
Synthesis and characterization of biobased epoxy monomers derived from 

D-glucose 

 
 

Zsolt Rapi
1
, Beáta Szolnoki

1
, Péter Bakó

1
, Péter Niedermann

2
, Andrea Toldy

2
, Brigitta 

Bodzay
1
, György Keglevich

1
, György Marosi

1,*
 

 
1
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and 

Biotechnology, Budapest University of Technology and Economics, Budafoki út 8, 1111 

Budapest, Hungary 

2
Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest 

University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary 

*Corresponding author. e-mail: gmarosi@mail.bme.hu, tel: +36 1 463 3654 

 

 

Abstract 

This paper reports the preparation of newly synthesized sugar-based epoxy monomers, 

suitable for replacing petrochemical-derived epoxy resins of high thermal stability. Several bi- 

tri- and tetrafunctional epoxy components were prepared from D-glucose, among them the 

glucopyranoside- and glucofuranoside-based trifunctional ones proved to be the most 

promising for high-tech applications. The applicability of the synthesized compounds as 

epoxy monomers was investigated by curing probes with a model aromatic amine-type 

hardener. The curing enthalpy of the bioepoxy resins were examined, and compared to 

theoretical values, as well as the glass transition temperature, which is a crucial parameter 

when determining the potential fields of application of the bioresins. Tg values up to 175 °C 

were reached, while the thermal degradation of the cured resins start at around 300 °C. 

 

Keywords: renewable epoxy resin, synthesis, D-glucose, glass transition temperature, thermal 

stability 

 

1 Introduction 

In recent decades polymers derived from renewable resources became increasingly important 

as sustainable, eco-efficient and biodegradable products. The aim is to replace, at least 

partially, certain petroleum-based monomers
1-7

, such as diglycidyl ether of bisphenol A 

(DGEBA), which is used extensively as epoxy component of thermosetting polymers. The 

review of Auvergne et al. summarizes the recent works on the synthesis of bio-based epoxide 
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materials for this purpose
8
. Besides the fossil origin, the recognized estrogenic properties of 

bisphenol A (BPA) also intensify the research activities in this field
9
. The chemical bonds that 

link bisphenol A into the polymer backbone are not completely stable; thus, the polymer may 

release, with time, a small amount of BPA, which is toxic to living organisms
9
.  

Synthesis methods for biobased polymers have been developed starting from different natural 

materials, such as vegetable oil
10-13

, fatty acids
14

, rosin
15,16

, wood biomass
17

, industrial 

lignin
17,18

 and starch
19

. From a life-cycle perspective, sugar is a renewable resource that has 

the potential to be used as an alternative to petroleum-based polymers. At the same time, the 

development of new high value products and new concepts in sugar manufacturing could be 

an answer
20 

to the challenge of both oversupply and low prices in that field
21

. 

The presence of highly reactive hydroxyl group in the very common and readily available 

carbohydrates enables the synthesis of a wide variety of monomers suitable for making 

different classes of polymers
22-26

. The multifunctionality of these compounds necessitates 

specific group protection if linear polymers with high molecular weight are desired. 

Carbohydrate-based polycondensates can typically show increased hydrophilicity, lower 

toxicity and higher susceptibility to biodegradation, compared to those coming from 

petrochemical feedstock. 

The review of Linhardt et al. gives an excellent update on the synthesis and application of 

carbohydrate-containing polymers till 2001
27

, summarizing the knowledge accumulated on 

the synthetic carbohydrate-based polymers, which are increasingly explored as biodegradable, 

biocompatible, and biorenewable materials applicable as water absorbents, chromatographic 

supports, and medical devices. Later on, L-arabinitol- and xylitol-based polymers
28,29

, and D-

mannitol-, galactitol- and galactaric acid-based polyesters
30-32

 have been prepared. Synthesis 

and characterization of polyuretane from a D-glucamine-based monomer
33

, as well as that of 

polyamides from galactaric, xylaric, D-glucaric and D-mannaric acids
34-36

 have been also 

reported. 

