
Clustered Simple Cell Mapping: an extension to the Simple Cell Mapping
method

Gergely Gyebrószkia,1,∗, Gábor Csernák2

aBudapest, Műegyetem rkp. 5, H-1111, Hungary

Abstract

When a dynamical system has a complex structure of fixed points, periodic cycles or even chaotic attractors,
Cell Mapping methods are excellent tools to discover and thoroughly analyse all features in the state space.
These methods discretize a region of the state space into cells and examine the dynamics in the cell state
space. By determining one or more image cells for each cell, the global behaviour within the region can be
quickly determined. In the simplest case – Simple Cell Mapping (SCM) method – only one image corresponds
to a cell and usually a rectangular grid of cells is used. In typical applications the grid of cells is refined at
specific locations.
This paper, however, introduces a different approach, which is useful to expand the analysed state space
region to include all features which properly characterize the global dynamics of the system. Instead of
refining the initial cell state space, we start with a small initial state space region, analyse other interesting
regions of the state space and incorporate them into a cluster of cell mapping solutions. By this approach,
trajectories escaping the original state space region can be followed automatically and additional objects in
the state space can be discovered.
To illustrate the benefits of the method, we present the exploration of the phase-space of the micro-chaos
map – a simple model of digitally controlled systems.

Keywords: discretized state space, adaptive global analysis, algorithm, micro-chaos

Highlights:

• Extension of the Simple Cell Mapping method by adaptively expanding cell state space.

• New state space regions can be attached to the cluster of SCM solutions.

• Clustering makes parallel computation trivial.

1. Introduction5

Cell Mapping methods (or shortly CM methods) were introduced by C.S. Hsu [1], in order to make the
quick and thorough global analysis of nonlinear systems possible. CM methods discretize a region of the
state space, thus creating the so called cell state space. For each cell one or more image cell is assigned (to
where the dynamics lead from that cell), and by analysing the resulting graph or Markov-chain, periodic
orbits, fixed points and their domains of attraction can be found.10

The simplest CM method is the Simple Cell Mapping (SCM) and in the simplest case the cell state space
is an n-dimensional grid of cells of the same size. The basic idea of the SCM method is that each cell has
a single image, which is usually determined using the Centre Point Method [1], namely, a single trajectory

∗Corresponding author
Email address: gyebro@mm.bme.hu (Gergely Gyebrószki )

1Department of Applied Mechanics, Budapest University of Technology and Economics
2MTA-BME Research Group on Dynamics of Machines and Vehicles

Preprint submitted to Communications in Nonlinear Science and Numerical Simulation May 26, 2016

Csernák Gábor
Beírt szöveg

Csernák Gábor
Beírt szöveg

Csernák Gábor
Beírt szöveg
Published in: Communications in Nonlinear Science and Numerical Simulation, 42, pp. 607-622 (2017)



from the centre of the cell domain is examined. In other words, all states within a cell are mapped to a
single cell. Due to this property, the method is able to classify cells either as periodic cells (belonging to15

a periodic group) or transient cells (leading to a periodic group). Successful classification of all cells forms
the solution of the SCM.
There are many variation of the CM methods, usually a relatively fast CM method (for example SCM) is
applied to the initial state space region, then further analysis is carried out at certain locations, using more
advanced methods (Generalized Cell Mapping, for instance), typically with refined cell state space [2], [3],20

[4]. These methods are excellent if the interesting region of the state space is known, but if that’sthat is
not the case, a method capable of automatically extending the analysed state space region could be more
suitable. Our goal is to extend the Simple Cell Mapping with such capability.
To emphasize the relevance of adaptive state space extension, one could recall the following situations:

• The dynamical system has an expectedly complex state space and the enclosing region of state space25

objects is not known.

• The dynamical system has more than one attractors, and not all of them are found in the initial state
space region. Escaping trajectories indicate the possible direction of other attracting structures.

• A lower dimensional state space object, e.g., a basin boundary is being followed.

• Examination of global bifurcations or crises in dynamical systems in cases when the structure and/or30

the size of state space objects change abruptly during the variation of certain parameters. This
situation is typically encountered in piecewise smooth systems.

• Analysing diffusion-like processes, for example intermittent maps [5].

Our approach to solve the problem of state space extension is to find an adjacent region to the initial state
space, to where most of the trajectories escape. Afterwards, a separate CM solution is calculated on that35

region and the two solutions are joined. Upon the joining procedure, new state space objects residing on the
boundary of the two cell state spaces are also discovered. This paper introduces this extension, particularly
for the Simple Cell Mapping method, because it is the simplest adequate method to discover all objects in
the state space [1]. The method of joining separate SCM solutions to a cluster of SCM solutions is referred
to as Clustered SCM method. Based on these results, optional later analysis can be carried out using more40

advanced CM methods [6].
As an example of application, we show the analysis of the so-called micro-chaos map [7], where multiple
disconnected attractors – possibly consisting of distinguishable communicating repellers – are present in
the state space. The behaviour of this piecewise smooth system fits into moremost of the aforementioned
situations, as it exhibits a pattern of chaotic attractors and crisis phenomena with the appearance or disap-45

pearance of chaotic attractors/repellers [8].

