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Abstract.

The flowing afterglow of an N2-O2 surface-wave microwave discharge is used to

demonstrate the possibility of treating simultaneously the inner and outer surfaces of

heat sensitive small diameter tubes in low pressure afterglows. It is shown that the

afterglow can be efficiently guided through a 4.5 mm polymer tube, as well as similar

afterglows can flow simultaneously inside and around the tube at gas flow rates in

the range of 500-1000 sccm. A 5 mm inner diameter quartz tube is used to study

the afterglow guided through small diameter tubes, by following the evolution of the

UV emission originating from the excited NO molecules created in the three-body re-

association process of N and O-atoms. The afterglows in the reactor and in the quartz

tube are characterized using a 3-D hydrodynamic model. According to the calculated

density distributions the relative density of atoms do not change considerably along the

tube placed into reactor. The calculated gas temperature distribution in the reactor

shows that the position of the heat sensitive tube in the reactor should be carefully

chosen, e.g. in the second half of a 4.4 cm diameter and 40 cm long reactor.
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1. Introduction

The treatment and modification of surfaces by reactive plasmas is a widespread method.

Reactive oxygen and UV radiating plasmas have been suggested for sterilization and

decontamination of surfaces [1, 2, 3, 4, 5, 6, 7], etching and grafting of polymers

[8, 9, 10, 11, 12, 13, 14], as well as for functionalization, structuring and activation

of surfaces [15, 16, 17, 18, 19]. One of the main targets are the polymers, which find

their use in biomedicine [20, 21, 22, 23]. For treatment of heat sensitive polymers low

temperature environment is required, which can be easily achieved in afterglow plasmas.

The afterglow of a low pressure flowing surface-wave microwave discharge has been found

a proper medium [1, 2, 7, 9, 13, 14, 17, 24, 25], since it can be easily tuned to achieve high

density of active species at low gas temperature [13, 26, 27, 28, 29, 30, 31]. Although this

system has been tested for several applications, the efficient treatment of objects with

complex geometry is still an open question. The aim of the present work is to determine

the possibility of treating simultaneously the inner and outer surfaces of small diameter

tubes in the afterglow of a low pressure surface-wave microwave discharge.

The treatment of the inner surface of small diameter tubes by plasmas has been

realized under discharge conditions, both at low and atmospheric pressures. At low

pressure the discharge has been ignited with a low or high-frequency field inside the tube

using different discharge system configurations [32, 33, 34, 35, 36, 38] . At atmospheric

pressure the transfer of the atmospheric-pressure plasma into a tube has been realized by

producing an ionization wave (IW) in a tube or channel by impingement of a separately

produced IW onto its outer surface [39]. Discharges have also been ignited directly into

small diameter tubes, e.g. a pulsed corona discharge was ignited into an 8 mm ID quartz

tube using gas flow rates in the 4-5 slm range and by placing the electrodes at the two

ends of the tube [37]. The simultaneous treatment of the inner and outer wall of a

tube has been recently realized under discharge condition at atmospheric pressure by

treating the outer wall by an Ar (2 slm) plasma jet and meanwhile inducing transferred

He (3 slm) plasma inside the perpendicularly positioned 2 mm ID PTFE tube [40]. The

overall treatment of the outer wall of the tube is realized by its continuous turning.

Under discharge conditions the surface is exposed both to neutral and energetic charged

species, which may induce a stronger surface modification, i.e. a more efficient etching

of the surface, while the surface temperature can increase above the 40oC required by

the heat sensitive polymers. In our work we propose a milder surface modification - as

also illustrated in ref. [41] on Polystyrene microspheres treated for hours in a similar

late-afterglow -, which relies only on neutral species and targets the surface oxidation

processes [1].

Our investigations are carried out in the afterglow of a low pressure N2-O2 surface-

wave microwave discharge sustained with an input power of 25 W using gas flow rates

in the range of 0.5-1 slm. We note that the afterglow plasma has been already tested for

the treatment of the inner wall of an 8 mm ID quartz tube at atmospheric pressure by

using the afterglow of an N2-O2 atmospheric pressure corona discharge [42]. In this case
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the gas flow rates of 40 slm were used. The low pressure afterglow system used in our

studies and the experimental methods are presented in Section 2. The N2-O2 mixture

is chosen due to its strong UV radiation originating from the excited NO molecules,

which offers a good diagnostic tool [26], and the visible radiation, which makes possible

to visualize the transport of the afterglow through and around the treated tube. The

afterglow system is characterized by means of modelling, as presented in Section 3. The

different treatment possibilities and the system characteristics are presented in Section 4.