Regarding epoxies, the use of natural polysaccharides was investigated in the synthesis of 

biobased epoxy monomers aiming to replace DGEBA. One group of the most promising 

sugar-derivatives as starting material are dianhydrohexitols, such as isosorbide, isomannide, 

isoidide, derived from D-glucose, D-mannose and L-fructose, respectively. The synthesized 

diglycidyl ether of isosorbide (1,4:3,6-dianhydro-D-sorbitol) was successfully incorporated 

into thermosets and thermoplastics in several cases. Some isosorbide-based thermosets had 

dry mechanical properties comparable to DGEBA
37-41

, however, the glass transition 

temperatures of the amine-cured networks are still lower than expected
40-42

. 



The aim of the present work was to prepare high performance bio-based epoxy components 

derived from D-glucose, an inexpensive, easily available and renewable starting material, 

which has not yet been applied as epoxy monomer precursor, and to characterize their curing 

properties, glass transition temperature and thermal stability. 

 

2 Experimental 

The materials used in the organic syntheses, as well as the applied model curing agent, DDM 

(4,4’-diaminodiphenyl methane, amine hydrogen equivalent weight: 49.6 g/eq) were 

purchased from Sigma-Aldrich. As reference epoxy component DGEBA was applied (ER 

1010, epoxy equivalent weight: 180 g/eq; viscosity: 12 Pa.s), received from Ipox Chemicals. 

The viscosity of the synthesized liquid epoxy monomers was determined in steady state flow 

rotating mode at room temperature, using a TA Instruments AR2000 rheometer. The shear 

rate was between 4 and 40 s
-1

, the sample was placed between a rotating 40-mm-diameter 

plane disc and a controlled-temperature plane sheet. 5 points have been recorded in each 

decade of shear rate, 3 minutes have been left at each point to reach equilibrium, 3 

consecutive measurements had to be in a 5% difference range before continuing to the next 

shear rate point.The curing process was monitored with TA instruments DSC Q2000 type 

DSC equipment in 50 ml/min nitrogen flow. Tzero type aluminium pans were used, the 

sample size was between 5-10 mg. The applied three-step temperature program consisted of 

heat/cool/heat cycles: after a linear ramp from 25-250 °C with 5 °C/min heat rate, the sample 

was cooled down to 0 °C with 50 °C/min cooling rate, followed by a second linear heating 

ramp from 0-250 °C with 5 °C/min heating rate. From the first ramp the curing enthalpy was 

determined, while from the second one the glass transition temperature of the different 

systems was received.  

The completion of the curing was also monitored by Raman spectrometry, using a Horiba 

Jobin-Yvon LabRAM system coupled with an external 785 nm diode laser source and an 

Olympus BX-40 optical microscope. The spectrograph was set to provide a spectral range of 

200-2000 cm
-1

 and 3 cm
-1

 resolution. Objectives of 10× for the starting materials and 50× 

magnification for the cured sample were used for spectrum acquisition. 

The thermal stability of the different compositions was determined by TGA measurements 

using Setaram Labsys TG DTA/DSC instrument in the temperature range of 25-800 °C at a 

heating rate of 10 °C/min under nitrogen gas flow rate of 30 ml/min. About 15-20 mg of 

sample was used in each test. 



Shore D hardness of several cured epoxy networks was investigated using a Zwick Roell 

H04.3150 type hardness tester. At least ten points of each sample were tested, according to 

ISO 868. 

Specimens for the Raman and hardness measurements of the synthesized trifunctional 

bioepoxy resins and the reference DGEBA were cured in silicon mould, with a temperature 

program of 2 h at 120 °C and 2 h at 150 °C. 

 

3 Results and discussion 

3.1 Synthesis of D-glucose-based epoxy components 

In this part, the syntheses of α-D-glucopyranoside- and glucofuranoside-based epoxy 

monomers derived from D-glucose are presented. Glucose is an easily available commercial 

product and it is a “green”, inexpensive and non-toxic starting material in organic syntheses.  

Our aim was to prepare D-glucose-derivatives with two or more epoxy groups making them 

suitable for polymerization.  The exact recipes of the synthetic procedures can be found in the 

Supplementary data. 