1.1. Definitions and abbreviations

This section describes the basics terms, definitions and properties related to the Simple Cell Mapping,
which are used throughout the paper. Also some auxiliary subroutines are presented, which are necessary50

for the implementation of the method (see Figure 1).

• Cell state space (CSS): the bounded and discretized state space region, which is continuously covered
by arbitrary cell domains. In the simplest case n-dimensional rectangular cuboids of the same size can
be used to discretize an n-dimensional state space.

• Cell domain: bounded domain of the state space, part of the cell state space. In the simplest case it55

can be represented by a centre point in the state space and lengths along each dimension.

• Cell : object having its unique index referencing to a cell domain and various properties (e.g. image,
pre-image).

2



• Cell index (or shortly index ): cell property; a unique identifier.

• Image: property of a cell, one or more reference to other cells. The dynamics from the cell domain60

corresponding to the cell lead to the cell domain(s) indexed by the image(s).

• Pre-image: property of a cell, one or more reference to other cells. The dynamics from the cell
domain(s) indexed by the pre-image(s) lead to the cell domain corresponding to the cell.

• Sink cell (SC): a special cell indexing the unbounded region of the state space outside the CSS. Once
a trajectory enters the sink, its evolution is no longer followed, to express this, the image of the sink65

is itself by definition.

• State-to-index (or shortly index()) function: is a surjective function returning the index corresponding
to the cell domain covering the given point in the state space.

• Index-to-domain (or shortly domain()) function: is a bijective function returning the cell domain
representation for the given index.70

• Cell sequence: A set of cells formed by tracking the image of cells subsequently.
(See cells {7, 2, 4, 11, 18, 24, 16} in Figure 1.)

• Periodic group (PG): A part of a cell sequence, that might constitute a periodic motion. A periodic
cycle of n cells forms a periodic group, with periodicity n (or shortly an n-P group). Each cell within
the PG is a periodic cell with period n, or shortly n-P cell [1]. (For example, the sink cell is a 1-P cell75

and forms a 1-P group.)

• Transient cell : Cell sequences leading to an n-P cell contain an n-P group at the end of the sequence.
All other cells within the sequence are transient cells leading to that periodic group, forming a transient
cell sequence.

• Transient cell sequence: cell sequences with their destination n-P cells removed form a transient cell80

sequence, see Figure 1.

• Group number (g): For each periodic group a unique group number is assigned. All periodic cells
within a PG and all transient cells leading to that PG have the same specific group number assigned.

• Step number (s): property of a cell, the number of steps required to reach a PG. Periodic cells’ step
number is s = 0, while transient cells’ step number is s > 0.85

• Domain of Attraction (DoA): the DoA of a PG with group number g is the set of (transient) cells with
the same group number g and step number s > 0. The Domain of Attraction can be thought as the
discretization of the Basin of Attraction (see [9], [10] and for its numerical exploration [11].)

• SCM solution: After the successful execution of the SCM method, besides the initial cell properties,
the group number and step number properties are assigned to each cell. At this stage all periodic90

groups and their domain of attraction are found, and we call the cell state space and its properties the
SCM solution.

2. Joining two SCM solutions

This section describes the procedure of joining two SCM solutions with non-overlapping cell state spaces.
No other restrictions apply to the cell state spaces, even non-adjacent regions can be joined. First, the95

possible relationships between cells of the SCMs are examined, then the algorithm of joining is explained
supported by a pseudo-code of the procedure.

We adopt the following conventions regarding the SCM solutions to aid the joining procedure.

3



1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

cell 2:

index: 2
image: 4
pre-image: 7

type: transient
group number: 1
step number: 2

periodic group (PG), No: 1

transient cell sequence, leading to a PG 

transient cell sequence, leading to the sink

sink cell

Figure 1: Explanation of the definitions introduced in Section 1.1

• Group number g = 0 is assigned to the sink cell(which is a 1-P cell by definition). Also the sink cell’s
index is 0.100

• A new property, called cell mapping index (shortly: cmid) is assigned to each cell as an extension to
its group number indicating which SCM contains the group referenced by the group number. Initially
all SCM solutions have a unique cmid, and all cells within an SCM solution hashave that same cmid.

• Cells have an auxiliary state property, which can take any of the following three values: untouched,
under processing, processed. This property is used to keep track of the solution procedure.105

2.1. Relationship of two SCM solutions

Upon joining two SCM solutions, transient cell sequences leading to the sink cell are examined, because
these cell sequences might enter the other SCM’s cell state space and lead to an object within the united cell
state space – the union of the two cell state spaces. The state space region outside the united cell state space
is called reduced sink. While examining an SCM solution’s transient cell sequences leading to the original110

sink, the following cases can occur (Figure 2).

1. The transient cell sequence leads to a known destination:

(a) the reduced sink or
(b) a periodic or transient cell with group number g > 0 of the other SCM.

2. The transient cell sequence leads to a cell of the other SCM, which belongs to the domain of attraction115

of the sink (so the cell’s group number is g = 0). This means that the final destination of the sequence
is not known yet.

Considering the above cases, only Case 2 requires further analysis. Otherwise, transient cell sequences can
be updated with a new group and step number (along with a new cell mapping id), corresponding to their
new destination.120

The procedure of joining two SCM solutions is therefore divided into two stages. Stage 1 enumerates all
transient cell sequences and also updates those corresponding to Case 1. Stage 2 analyses the remaining
sequences of Case 2.