2. Afterglow system configuration and experimental methods

The afterglow system proposed for the surface treatment of small diameter tubes is

based on a surface-wave microwave discharge generated with the help of a surfatron in

flowing gas. In the system here investigated - presented in Figure 1 - the discharge tube

is a 5 mm ID and 50 cm long quartz tube (QT1). The discharge tube is connected

to a 44 mm ID reactor tube (QT2), where the active species from the discharge are

transported. The gas flow is ensured by two rotary pumps of 25 m3h−1 nominal speed

connected in parallel. The different gases are introduced into the system through flow

controllers. The pressure is measured at the gas inlet and downstream of the reactor.

Figure 1. The scheme of the experimental system with QT1 marking the discharge

tube and QT2 the afterglow tube.

Figure 2. The image of the afterglow system set-up with the small diameter tube

placed into reactor.

The small diameter tube to be treated is placed into the afterglow reactor and held

by two identical teflon rings in the middle axis of the reactor, as shown in Figure 2.
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Teflon is chosen due to its heat resistance and the low recombination probability of

atoms on its surface [43]. In the treatment process two important situations need to be

distinguished - i.e. treatment of (i) the inner wall of the tube and (ii) both the inner

and outer walls -, which require two different types of tube holders. In the first case,

when the treatment of the tube’s inner wall is targeted, the tube should be perfectly

fitted in the middle of a solid teflon ring, which has the same diameter as the reactor.

In this way the afterglow species can be transported through the treated tube. In the

second case, in order to achieve similar afterglow both inside and outside the treated

tube, on the teflon ring symmetrically positioned holes are drilled, whose capacitance

should be equal to that of the tube’s.

The discharge is ignited in N2-O2 mixture at 25 W using gas flow rates in the

500-1000 sccm range. The pressure in the system, as discussed later in Section 4.3.1

will vary based on the loading of the reactor. At these conditions, as indicated also by

the emission spectra presented in Section 4.3.1, in the reactor a neutral late-afterglow

plasma will be present [1, 26, 31].

The evolution of the afterglow in the reactor and in the treated tube is

experimentally followed and visualized through the optical emission. In an N2-O2

late-afterglow the strongest (non-resonant) emission which is directly correlated to the

density of active atoms, i.e. O-atoms and N-atoms, originates from the excited NO

molecules [26] and occurs in the UV region in the 200 - 350 nm spectral range. The

emission spectra recorded in this region can give information on the presence of the

atoms, which participate in the surface treatment processes. The UV emission is very

strong at low O2 content mixtures, while in the case of mixtures with O2>10% the

emission in the visible range (yellow-green) originating from the NO2 molecules becomes

dominant [44]. The light is collected from a 0.5 cm width segment at the axis of the

reactor and focused into an Acton VM-502 monochromator (20 cm focal length, 1200

grooves/mm grating providing a resolution of 0.08 nm at a slit width of 20 µm) equipped

with a Hamamatsu (H7732P-11) photomultiplier tube whose signal is recorded in photon

counting mode.

3. Modelling technique

In order to understand better the afterglow system under different loading conditions

and to define its application limits we choose the modelling technique. The validity of the

modelling scheme used has been presented in several previous publications [26, 45, 31, 49]

The evolution of the afterglow in the reactor and in the tube placed in the

reactor is followed with a three-dimensional hydrodynamic model, which allows the

determination of the gas velocity field, the species densities and the gas temperature

distributions. The three-dimensional hydrodynamic model [50, 51] is composed of (i) the

total mass conservation, (ii) the continuity equations for the different species, (iii) the
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total momentum conservation equation, and (iv) the total energy conservation equation:∫
S

ρv · n dS = 0 , (1)∫
S

ρykv·n dS −
∫
S

∇(Dkρ yk)·n dS =

∫
V

mk S
V
k dV +

∫
S

mk S
S
k dS , (2)∫

S

ρuiv · n dS =

∫
S

µ grad ui · n dS −
∫
S

pii · n dS , (3)∫
S

ρTv · n dS =

∫
S

λ

Cp
grad T · n dS . (4)

Here ρ denotes the total gas density, v the gas velocity and n the unit vector orthogonal

to the S surface and directed outwards. Further, yk denotes the relative mass density

(yk=ρk/ρ), Dk and mk are the diffusion coefficient and the mass of the species k, and

SV
k and SS

k represent the source terms associated with volume and surface reactions,

respectively. ui is the velocity in the i direction, p the static pressure, µ the dynamic

viscosity, T is the gas temperature, Cp the specific heat at constant pressure and λ the

thermal conductivity. For more details readers can refer to ref. [48].

The gas phase reaction kinetic scheme used in the hydrodynamic model, which

takes into account only the neutral species, has been presented in [26, 47, 50] together

with the reaction rates used, while the surface processes have been discussed in details

in [51], and in the present case we choose the surface recombination probabilities valid

for glass surfaces.