Methyl-α-D-glucopyranoside (that is a commercial product) can be obtained by the 

condensation of D-glucose with methanol in the presence of cation-exchange resin as catalyst 

(yield of the α-D-anomer about 25%)
43

. (Our experiments described here were carried out 

starting from methyl-α-D-glucopyranoside, but, a mixture of α- and β-anomers is also 

perfectly suitable for the purpose of the polymers). Methyl 4,6-O-benzylidene-α-D-

glucopyranoside (1) was prepared in the condensation of methyl-α-D-glucoside with 

benzaldehyde using zinc chloride as the catalyst (Scheme 1). After a reaction of 4 h at room 

temperature, the intermediate 1 was obtained in a yield of nearly 72% by crystallization
44

. 

Treatment of compound 1 with an excess of allyl bromide and solid potassium hydroxide in 

refluxing toluene gave diallyl ether 2, after crystallization in a yield of 90% (Scheme 1)
45

. 

Diallyl ether 2 was converted by treatment with hydrogen peroxide into diglycidyl ether 

derivative 3 in methanol in the presence of K2CO3 and benzonitrile by the method of 

Lindberg
46

.  After chromatography the yield of the solid crystalline product 3 was 40% 

(Scheme 1) (see Supplementary data). 



Scheme 1 Synthesis of bifunctional epoxy component derived from D-glucose  

 

A one step synthesis of glucose-based diglycidyl ether 3 was also performed using different 

methods. The reaction of methyl-4,6-O-benzylidene-α-D-glucopyranoside (1) with 

epichlorohydrin has not been described in the literature (Scheme 2). This reaction was carried 

out under different reaction conditions with different bases in various solvents. In the optimal 

case, a large excess of epichlorohydrin was applied as reagent and also as solvent, but the 

pure compound having two epoxypropyl groups (3) could not be prepared. Solvent free 

reactions of compound 1 in the presence of Bu4NHSO4 resulted in mixtures of mono- and 

disubstituted products. These mixtures contained 1.3 epoxypropyl groups per molecule in 

average, thus completely double substituted glucose derivative 3 could not be obtained by 

these methods. The failure of these attempts may be caused by the nature of the free hydroxyl 

groups. The secondary OH functions are less reactive than the primary ones, due to this, direct 

O-alkylation of the former ones requires strong base (e.g. NaH) or highly activated alkylating 

agent (e.g. allyl bromide). Formation of glycidyl ether can involve not only nucleophile 

substitution, but a two-step mechanism (ring opening and intramolecular cyclization). The 

attack of one of the hydroxyl groups on the epoxide ring of the epichlorohydrin results in an 

intermediate containing a newly formed secondary OH function. The reactivity of the new 

alcohol group is comparable to that of the other free one attached to the carbohydrate ring due 

to their similar pKa values, which leads to their competition in the ring-opening reaction. In 

addition, the steric hindrance of the hydroxyl function bound to the six-membered ring is 

increased by the group formed on the other, already substituted OH function. 

 

Scheme 2 One-step reaction with epichlorohydrin 



 

The synthesis of compound 7 having three glycidyl ether groups was carried out using two 

methods (Scheme 3). Preparation of allyl-α-D-glucopyranoside (4) was performed by the 

reaction of D-glucose and allyl alcohol in the presence of boron trifluoride diethyl etherate 

(BF3
.
Et2O) as the catalyst in 26% yield (5 h, reflux, column chromatography)

47
. Selective 

protection of the 4- and 6-hydroxyl groups of the allyl-α-D-glucopyranoside with 

benzaldehyde dimethylacetal using pTsOH as catalyst was accomplished in DMF resulting in 

compound 5 in good yield (76%)
48

 (see Supplementary data). 

 

Scheme 3 Synthesis of glucopyranoside-based trifunctional epoxy component 

 

The one pot method for preparation of compound 5 proved to be simpler
48

. D-glucose was 

refluxed in allyl alcohol in the presence of CF3SO3H for 48 h. After the removal of the 

alcohol and the acid, the residue was reacted in DMF with benzaldehyde dimethylacetal using 

pTsOH as catalyst (40 °C, 5 h). After the working up procedure the crude product was a 

mixture of the α- and β-anomers. Allyl-4,6-O-benzylidene-α-d-glucopyranoside (5) was 

obtained in pure form after crystallization from ethanol in a yield of 23%
48

. If the pure α-

epimer was not separated, the mixture of α and β isomers could be obtained with the yield of 

45%. The reaction of compound 5 with allyl bromide in toluene in the presence of potassium 

hydroxide gave the corresponding 1,2,3-tri-O-allyl derivative 6 (Scheme 3)
49

. Epoxidation of 

6 with m-chloroperbenzoic acid in toluene resulted in (2’,3’-epoxypropyl)-2,3-di-O-(2’,3’-

epoxypropyl)-4,6-O-benzylidene-α-D-glucopyranoside (7) after chromatography with 72% 

yield of the crystalline product (Scheme 3) (see Supplementary data).  