2.2. Cell tree mapping

It is clear, that cell sequences leading to the other SCM’s sink cell’s domain of attraction (See Case 2 in125

Section 2.1) will eventually have one of the already existing periodic groups (including the reduced sink) as
their destination, or they might form a new periodic group possibly with some extra transient cells leading
to that PG.
This calls for the idea of mapping these remaining transient cell sequences onto each other (or some already

4



previously classified transient cells
previously classified periodic cells
cells updated in the 1st stage
cells updated in the 2nd stage

SCM1 SCM2

cell seq. leading to a known destination
cell seq. leading to SCM2 from SCM1
cell seq. leading to SCM1 from SCM2

reduced sink

Figure 2: Joining of previously calculated adjacent SCM solutions. Cell sequences which lead to a known destination can be
updated in Stage 1 (green cells), while sequences leading to another unclassified sequence or transient cell need further analysis
in Stage 2 (orange cells). As a result, new periodic groups can be found close to the boundary of SCM1 and SCM2.

determined cell). Transient cell sequences form trees called cell trees having a single cell as destination130

(which belongs to the other SCM), therefore these trees can be handled just like cells in SCM. The image
of a cell tree is either a cell which was updated in the first stage of the joining procedure (Case 1 in Section
2.1), or alternatively a member cell of another cell tree of the other SCM. Tracking the images of cell trees
creates tree sequences. A tree sequence either leads to an already existing periodic group or forms a new
periodic group and some transient cells leading to that group. Figure 3 illustrates two cell trees mapped to135

each other.
Shortly, the SCM method can be applied to the cell trees. If a tree sequence leads to a previously processed
cell, all of its member cells can be tagged with the appropriate cmid, group and step numbers. Otherwise
the trees form a graph containing a single cycle – the new periodic group – and branches which are transient
cells belonging to that group, hence the cmid, group and step numbers can be updated. (The new periodic140

groups obtained this way must be added to one of the SCM solutions to have a valid cell mapping index.)

2.3. The algorithm of joining

This subsection describes the algorithm of joining adjacent SCM solutions. The algorithm is divided into
preprocessing and two stages of classifying cell sequences which previously led to the sink cell.

Throughout the presentation of the algorithm, multiple SCM solutions will be examined. For the sake145

of simplicity, object oriented notation is used, with simple classes for describing the cell and SCM solution
including the cell state space. See Algorithms 1 and 2 for these classes. In the pseudo codes the . (dot)
operator is used to access data or function members of these objects. For instance scm.cells[i].index

accesses the index of the i-th cell of the scm object. Furthermore, B indicates clarifying comments.

5



SCM1 SCM2

cell tree 1
cell tree 2
cells of a new periodic group

Figure 3: Illustration of the notion of cell tree mapping. Cell trees 1 and 2 are mapped to each other. The graph formed by
them contains a cycle (new periodic group), and all other branches are transient cells leading to that group.

Algorithm 1 Class for cell

class Cell
index ⊂ N
image ⊂ N
domain
group ⊂ N
step ⊂ N
type ⊂ { unknown, transient, periodic }
state ⊂ { untouched, under processing, processed }

end class

Algorithm 2 Class for simple cell mapping

class SCM
cell array of Cell objects
cellCount ⊂ N . the number of cells in the cell state space
periodicGroupCount ⊂ N . the number of periodic groups in the SCM solution
index(...)
domain(...)

end class

During the preprocessing the cells corresponding to the domain of attraction of the sink cell for both150

SCM solutions are identified. This can be done by selecting cells with group number 0, which belong to the
1-P group of the sink cell. Checking the step number is not necessary, since all cells with 0 group number
must be transient cells. For the pseudo code of preprocessing see Algorithm 3 and 4.

6



Algorithm 3 Identification of sink cell’s domain of attraction

Input : scm object representing an SCM solution
Output : array of indices of sink cell’s domain of attraction

1: function GetSinkDomainOfAttraction(scm)
2: sinkDoA← ∅
3: for i← 1, scm.cellCount do
4: if scm.cell[i].group = 0 then
5: sinkDoA← sinkDoA ∪ i
6: scm.cell[i].state← untouched . invalidate previously processed cell
7: end if
8: end for
9: return sinkDoA

10: end function

Algorithm 4 Preprocessing of two SCM solutions

Input : objects representing SCM solutions
Output : array of indices for both sink’s domain of attraction

1: function Preprocess(scm1, scm2)
2: sinkDoA1← GetSinkDomainOfAttraction(scm1)
3: sinkDoA2← GetSinkDomainOfAttraction(scm2)
4: return {sinkDoA1, sinkDoA1}
5: end function

