(
K∇un+1

)
+ τb · ∇un+1 + τR(x,un+1) + un+1 = τfn+1 + un,

K∇un+1 · ν
∣∣
ΓN

= γn+1,

un+1
∣∣
ΓD

= gn+1,[
K∇un+1 · ν

]
Γint

= %n+1,[
un+1

]
Γint

= 0.

(1.4)

1.2.2 FEM discretization in space

First, the weak formulation of the problem is done after homogenization of
the boundary conditions (i.e. we set ui → ui − g̃i, where g̃i is the Dirichlet
lift for gi). Defining the Sobolev space

H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD

= 0}
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that corresponds to the decomposition to ΓN and ΓD, we will use the prod-
uct space H1

D(Ω)` for system (1.1). Thereby we use the following nonlinear
operator: for any u ∈ H1

D(Ω)` let

〈F (u),v〉H1
D(Ω)` =

∫
Ω

∑̀
i=1

(
τKi∇un+1

i · ∇vi + τ
(
bi · ∇un+1

i

)
vi

+ τRi(x,u
n+1)vi + un+1

i vi

)
=

∫
Ω

(
τK∇un+1 · ∇v + τ

(
b · ∇un+1

)
· v

+ τR(x,un+1) · v + un+1 · v
) (

v ∈ H1
D(Ω)`

)
.

The weak form of the right hand side can be represented as follows, where
for simplicity we define

Γ := ΓN ∪ Γint,

and we extend the functions γi and %i to Γ as constant zero on the other
component. Thus for all v ∈ H1

D(Ω)` we let

〈B,v〉H1
D(Ω)` =

∫
Ω

∑̀
i=1

(
τfn+1
i vi + uni vi

)
dx+ τ

∫
Γ

∑̀
i=1

(
γivi + %ivi

)
dσ

=

∫
Ω

(
τfn+1 · v + un · v

)
+ τ

∫
Γ

∑̀
i=1

(
γ · v + % · v

)
dσ.

(1.5)
Therefore (1.4) is equivalent to the following abstract operator equation:

〈F (u),v〉H1
D(Ω)` = 〈B,v〉H1

D(Ω)` (v ∈ H1
D(Ω)`) (1.6)

We consider the FEM discretization of (1.6) over a quasi-uniform trian-
gulation of the domain Ω, i.e. regular triangular finite elements are used in
the two-dimensional case, while tetrahedral finite elements are needed in the
three-dimensional case. The maximal meshwidth is denoted by h. The cor-
responding finite element space Vh ⊂ V = H1

D(Ω) is spanned by continuous,
piecewise linear basis functions ϕ1, ϕ1, . . . , ϕN that are continuous on Ω and
linear on each finite element, vanising on ΓD, and ϕj(xk) = δjk holds for each
node xk (not sitting on ΓD). Then the finite element solution to (1.6) can be
simply writen as uh ∈ V `h satisfying

〈F (uh),vh〉H1
D(Ω)` = 〈B,vh〉H1

D(Ω)` (vh ∈ V `h ).

The convergence of FEM discretization is well-known, see e.g. [4].
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1.2.3 Outer iteration: damped Newton’s method

The operator Fh : V `h → V `h and the function gh ∈ V `h are defined by the
identities

〈Fh(uh),vh〉H1
0

= 〈F (uh),vh〉H1
0

(
vh ∈ V `h

)
,

〈gh,vh〉H1
0

=

∫
Ω

g · vh
(
vh ∈ V `h

)
via the Riesz representation theorem, thus the problem can be written as a
nonlinear algebraic system

Fh(uh) = gh. (1.7)

We apply the damped inexact Newton method (DIN) for the iterative solu-
tion of problem (1.7). The construction of the DIN method and the related
convergence results are well-known, for completeness we briefly summarize
them as follows.

Algorithm 1.2.1 (DIN) Let u0 ∈ V `h be arbitrary. The sequence (un) ⊂
V `h is constructed as follows:

• Denoting the residual by rh = gh − Fh(un), the vector pn is the approxi-
mate solution of problem F ′h(un)pn = rh, i.e.

‖F ′h(un)pn − rh‖H1
0
≤ δn ‖rh‖H1

0
with 0 < δn ≤ δ0 < 1,

• σn = min

{
1,

1− δn
(1 + δn)2

· K2

L ‖Fh(un)− gh‖H1
0

}
,

• un+1 = un + σnpn.