The preparation of the tetraallyl-derivative (8) was carried out by the reaction of methyl-α-D-

glucoside and allyl bromide in 1,4-dioxane in the presence of potassium hydroxide. After 

chromatography the yield of product 8 was 40%. The tetraepoxy-glucopyranoside-derivative 

(9) was obtained by the oxidation of compound 8 with m-chloroperbenzoic acid in toluene, as 

described above. The yield of the crystalline product 9 was 50% (Scheme 4)
50

.
 

 

Scheme 4 Synthesis of glucopyranoside-based tetrafunctional epoxy component 

 

D-Glucose was also the starting material of the isopropylidene-α-D-glucofuranoside-based 

epoxy component. The key compound was the 1,2-di-O-isopropylidene-α-D-glucofuranoside 

(11) which could be obtained by two methods (Scheme 5). The reaction of D-glucose with 

acetone (reagent and solvent) in the presence of iodine (as the catalyst) resulted in 1,2:5,6-di-

O-isopropylidene-α-D-glucofuranoside (10) in good yield (59%) after purification by 

crystallization
51

. Selective removal of the 5,6-O-isopropylidene group of the intermediate was 

performed with diluted sulfuric acid in methanol (24 h, room temperature, yield after 

crystallization is 65%) (Scheme 5)
51

.
 



 
Scheme 5 Synthesis of glucofuranoside-based trifunctional epoxy component 

 

However, the one pot method for preparation of compound 11 proved to be more effective
52

. 

First, D-glucose was treated with acetone in the presence of sulfuric acid, then after 

neutralization and evaporation of the reaction mixture, the crude product (1,2:5,6-di-O-

isopropylidene-α-D-glucofuranoside) was treated with hydrochloric acid giving intermediate 

11 in a yield of 43% after recrystallization (Scheme 5). The reaction of compound 11 with 

mixture of potassium hydroxide and allyl bromide in toluene gave the corresponding 3,5,6-tri-

O-allyl derivative 12 in yield of 74% applying a modification of the method by Bullock
53

 

(Scheme 5). Epoxidation of allyl ether 12 with m-chloroperbenzoic acid in toluene resulted in 

3,5,6-tri-O-(2’,3’-epoxypropyl)-1,2-O-isopropylidene-α-D-glucofuranoside (13) in a yield of 

76% after purification by chromatography (Scheme 5)
50

 (see Supplementary data). The 

product is yellow oil, with a viscosity of 3.77 Pa.s at room temperature. 

 

3.2 Curing properties of the synthesized components 

For investigating the applicability of the synthesized glucose-based epoxy monomers DSC 

measurements were carried out. For the curing probes, 4,4’-diaminodiphenyl methane (DDM) 

model compound was applied as hardener. The synthesized components were prepared in 

>95% purity, their epoxy equivalents could be determined from their molecular weight 

(Table 1). The epoxy equivalent values were also determined by titration, and the results were 



in good accordance with the theoretical values. The appropriate mixing ratio of the epoxy and 

amine components was calculated from the epoxy equivalents and the amine number of the 

model hardener DDM, in order to reach maximal crosslink-density. For the measurements, the 

powdered or liquid epoxy monomers were mixed with appropriate amount of the powdered 

hardener in a mortar in order to reach homogenous dispersion of the components. 

The curing enthalpies of the different bioepoxy resins were determined from the first heating 

ramp (Table 1). As it can be seen, the onset point of the curing is about 120 °C in most cases. 