Once the domain of attraction of the sink cell is identified for each SCM solution, the first stage of joining
examines transient cell sequences and updates cells in Case 1 of Section 2.1, see Algorithm 5. The for loop155

in line 3 starts a new cell sequence by taking the next untouched cell from the domain of attraction of
the sink cell. The while loop in line 10 builds the cell sequence and updates all cells accordingly. If the
condition in line 12 is true, then the cell sequence is still within the original cell state space. In this case
the cmid is checked in line 14. If the currently examined cell has the same cmid, the current cell sequence
either touches another cell sequence (line 16) and prepended to that cell sequence (thus forming a cell tree),160

or touches an already processed cell (line 23) in which case the cell sequence can be updated accordingly,
or touches an untouched cell (line 29) which results in continuing the current sequence by examining that
cell’s image.
If the condition in line 14 (cmid check) yields false, the cell sequence touches another cell sequence transiting
to the other SCM’s state space, therefore the current sequence can be updated accordingly. In cases, when165

imz = 0 is fulfilled (line 40), the cell sequence leaves the cell state space. Line 45 checks whether the current
cell sequence enters the cell state space of the other SCM. In this case the sequence either touches a cell
with g 6= 0 (line 48) when the current sequence is updated, or touches a cell with g = 0 (line 52) when the
current cell sequence (seq) is stored in the array of cell trees (cellT rees) for further analysis. Lastly, if both
cell state space have 0 (sink) index for the cell (see line 58), the current sequence leads to the reduced sink.170

7



Algorithm 5 Stage 1 of the joining procedure

Input : Examined SCM solution and its DoA of sink, other SCM solution
Output : Updated SCM solution object scm, cell trees which require further processing

1: function Stage1(scm, sinkDoA, otherScm)
2: cellT rees← ∅
3: for i← 0, sinkDoA.size do
4: seq ← ∅
5: z ← sinkDoA[i]
6: if scm.cell[z].state = untouched then
7: . Create new cell sequence
8: seq ← seq ∪ z
9: left← false

10: while left = false do
11: imz ← scm.cell[z].image
12: if imz 6= 0 then
13: cmimz ← scm.cell[imz].cmid
14: if cmimz = cmid then
15: if scm.cell[imz].state = under processing then
16: . This sequence touches another sequence under processing
17: left← true
18: ct← scm.cell[imz].cellT reeIndex
19: Tag cells in seq as under processing, assign ct as cellT reeIndex
20: . The current sequence is prepended to cell sequence/tree with index ct
21: cellT rees[ct]← seq ∪ cellT rees[ct]
22: else if scm.cell[imz].state = processed then
23: . This sequence touches an already processed cell (Case 1.b)
24: left← true
25: g ← scm.cell[imz].group
26: cm← scm.cell[imz].cmid
27: Tag cells in seq as processed and assign new group number g and cmid cm
28: else
29: . Append cell to sequence and continue
30: seq ← seq ∪ imz
31: z ← imz
32: end if
33: else
34: . This sequence touches another sequence transiting to the other SCM (Case 1)
35: left← true
36: g ← scm.cell[imz].group
37: cm← scm.cell[imz].cmid
38: Tag cells in seq as processed and assign new group number g and cmid cm
39: end if

8



40: else
41: . This sequence leaves the cell state space (imz = 0)
42: left← true
43: . Get image using the other SCM’s cell state space
44: imz ← otherScm.index(step(scm.cell[z].center))
45: if imz 6= 0 then
46: . This sequence enters other SCM solutions cell state space
47: g ← otherScm.cell[imz].group
48: if g 6= 0 then
49: . This sequence touches a periodic group with g > 0 (Case 1.b)
50: cm← otherScm.cell[imz].cmid
51: Tag cells in seq as processed and assign new group number g and cmid cm
52: else
53: . This sequence touches a transient cell of the other SCM’s sink,
54: . save this sequence for further analysis (Case 2)
55: Tag cells in seq as under processing and assign new group g and cmid cm
56: cellT rees← cellT rees ∪ seq
57: end if
58: else
59: . This sequence leads to the reduced sink (Case 1.a)
60: Tag cells in seq as processed
61: end if
62: end if
63: end while
64: else
65: . skip cell
66: end if
67: end for
68: return cellT rees
69: end function

In the second stage, for Case 2 in Section 2.1 a cell tree mapping is carried out (Algorithm 6). The for
loop in line 3 starts examining an untouched cell tree and the while loop in line 10 builds a sequence of
cell trees (see variable: treeSequence). While examining the image tree (ctImage) of the current cell tree
(cellT rees[i]), the following cases can occur:

• The image of the current cell tree is a cell which was updated in Stage 1 of the procedure (line 11).175

All cells in the sequence of trees can be updated.

• The image tree of the current cell tree is processed (line 18), therefore, the sequence of trees touches
a known destination, and all cells in the sequence of trees can be updated accordingly.

• The image tree of the current cell tree is under processing (line 23), and a new periodic group and
transient cells are found. All cells within the sequence of trees are examined and tagged as periodic180

(cycle in the sequence of trees) or transient (branches). See Figure 3.

• The image tree of the current cell tree is untouched (line 29), the image tree is appended to the
sequence of trees, and the examination of the tree sequence is continued.

In the end of Stage 2, all cell trees are processed and new periodic groups (if any) with their domain of
attraction (transient cells) are found. The complete procedure of joining is summarized in Algorithm 7. The185

two SCM solutions joined this way form a cluster of cell mapping solutions, which can be further extended
similarly.