Under suitable smoothness, growth and coercivity conditions the following
theorem holds, for the proof see [6, Thm. 5.12] in a more general setting.

Theorem 1. If δn ≤ c · ‖Fh(un)− gh‖γH1
0

with some 0 < γ ≤ 1, then the

convergence is locally of order 1 + γ, that is the convergence is linear for n0
steps until ‖Fh(un)− gh‖γH1

0
≤ ε, where ε ≤ (1 − δ0)K

2

2L (here and in the

definition of σn the constant L comes from the Lipschitz continuity of F ′),
and further on (as σn ≡ 1)

‖un − uh‖H1
0
≤ d1q(1+γ)

n−n0

with some d1 > 0, 0 < q < 1.
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1.2.4 Inner iteration: preconditioned CG method using
equivalent operator preconditioning

In each step the construction of un requires the approximate solution of the
linearized problem

F ′h(un)ph = rh. (1.8)

Applying the previously mentioned homogenization and linearization, and
dividing by τ , it is easy to see that the linearized system is equivalent to the
FEM solution in V `h of a linear elliptic system of the following structure:

−div (Ki∇pi) + bi · ∇pi +
∑̀
j=1

R̂ijpj = f̂i

Ki∇pi · ν
∣∣
ΓN

= γ̂i

pi
∣∣
ΓD

= 0

[Ki∇pi · ν]Γint
= %̂i

[ pi]Γint
= 0


(i = 1, . . . , `), (1.9)

where the coefficients of the pj are

R̂ij(x) := ∂jRi
(
x, un(x) + g̃i(x)

)
+

1

τ
δij

(where δij denotes the Kronecker symbol). The weak form of problem (1.9)
on the continuous level is∫

Ω

∑̀
i=1

(
Ki∇pi · ∇vi + (bi · ∇pi) vi +

∑̀
j=1

R̂ijpjvi

)

=

∫
Ω

∑̀
i=1

f̂ividx+

∫
Γ

∑̀
i=1

(
γ̂ivi + %̂ivi

)
dσ (vh ∈ V `h ). (1.10)

Denoting by c and d the coefficient vectors of ph and rh with respect to

the FEM basis {φ1, . . . , φN}, and by L
(n)
h the stiffness matrix corresponding

to the left-hand side of (1.9), Eq. (1.8) turns into the linear algebraic system

L
(n)
h c = d. (1.11)

The theory of equivalent operators (cf. [2]) can be applied to the auxiliary
linear problem (1.9) which can be solved by a proper CG type method using a
suitable preconditioner. We propose the CGN method for the nonsymmetric
system (1.9), see e.g. [2]. Letting ηi ∈ L∞(Ω), ηi ≥ 0 be suitable functions,
we introduce the symmetric linear elliptic operators



8 János Karátson and Balázs Kovács

Sipi := −div (Ki∇pi) + ηipi (i = 1, . . . , `) (1.12)

in H1
D(Ω), and then define the `-tuple of independent elliptic operators

Sp =
(
S1p1 S2p2 . . . S`p`

)
(1.13)

as preconditioning operator. The preconditioning matrix for the discrete sys-
tem (1.11) is defined as the stiffness matrix Sh of S in H1

0 (Ω)`. Then we
apply the CGN algorithm for the preconditioned system

S−1h L
(n)
h c = S−1h d. (1.14)

where d̃ := S−1h d. According to the main idea of preconditioning, system

(1.14) is equivalent to (1.11), but the spectrum of the matrix S−1h L
(n)
h is

much more clustered than the spectrum of L
(n)
h . Therefore, when we apply

the CGN algorithm for system (1.14), we obtain fast convergence, which will
be analyized below. Altogether, in each Newton step the linearized system
(1.9) is preconditioned by the discretization of independent (i.e. decoupled)
symmetric scalar elliptic operators. This means that the preconditioning ma-
trix Sh has a block-diagonal structure. This enables parallel computation of
the solution of the auxiliary problems in the CGN, which was demonstrated
for a linear elliptic test system in [12]. Moreover, combining the convergence
results for the CGN and the DIN algorithm 1.2.1, the combined iteration
provides mesh independent convergence, with superlinear convergence rate
for both the inner and outer iterations. This was given in Theorem 1 for the
outer iteration, and it can be derived as follows for the inner iteration.