The peak temperature is also in the same temperature range for compounds 3 (GP2E, 

glucopyranoside-based diepoxy), 7 (GP3E, glucopyranoside-based triepoxy) and 13 (GF3E, 

glucofuranoside-based triepoxy), however compound 9 (GP4E, glucopyranoside-based 

tetraepoxy) shows somewhat lower values. As the reaction enthalpy of an epoxy – amine 

system (from -118 to -100 kJ/mol of epoxy groups
54

 or from -111 to -98 kJ/mol
55

) is 

independent from the molecular structure of the components,
54,55

 the degree of cure can be 

determined (Table 1 rows 6-8). For the calculations, -105 kJ/mol of epoxy groups was chosen 

as an average value. From the curing enthalpy measured in DSC (J/g), the enthalpy in kJ/mol 

of epoxy groups was calculated, applying the mixing ratio of the two components (Table 1, 

row 7). These calculated values were compared to the theoretical value (105 kJ/mol pf epoxy 

groups) to determine the degree of cure (Table 1, row 8). In the case of the oily GF3E 

bioepoxy monomer, the calculated enthalpy is in good accordance with the theoretical value, 

as well as in the case of the reference DGEBA – DDM system. From the results it can be 

seen, that the reaction between the glucopyranoside-based epoxy components and the 

hardener was not complete, the degree of cure is only 60-80%. This phenomenon can be 

explained by the solid state of these bioepoxies: during the mixing in the mortar, no molecular 

level homogenization of the two components was reached, thus, no full curing could be 

achieved. (Neither the solutions of the components, nor the mixtures of the melted molecules 

are suitable for determining the curing by DSC method. The presence of the solvent, or the 

already started reaction between the components would falsify the results.) 

 

 

 

 

 

 

 



Table 1 Curing behaviour of the synthesized bioepoxy components 

epoxy 

component 

GP2E GP3E GP4E GF3E DGEBA 

epoxy equivalent 

weight (g/eq) 

197 145 104 129 180 

quantity of DDM 

used for 100 g of 

epoxy monomer (g)  

25.2 34.2 47.7 38.5 27.6 

onset point of curing 

(°C) 

127.4 98.0 117.6 127.6 121.4 

peak of curing (°C) 164.3 127.3 143.0 158.4 148.8 

measured enthalpy 

of curing (J/g) 

258.0 395.3 535.5 530.6 432.1 

calculated enthalpy 

of curing (kJ/mol of 

epoxy groups) 

63.69 77.18 82.74 95.11 99.21 

degree of cure (%) 60.7 73.5 78.8 90.6 94.5 

glass transition 

temperature (°C) 

76 154 130 177 174 

 

The glass transition temperatures (Tg) of the different glucose-based epoxy networks (Table 

1) show variable values. As expected, the lowest Tg was measured for the bifunctional 

glucopyranoside-based component (3, GP2E), due to the low functionality, and low degree of 

cure. When comparing the glucopyranoside-based tri- and tetrafunctional resins, in contrast to 

the expectations, not the higher functionality provided the higher Tg. This phenomenon can be 

explained by the higher flexibility of GP4E structure (compound 9), as the rigid bicyclic part 

is missing in this case, the segmental movements are less limited. Taking into account the 

lower degree of cure of the glucopyranoside-based bioepoxies, under technological 

circumstances when the presence of solvent or the melted state of the components is not 

disturbing, even higher Tg values are foreseen. The highest Tg value (177 °C) was reached 

using the glucofuranoside-based trifunctional epoxy component (13, GF3E), owing to the 

compact structure of the molecule, even higher than that for the reference DGEBA (174 °C). 



The completion of the curing in the case of GF3E was also investigated by Raman 

spectrometry. The Raman spectra of the pure GF3E epoxy monomer, the model hardener 

(DDM) and the cured resin can be seen in Figure 1. 

 

Figure 1 Raman spectra of GF3E epoxy component (a), DDM curing agent (b) and the cured 

resin (c) 

The characteristic bands of the epoxy ring can be seen at 917 and at 1257 cm
-1

, respectively in 

the spectrum of GF3E (Figure 1 a). At this region, the vibrations of the NH2 groups appear as 

weak peaks at 1317 and at 1584 cm
-1

 (Figure 1 b). In the spectrum of the cured resin (Figure 

1 c), the characteristic peaks of neither the epoxy component nor the amine-type hardener can 

be seen, which indicates complete reaction between the two components. 

 

3.3 Thermal stability of the synthesized bioepoxy resins 

The thermal stability of the cured bioepoxy networks was determined by TGA measurements 

(Figure 2 and Table 2). 