9



Algorithm 6 Stage 2 of the joining procedure

Input : Cell Sequences Tree arrays and SCM objects
Output : Updated SCM solutions

1: function Stage2(cellT rees1, cellT rees2, scm1, scm2)
2: cellT rees← cellT rees1 ∪ cellT rees2
3: for i← 0, cellT rees.size do
4: if cellT rees[i].state = untouched then
5: . Start examining sequence of cell trees
6: cellT rees[i].state← under processing
7: treeSequence← ∅ ∪ i
8: processing ← True
9: ctImage← cellT rees[i].imageTree

10: while processing do
11: if ctImage = null then
12: . There is no sequence image, image cell must be already processed in Stage 1
13: imageCell← cellT rees[i].cell[0].image
14: Update all cells in each cell tree of the current treeSequence
15: Tag all cell tree in treeSequence as processed
16: else
17: . Cell tree mapping
18: if cellT rees[ctImage].state == processed then
19: . The sequence of trees leads to a known destination
20: Update all cells in each cell tree of the current treeSequence
21: Tag all cell tree in treeSequence as processed
22: processing ← False
23: else if cellState[ctImage].state = under processing then
24: . New periodic group and transient cells are found
25: g ← nextGroupNumber()
26: Update all cells in each cell tree of the current treeSequence
27: Tag all cell tree in treeSequence as processed
28: processing ← False
29: else
30: . cellT rees[ctImage].state == untouched
31: . Tag this cell tree as under processing,
32: . append to treeSequence and continue
33: treeSequence← treeSequence ∪ ctImage
34: cellT rees[ctImage].state← under processing
35: end if
36: . Get next image sequence
37: ctImage = cellT rees[ctImage].imageSeq
38: end if
39: end while
40: else if cellT rees[i].state = processed then
41: . Skip already processed cell tree
42: end if
43: end for
44: return {scm1, scm2}
45: end function

10



Algorithm 7 Procedure of joining two SCM solutions

Input : SCM objects representing SCM solutions
Output : updated SCM objects

1: function Join(scm1, scm2)
2: {sinkDoA1, sinkDoA2} ← Preprocess(scm1, scm2) . See Algorithm 4
3: cellT rees1← Stage1(scm1, sinkDoA1, scm2) . See Algorithm 5
4: cellT rees2← Stage1(scm2, sinkDoA2, scm1)
5: {scm1, scm2} ← Stage2(cellT rees1, cellT rees2, scm1, scm2) . See Algorithm 6
6: return {scm1, scm2}
7: end function

3. Properties and possible extensions

3.1. Complexity of joining

It can be seen that the complexity of calculating an SCM solution is O(n) where n is the number of cells190

in its cell state space [12]. This comes from the fact that every cell needs constant amount of operations for
initialization, and their state changes twice, first to under processing then to processed (Algorithm 8).
The complexity of preprocessing (Algorithm 3) is also linear, since the body of loop in line 3 contains
constant amount of operations. For SCM solutions with cells n and m, the complexity of the preprocessing
is O(n+m).195

The first stage of the joining procedure (Algorithm 5) contains an outer for loop (line 3) and an inner while
loop (line 10), however, similarly to the SCM method, every cell is tagged with a new state maximum twice,
therefore, the complexity of the first stage is O(n) where n is the number of cells in the sink’s domain of
attraction.
Lastly, it can be seen that the complexity of the second stage (Algorithm 6) is also linear in terms of the200

number of total cells in the cell tree lists. This property can be shown with the same approach used in the
previous case; every tree sequence is tagged with a new state maximum twice.
Introducing nsink ≤ n and msink ≤ m for the number of cells in the domain of attraction of the sink cell,
the complexity of the joining procedure can be written as O(nsink +msink). The linear nature of the joining
procedure can also be seen in the computation times presented in Table 1.205

3.2. Simple continuous tiling of the state space

In Section 2 the procedure of joining two arbitrary SCM solutions was introduced. This section describes
the simplesta simple algorithm for adaptively selecting an adjacent state space region (of the same shape
and size as the original SCM solution) where most of the trajectories escape to. For convenience, the original
cell state space is chosen to be an n-dimensional rectangular cuboid.
After selecting the initial state space region for the SCM solution one divides the sink cell into 3n sub-
regions.the unbounded outer state space region into adjacent subregions plus an unbounded non-adjacent
region. To do this, the sink cell is divided into 3n sub-regions. From these 3n sub-regions, 3n − 1 are
adjacent and equal size to the cellinitial state space and the remaining region – the rest of the sink cell
– is non-adjacent to the cellinitial state space. These sub-regions are illustrated in Figure 4. During the
calculation of the initial SCM solution, the number of cells entering these sub-regions can be counted.
Let us assume that the number of cells whose image belongs to the i-th adjacent sub-region ri is ci, where
i = 1, 2, ..., 3n−1. Amongst the adjacent state space regions, the one with the largest number ck is selected.
The index of the selected new adjacent state space region is

k = σ(max({ci : i = 1, 2, ..., 3n − 1})),

where σ(ck) := k is an index function. After solving the new SCM belonging to the newly selected region, a
cluster of two SCM solutions is formed, and the procedure can be continued similarly, leading to a continuous
tiling of a state space region.

11



cells belonging to a PG with g>0
cells escaping to an adjacent sub-region
cells escaping to the non-adjacent sub-region
sink cell
adjacent sub-regions of the sink
non-adjacent sub-region of the sink

r
9

r
3

r
2

c
2c

1

r
1

r
4

c
4

r
6

r
7 c

7

c
8

r
8

c
9

r
5

c
5

}

}

initial state-space region

3n sub-regions of the sink

Figure 4: Adjacent regions of a 2D cell state spaceSub-regions of the sink cell in case of a 2D cell state space. Sub-regions
ri . . . r3n−1 are adjacent to the initial state space region, sub-region r3n is non-adjacent.