Theorem 2. (1) The left-hand side of Eq. (1.10) can be represented as∫
Ω

∑̀
i=1

(
Ki∇pi · ∇vi + (bi · ∇pi) vi +

∑̀
j=1

R̂ijpjvi

)
= 〈(I +Q)p,v〉H1

D(Ω)` ,

for any p,v ∈ H1
D(Ω)`, where Q : H1

D(Ω)` → H1
D(Ω)` is a compact linear

operator and I is the identity on H1
D(Ω)`.

(2) The right-hand side of Eq. (1.10) can be represented as∫
Ω

∑̀
i=1

f̂ividx+

∫
Γ

∑̀
i=1

(
γ̂ivi + %̂ivi

)
dσ = 〈r,v〉H1

D(Ω)` (v ∈ H1
D(Ω)`)

for a proper element r ∈ H1
D(Ω)`.

Proof. (1) Let us introduce the weighted inner product

〈u,v〉H1
D(Ω)` :=

∫
Ω

∑̀
i=1

(
Ki∇ui · ∇vi + ηiuivi

)
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in the space H1
D(Ω)`, which is equivalent to the standard one. Defining Q via

〈Qp,v〉H1
D(Ω)` :=

∫
Ω

∑̀
i=1

(
(bi · ∇pi) vi+

∑̀
j=1

R̂ijpjvi−ηipivi
)

(p,v ∈ H1
D(Ω)`),

the representation is obvious under the used weighted inner product. The
compactness of Q follows from the fact that it is the sum of the weak forms
of first and zeroth order scalar operators, for which the compactness was
shown under the similar form in [3].

(2) The continuous embedding of L2(Ω) and L2(Γ ) into H1
D(Ω) implies

that each term in the right-hand side of (1.10) is a bounded linear functional
on H1

D(Ω) w.r.t the variable vi. Hence the sum of these terms is a bounded
linear functional on H1

D(Ω)` w.r.t the variable v. Then the Riesz represen-
tation theorem yields the existence and uniqueness of the proper element
r ∈ H1

D(Ω)`.

Theorem 3. Let us apply the CGN algorithm for system (1.14) under the
Sh-inner product 〈., .〉Sh

. Then the residual errors satisfy(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (1.15)

where

εk :=
2

km2

k∑
i=1

(∣∣λi(Q∗ +Q)
∣∣+ λi(Q

∗Q)
)
→ 0 as k →∞ (1.16)

(with Q being the compact operator above, and m being the ellipticity constant
of I +Q), and εk is a sequence independent of Vh.

Proof. Due to Theorem 3, we can rewrite Eq. (1.10) as

(I +Q)p = r (1.17)

in H1
D(Ω)`, i.e. an operator equation with a compact preturbation of the

identity. Similarly, since we have the decomposition

L
(n)
h = Sh + Q

(n)
h

(where respectively S
(n)
h and Q

(n)
h are the stiffness matrices for the weighted

inner product and compact operator Q, defined in Theorem 3), we obtain
that (1.14) can be rewritten as

(Ih + S−1h Q
(n)
h ) c = d̃
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(where d̃ := S−1h d). That is, we obtain a proper projection of (1.17) in V `h ,
and Proposition 7.5 of [2] yields the desired convergence result.

1.3 Some examples in air pollution models

Systems of the type (1.1) typically arise in air pollution models, involving
diffusion, convection and chemical reactions related to the polluting materials
(pollutants), see e.g. [14, 15]. A simplified model involving the 10 main arising
pollutants involves the following vector, describing the concentrations of the
considered species:

u =
(
uNO2 , uO3 , uNO, uO2 , uO1D, uH2O, uOH, uCO, uH, uHO2

)T
.

Then the reaction terms, given through the coordinate functions of R, are as
follows:

RNO2
(u) = − J1uNO2

uhv + k2uNOuO3
− k5uOHuNO2

+ k8uHO2
uNO

RO3
(u) = J1uNO2

uhv − k2uNOuO3
− J3uO3

uhv + k9(T )uO1DuM

RNO(u) = J1uNO2
uhv − k2uNOuO3

− k8uHO2
uNO

RO2
(u) = k2uNOuO3

+ J3uO3
uhv

RO1D(u) = J3uO3
uhv − k4uO1DuH2O − k9(T )uO1DuM

RH2O(u) = − k4uO1DuH2O + k10uHCHOuOH

ROH(u) = 2k4uO1DuH2O − k5uOHuNO2
− k6uOHuCO + k8uHO2

uNO

− k10uHCHOuOH

RCO(u) = − k6uOHuCO + k10uHCHOuOH + J11uHCHOuhv

+ J12uHCHOuhv

RH(u) = k6uOHuCO − k7(T )uHuO2
uM

RHO2
(u) = k7(T )uHuO2

uM − k8uHO2
uNO + k10uHCHOuOH

+ 2J11uHCHOuhv.