 

Figure 2 TGA curves of the different bioepoxy components cured with DDM 

 

The degradation of the trifunctional glucofuranoside-based resin (GF3E) starts at the lowest 

temperature among the investigated systems, as the 1,2-O-isopropylidene group of the 

molecule 13 can easily split off, releasing acetone. The further decomposition of this sample 

is relatively slow. The bi- and trifunctional glucopyranoside-based resins (GP2E and GP3E) 

start to degrade at about 330 °C, with the leaving of 4,6-O-benzylidene protecting group. The 

tetrafunctional epoxy component and the reference DGEBA show the same behaviour. These 

molecules have no easily breakable protecting groups, so the highest thermal stability can be 

reached (up to 360 °C), however, their degradation rate is also high. The relatively high char 

yields of the synthesized bioepoxy compositions is very promising in respect of flame 

retardation (Table 2). 

 

Table 2 Thermal degradation of the different bioepoxy compositions 

component T-5% 

(°C) 

T-50%  

(°C) 

dTGmax 

 (%/min) 

TdTGmax  

(°C) 

char yield 

(%) 

GP2E 330.4 466.7 -7.65 374.7 42.7 

GP3E 335.6 398.3 -11.48 362.9 26.6 

GP4E 367.0 426.4 -12.37 385.2 34.0 

GF3E 293.1 416.1 -5.41 358.7 34.6 

DGEBA 367.7 423.6 -13.43 384.1 34.8 

T-5%: temperature at 5 mass% loss; T-50%: temperature at 50 mass% loss, dTGmax: maximum 

mass loss rate; TdTGmax: temperature belonging to dTGmax 



 

3.4 Hardness measurements 

As the synthesized trifunctional bioepoxy monomers (GP3E and GF3E) showed the highest 

Tg values, their Shore D hardness was also determined and compared to that of the DGEBA. 

The results of the tests are summarized in Table 3. 

 

Table 3 Shore D hardness of the resins 

epoxy 

component 

GP3E GF3E DGEBA 

Shore D 

hardness 

74 ± 4 78 ± 3 75 ± 3 

 

The measured values for the bioepoxy networks are in good accordance with the value 

measured for the DGEBA-based one. Further mechanical measurements are planned in order 

to determine the applicability of the synthesized bioepoxies as matrix materials for high tech 

composites, however, the hardness values similar to DGEBA’s, are very promising.. 

 

4 Conclusions 

The aim of this study was to synthesize epoxy monomers from an inexpensive, renewable and 

easily available starting material, D-glucose. By protecting the hydroxyl groups in the 4 and 6 

positions, bi- and trifunctional glucopyranoside-based epoxy components were synthesized 

via allylation of the free OH-groups, followed by the epoxidation of the carbon-carbon double 

bond with m-chloroperbenzoic acid, having a relatively rigid, bicyclic backbone. By removing 

the 4,6-O-benzylidene protecting group, a tetrafunctional epoxy component was synthesized. 

Besides the glucopyranoside-based components, a glucofuranoside-based trifunctional 

molecule was also prepared: glucose was reacted with acetone, followed by the selective 

removing of the 5,6-O-isopropylidene group. The forming free hydroxyl groups were reacted 

first with allyl bromide, and then the allyl functions were epoxidized. Among the prepared 

components, the glucopyranoside-based tri- and tetrafunctional molecules have not yet been 

synthesized, while the other two compounds have not yet been cured to form epoxy resins. 

Curing investigations were carried out from the prepared bioepoxy monomers; the diepoxide 

(compound 3), two triepoxides (7 and 13) and also the glucose-based tetraepoxy component 

(9) were cured successfully with a model hardener (DDM). The glass transition temperatures 

were also determined. The highest value was reached with the glucofuranoside-based 

trifunctional component, as the easy accessibility of the epoxy groups is combined with a 



relatively rigid bicyclic backbone. The thermal stability of the cured resins was investigated 

by TGA measurements. The degradation of the samples starts between 293 and 367 °C, while 

all the synthesized resins have relatively high char yields at 800 °C promising easy flame 

retardancy. The Shore D hardness, determined for the trifunctional bioepoxy networks, 

showed similar values to that measured for the reference DGEBA. 

Based on the results, these innovative, renewable and easily synthesizable components, 

showing good performance as cured epoxy networks, are promising candidates for further 

investigations as bio-based high tech epoxy resins. 
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