4. Application and Results210

4.1. Analysis of the micro-chaos map

Although the Clustered SCM method is independent of the system’s dimension, the results can be dis-
played most conveniently for systems with 2D state space. In search for a system that exhibits complex state
space topology in 2D, simple problems of control engineering were considered. As the inverted pendulum is
the archetype of stabilization problems in control theory, we have chosen a single degree of freedom inverted215

pendulum with a so-called proportional-derivative controller, where the quantized control force is calculated
at sampling intervals τ , and kept constant within the interval (zero-order hold), as shown in Figure 5. The
aforementioned digital effects – sampling and round-off – lead to the phenomenon of micro-chaos, i.e., small
amplitude chaotic oscillations [13].

220

t

t
rO

2rO

3rO

4rO

5rO

6rO

M
tj-1 tj tj+1 tj+2

tj-1 tj tj+1 tj+2 tj+3

tj+3

τ τ

φ
or
φ

PC

M

φ, φg

φ(tj), φ(tj) 

Figure 5: Illustration of sampling and quantization and a digitally controlled inverted pendulum.

12



The equation of motion of the controlled inverted pendulum is

ϕ̈(t) + 2αδϕ̇(t)− α2ϕ(t) = −rO Int

(
Pϕ(tj)

rO
+
Dϕ̇(tj)

rO

)
, j = 1, 2, . . . , (1)

where α is related to a characteristic time constant, δ is the relative damping, P and D are control parameters
and rO is the resolution of the control torque (Figure 5). The resolution is taken into account with the
Int() function, which denotes rounding towards the origin. According to the solution of the linearized,
dimensionless equation of motion, the following mapping can be derived between the states at subsequent
sampling instants [8]:

yi+1 = Uyi + bFi, (2)

where Fi = Int(P̂ xi + D̂x′i), y = [xi x′i]
T , and:

U =
e−α̂δ

Γ

[
Γ cosh (α̂Γ) + δ sinh (α̂Γ) sinh (α̂Γ) /α̂

α̂ sinh (α̂Γ) Γ cosh (α̂Γ)− δ sinh (α̂Γ)

]
, (3)

b =
1

α̂2Γ

[
Γ− e−α̂δ (Γ cosh (α̂Γ) + δ sinh (α̂Γ))

−α̂e−α̂δ sinh (α̂Γ)

]
. (4)

Hat symbols denote dimensionless variants of previously introduced quantities, and Γ =
√

1 + δ2.
The quantization according to the Int() function introduces switching lines on the state space for every
integer value. By examining the direction field of Equation (2), one can see an alternating pattern of
unstable saddle points and switching lines [14], [15] see Figure 6.225

0 200 400 600 800 1000 1200 x

-20

-10

0

10

20

x'

Figure 6: The state space of micro chaos map (2) at parameter values α̂ = 0.078, δ = 0, P̂ = 0.007, D̂ = 0.02. Dashed blue
lines are the stable and unstable manifolds of saddle points. Three example trajectories leading to chaotic attractors are shown.
The subsequent points of the trajectories are connected with line sections for better visibility. The green and blue rectangles
show the initial and the adaptively chosen state space regions of the first example, respectively (see Figure 7).

The Clustered SCM method is applied to the micro-chaos map, and the resulting cluster of two SCM
solutions is illustrated by coloured images in Figures 7-12. Red colour indicates transient cells leading to
the sink, other coloured regions illustrate the domain of attraction of other periodic groups. The periodic
groups residing at the intersections of the x-axis and the switching lines are denoted by black dots. These
PGs correspond to very small chaotic attractors of the micro-chaos map. White lines indicate the switching230

lines and dashed white lines denote the stable and unstable manifolds of the saddle points of the map. The
initial state space region is placed on the left and the new subregion is on the right side, since the right

13



adjacent state space region contains the most escaping trajectories.
In the first example, no periodic groups reside at the boundary of the two state space regions (see Figure
7). Therefore, during Stage 1, all cells can be updated, except transient cell sequences of the initial region235

leading to a member cell of the domain of attraction of the new region’s sink cell (see Figure 8). These
sequences also lead to an already existing PG, but are updated in Stage 2 (as shown in Figure 9). The
parameters of the micro-chaos map are α̂ = 0.078, δ = 0, P̂ = 0.007, D̂ = 0.02.

Figure 7: Example 1 – Illustration of initial SCM solutions before the joining procedure. The image on the left shows the
initial state space region, the one on the right is the adaptively selected region. Both regions contain 3 chaotic attractors lying
at the intersections of the x-axis and the switching lines.

Figure 8: Example 1 – Illustration of SCM solutions after Stage 1 of the joining procedure. Cell sequences leading to a PG of
the other SCM are updated (recoloured with the colour of the corresponding periodic group). The initial region contains some
transient cell sequences which are stored for further processing in Stage 2. (See red bands at the top of the left image.)

14



Figure 9: Example 1 – Illustration of SCM solutions after Stage 2 of the joining procedure. Examined cell trees are mapped to
already processed cells (corresponding to the PGs with green and orange domain of attraction).