Here kj are the reaction rates, and the photolysis rates are defined as

Jj = aje
−bj sin(θ)−1

.

Let us list some possible situations covered by our system (1.1). This shows
that our given numerical algorithm can be used for the computation of the
desired concentrations. The initial conditions have the same general form

ui
∣∣
t=0

= u
(0)
i

as in (1.1) in each problem below, hence it is omitted in the formulas.
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Example 1.3.1. Dirichlet boundary conditions in 2D:

∂ui

∂t − div (Ki∇ui) + bi · ∇ui +Ri(x, u1, . . . , u`) = fi

ui
∣∣
∂Ω×R+ = gi

}
(i = 1, . . . , `).

(1.18)
In this case the values of concentrations are given from a larger-scale model
on the boundary of the considered, typically rectangular domain. The exact
boundary conditions are of course unknown in real situations, therefore these
values should be taken from a model treated on a much larger spatial domain.
Some kind of interpolation may be needed because the larger models are
normally handled on the coarser grids, see details in [15]. This model was
studied in [11], and the efficiency of the similar approach was demonstrated
by numerical test, involving a rotating wind field test problem taken from
[7].

Example 1.3.2. Mixed boundary conditions in 3D:

∂ui

∂t − div (Ki∇ui) + bi · ∇ui +Ri(x, u1, . . . , u`) = fi

Ki∇ui · ν
∣∣
ΓN×R+ = 0

ui
∣∣
ΓD×R+ = gi

 (i = 1, . . . , `).

(1.19)
Here Ω is a 3D rectangle, ΓN is the union of the horizontal faces of the domain
and there the flux is assumed to be zero, i.e. no horizontal tramsmission
occurs, whereas ΓD has the same role as in the previous example.

Example 1.3.3. Mixed boundary conditions in 2D, point source:

∂ui

∂t − div (Ki∇ui) + bi · ∇ui +Ri(x, u1, . . . , u`) = fi

Ki∇ui · ν
∣∣
ΓN×R+ = γi

ui
∣∣
ΓD×R+ = gi

 (i = 1, . . . , `).

(1.20)
Here ΓD is a small circle inside Ω representing a chimney which is a(n almost)
point source of the pollution, gi are given large values, and ΓN is the outer
boundary where the flux is given.

Example 1.3.4. Dirichlet boundary conditions in 2D and interface con-
ditions on a curve:
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∂ui

∂t − div (Ki∇ui) + bi · ∇ui +Ri(x, u1, . . . , u`) = fi

ui
∣∣
∂Ω×R+ = gi

[Ki∇ui · ν]Γint×R+ = %i

[ui]Γint×R+ = 0


(i = 1, . . . , `),

(1.21)
Here Example 1 is completed such that the diffusion coefficient is different
on the two sides of an interior curve Γint that separates two subregions, e.g.
the boundary of a lake.

In addition, our results might be extended to include reaction terms also on
the interface Γint, which we did not do for simplicity. Then one can consider
problems like

∂ui

∂t − div (Ki∇ui) + bi · ∇ui +Ri(x, u1, . . . , u`) = fi

ui
∣∣
∂Ω×R+ = gi

[Ki∇ui · ν + si(x, u1, . . . , u`)]Γint×R+ = %i

[ui]Γint×R+ = 0


(i = 1, . . . , `),

(1.22)
in which given chemical reactions, described by functions si, take place on the
interior curve as considered e.g. in [10]. Such a curve can model a localized
site of catalysis, or a polluted highway etc. The formal conditions for the
functions si are similar as for Ri.

Finally we note that it is not the goal of this paper to include computer
tests, since we have focused on the general approach to construct methods for
a class of problems. It will be the subject of forthcoming papers to implement
such algorithms for specific problems like in the above examples. We expect
as similarly efficient behaviour for such problems as found in the tests for the
pure Dirichlet problem in our cited paper [11].
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