In order to show the creation of new periodic groups, another state space region is considered, for which
a chaotic attractor of the map is just at the boundary of the region. The joining procedure is illustrated in240

Figures 10, 11 and 12. The parameters of the micro-chaos map are α̂ = 0.07, δ = 0, P̂ = 0.007, D̂ = 0.02.
In the second example, a new periodic group and its domain of attraction are found during Stage 2.

Figure 10: Example 2 – Illustration of initial SCM solutions before the joining procedure. The image on the left shows the
initial state space region, the one on the right is the adaptively selected region. One chaotic attractor for each region is already
detected (see yellow and pink domain of attractions). A third chaotic attractor is at the boundary of the two state space
regions. (The black dot at the boundary of the state space regions denotes the third attractor’s expected location.)

15



Figure 11: Example 2 – Illustration of SCM solutions after Stage 1 of the joining procedure. Cell sequences leading to the PG
of the other SCM are updated (see yellow and pink cells). Both regions contain cell trees which are stored for further processing
in Stage 2.

Figure 12: Example 2 – Illustration of SCM solutions after Stage 2 of the joining procedure. Examined cell trees are mapped
to each other and a new periodic group is formed with its domain of attraction in blue.

4.2. Comparison of real computational efforts

To support the statements in Section 3.1, computation times for Example 1 are provided using the
Clustered SCM and an SCM solution over the full region is calculated for comparison (see Table 1 and245

Figure 13). Since the calculation of scm1 and scm2 can be done in parallel, the total processing time is
calculated as ttotal = max(tSCM1, tSCM1) + tjoiningttotal = max(tSCM1, tSCM2) + tjoining. (Computations were
carried out using 2 cores of an Intel R© CoreTM i7-4700MQ CPU.)
In real situations it may happen that the two SCM solutions to be joined are of significantly different size.
Consider the case when a 2D state space is displayed on the screen of a computer and the screen area is250

panned to move in the state space. Consequently, a separate SCM solution at the (narrow) state space
region entering into the computer’s screen must be calculated and joined to the already existing cluster.
We checked the computation times for the case, when the original state space region is extended by 10%

16



towards an adjacent narrow state space region (see Table 2). The total processing time is calculated as
ttotal = tSCM2 + tjoining. One can see that the use of the Clustered SCM method makes nearly real-time255

application possible. Moreover, further optimizations can be introduced to the method specifically for the
panning application, for example, adjacent state space regions can be joined in advance, to utilize idle CPU
states.
The joining time only depends on the number of cells and state space topology, while the computation time
of SCM solutions also depends on the effort needed to calculate the image cells. For systems, where greater260

effort is necessary for the calculation of images (e.g. flows), the computation time of joining is relatively
smaller compared to the complete procedure.

Number of cells
CPU time [ms]

tSCM1 tSCM2 tjoining ttotal scm on full region
500000 395 386 89 484 844
1000000 780 791 190 981 1573
2000000 1550 1551 418 1969 3316
4000000 3234 3225 897 4131 6752
8000000 6638 6720 1935 8655 13389

Table 1: Computation times for Example 1. (See Figures 7-9.)

Figure 13: Comparison of computation times listed in Table 1.

Screen Number of cells CPU time [ms]
resolution nSCM1 nSCM2 tSCM1 tSCM2 tjoining ttotal scm on extended region
853×480 409440 40944 307 32 58 90 339
1280×720 921600 92160 661 66 129 195 740
1920×1080 2073600 207360 1581 188 361 549 1649
2880×1620 4665600 466560 3731 434 745 1179 4099
4320×2430 10497600 1049760 9689 753 1980 2733 11726

Table 2: Computation times for Example 1 in case of screen panning. Initially the whole computer screen is covered with the
initial SCM solution (scm1) and during panning a new SCM solution (scm2) over a region with +10% width is added to the
cluster. For comparison, the computation time of a single SCM solution on the extended state space region is included.

17



5. Conclusions

We have proposed the procedure of joining two SCM solutions – thus creating a cluster of SCMs – and
described a simple way to select an adjacent state space region to be added to the cluster. We have shown,265

that the computational effort of the method is linear in terms of the total number of cells.
The method was applied to the micro-chaos map and two examples were presented to support the under-
standing of the stages of the procedure. Clustering has the following remarkable advantages.

• The method allows the continuation of the SCM solution after human assessment in cases when
automatic state space extension is not used, but human supervision is conducted. Solving an SCM270

for a new region and incorporating it into the cluster is cheaper than solving an SCM over the whole
extended state space (see Table 1).

• Parallelization is trivial as separate SCM solutions can be generated independently before the joining
procedure. Also Stage 1 of the joining procedure (for each previously calculated SCM solution) can
be done in parallel.275

• The method is useful in real-time situations, where the region of interest is changing as a parameter
is varied. Clustered cell mapping handles screen panning well, as a separate SCM solution at the
(narrow) state space region entering into the computer’s screen can be calculated quickly and joined
to the already existing cluster (see Table 2).

• The proposed approach helps to overcome memory limitations by dividing large problems into smaller280

ones. During the generation of a clustered SCM solution, if all adjacent regions of a cluster are already
examined, the SCM solution corresponding to the inner (fully surrounded) cluster can be written to
disk and freed from memory.

The open-source C++ implementation of Clustered Cell Mapping method – along with materials in the
topic of micro-chaos – are available at the website: microchaos.com.285

Acknowledgements

This research was supported by the Hungarian National Science Foundation under grant no. OTKA K
83890.

References

[1] C. Hsu, Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems, Vol. 64 of Applied Mathematical290

Sciences, Springer, Singapore, 1987.
[2] F.-R. Xiong, Z.-C. Qin, Y. Xue, O. Schtze, Q. Ding, J.-Q. Sun, Multi-objective optimal design of feedback controls for

dynamical systems with hybrid simple cell mapping algorithm, Communications in Nonlinear Science and Numerical
Simulation 19 (5) (2014) 1465–1473.

[3] H. Zou, J. Xu, Improved generalized cell mapping for global analysis of dynamical systems, Science in China Series E:295

Technological Sciences 52 (3) (2009) 787–800.
[4] B. de Kraker, J. A. W. van der Spek, D. H. van Campen, Extensions of cell mapping for discontinuous systems, in:

M. Wiercigroch, B. de Kraker (Eds.), Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities,
World Scientific, 2000, Ch. 4, pp. 61–102.

[5] R. Klages, Deterministic diffusion in one-dimensional chaotic dynamical systems, Ph.D. thesis, TU Berlin (1996).300

[6] F.-R. Xiong, O. Schtze, Q. Ding, J.-Q. Sun, Finding zeros of nonlinear functions using the hybrid parallel cell mapping
method, Communications in Nonlinear Science and Numerical Simulation 34 (2016) 23–37.

[7] G. Csernák, G. Stépán, Digital control as source of chaotic behavior, International Journal of Bifurcations and Chaos
5 (20) (2010) 1365–1378.

[8] G. Csernák, G. Gyebrószki, G. Stépán, Multi-baker map as a model of digital PD control, International Journal of305

Bifurcations and Chaos 26 (2) (2016) 1650023–1–11.
[9] H. E. Nusse, J. A. Yorke, Basins of attraction, Science 271 (1996) 1376–1380.

[10] J. Aguirre, R. L. Viana, M. A. F. Sanjun, Fractal structures in nonlinear dynamics, Rev. Mod. Phys 81 (2009) 333–386.
[11] H. E. Nusse, J. A. Yorke, Dynamics: Numerical Explorations, Vol. 101 of Applied Mathematical Sciences, Springer-Verlag,

New York, 1998.310

18



[12] J. A. W. van der Spek, Cell Mapping Methods: Modifications and extensions, Ph.D. thesis, Eindhoven University of
Technology, Eindhoven (1994).

[13] G. Haller, G. Stépán, Micro-chaos in digital control, Journal of Nonlinear Science 6 (1996) 415–448.
[14] G. Csernák, G. Stépán, Sampling and round-off, as sources of chaos in PD-controlled systems, Proceedings of the 19th

Mediterranean Conference on Control and Automation.315

[15] G. Gyebrószki, G. Csernák, Methods for the quick analysis of micro-chaos, in: J. Awrejcewicz (Ed.), Applied Non-Linear
Dynamical Systems, Springer International Publishing, 2014, Ch. 28, pp. 383–395.

19



6. Appendix A: Complexity of Simple Cell Mapping

Algorithm 8 Simple Cell Mapping

Input : Cell State space
Output : SCM solution Number of execution, cost

1: g ← 0
2: for z ← 0, n do n+ 1, 1
3: if state[z] = untouched then
4: processing ← True
5: sequence← ∅ ∪ z
6: im← z
7: while processing do

∑n−1
z=0 tz, 1

8: if state[im] = processed then

9: Tag cells in sequence as processed and transient
∑n−1
z=0 1, sz

10: processing ← False
11: else if state[im] = under processing then

12: . New periodic group and possibily some transients found
∑n−1
z=0 1, sz

13: Examine sequence, starting with im and tag cells as periodic, assign group g and step 0
14: Tag remaining cells as transient, assign group← g and calculate step numbers
15: g ← g + 1
16: processing ← False
17: else
18: . state[im] = untouched, continue along the image track

∑n−1
z=0 tz, 1

19: state[im]← under processing
20: sequence← sequence ∪ im
21: im← image[im]
22: end if
23: end while
24: else
25: . Skip this cell
26: end if
27: end for

The number of times of execution and cost for some lines are denoted at line endings. The for loop is
executed n + 1 times, let tz be the number of times the while loop is executed for that value of z. Let sz
be the length of the sequence accumulated starting with cell z.
By examining the algorithm, one can see, that sz = tz, since no branches of the if-else structure append
new cell to the sequence or terminates the while loop at the same time. New cells are only appended to the
sequence in line 20, while the processing of a sequence is either terminated at line 10 (reaching an already
determined destination) or at line 16 (finding a new PG and transient cells). Therefore the cost of the
algorithm is

CSCM = n c1 +

n−1∑
z=0

(2 sz + tz c2) = (2 + c1)n+

n−1∑
z=0

tz c2 = O(n),

where the sum of the length of sequences
∑n−1
z=0 sz = n, c1 is the total cost of constant-cost operations in

the for loop outside the while loop, and c2 is the total cost of constant-cost operations within the while320

loop.

20