The relative density of species entering the reactor, which serve as an initial

condition for the hydrodynamic model, are determined with the kinetic model for the

discharge and early-afterglow regions, described in details in ref. [45, 46], which uses

the reaction kinetic scheme presented in ref. [47]. The discharge model is based on the

stationary homogeneous electron Boltzmann equation solved for the microwave field,

using the effective field approximation, coupled to a system of rate-balance equations

for the neutral and charged heavy species: N2(X
1Σ+

g , v), O2(X
3Σ−g , v′), N2(A

3Σ+
u ,

B3Πg, B
′3Σ−u , C3Πu, a

′1Σ−u , a1Πg, w1∆u), O2(a
1∆g), O2(b

1Σ+
g ), N(4S), O(3P), N(2D,

2P), NO(X2Π), NO(A2Σ+), NO(B2Π), NO2(X,A), O3, N+
2 (X2Σ+

g , B2Σ+
u ), N+

4 , O+
2 , O+,

NO+ and O−. The early-afterglow, which develops downstream of the discharge in the

same tube, is described with the same rate-balance equations (neglecting the electron

impact excitation/ionization processes), whose time-dependent solutions constitute the

initial conditions for the hydrodynamic model.

4. Results and Discussion

4.1. Guiding the afterglow through the small diameter tube

In order to guide the afterglow through a small diameter tube, the tube is placed into

the reactor with the help of two teflon rings, as described in Section 2. The applicability
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Figure 3. The image of the afterglow reactor loaded with: (a) a polymer tube in the

case of a 300 sccm Ar - 100 sccm N2 - 100 sccm O2 mixture discharge, and with a

quartz tube in the case of discharges ignited at (b) 400 sccm N2 - 100 sccm O2 and (c)

1000 sccm N2 - 20 sccm O2 flow conditions.

Figure 4. The spectra measured at the middle position of the 5 mm diameter quartz

tube in the case of a 1000 sccm N2 - 20 sccm O2 mixture discharge.

of the system for the surface treatment of heat sensitive tubes is demonstrated by using

a 20 cm long flexible polymer tube of 4.5 mm inner diameter. Afterwards, in order

to be able to follow the UV emitting species - and indirectly the active atoms - along

the system through the optical emission spectra, the polymer tube is replaced with

a quartz tube of 5 mm inner diameter. Figure 3 shows the images taken from the

afterglow reactor loaded with the different tubes in the case of discharges with different

flow conditions and mixture compositions. The images clearly show the transport of

the afterglow through the tube in the case of 500 - 1000 sccm gas flow rates. The

images illustrate that - as already stated - in the case of high O2 content mixtures the

afterglow is dominated by the yellow-green emission originating predominantly from the

NO2 molecules, while at low, such as 2%O2 the UV emission dominates. Figure 4 shows

the spectra measured (as illustrated in Figure 1) at the middle position of the quartz



Flowing afterglow system for surface treatment of heat sensitive small diameter tubes 7

tube for the 1000 sccm N2 - 20 sccm O2 flow condition. In the spectra emission of

the NOγ, NOβ and N2 second positive system are identified. We note, that at low O2

flows the flow controller becomes unstable, therefore the O2 content of the mixture can

fluctuate during the measurements, which results in the variation (decrease) of the NOγ

and NOβ intensities.

4.2. Afterglow flowing simultaneously inside and around the small diameter tube

In order to make possible the simultaneous treatment of the inner and outer walls of

the tube, similar afterglow should flow both inside and around the tube. To realize this,

the 5 mm ID and 20 cm long quartz tube is held in the reactor by two 5 mm thick

teflon rings with four pair of 2 mm holes symmetrically positioned around the tube’s

position. Figure 5 shows the image of the reactor loaded with the tube for two different

flow conditions. In order to make visible the flow of the afterglow inside the tube, a

stainless steel surface is placed in the reactor around the quartz tube to enhance the

recombination of the active atoms outside the tube (in case of stainless steel the surface

recombination probability of atoms is in the range of 10−2) [51] . As a consequence, due

to the decrease of the density of atoms the densities of excited NO and NO2 molecules

and the corresponding light emission diminish.

Figure 5. The image of the afterglow reactor loaded with the 5 mm ID quartz tube

at (a)-(b) 1000 sccm N2 - 20 sccm O2 and (c)-(d) 1000 sccm N2 - 100 sccm O2 flow

conditions. The tube is held by a teflon ring with 2 mm holes symmetrically positioned

around the tube’s position. In the (b) and (d) cases a stainless steel surface is placed

around the quartz tube to eliminate the N and O-atoms, and as a consequence, the

excited NO and NO2 molecules.

Figure 6 shows the spectra measured in the loaded part of the reactor in the flow

axis at 4 cm from the tube’s left end in the case of 1000 sccm N2 - 20 sccm O2 flow. In

this case the light is collected both from inside and outside the tube placed into reactor.
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Figure 6. The spectra in the loaded part of the reactor at 4 cm from the quartz tube’s

left end for the 1000 sccm N2 - 20 sccm O2 flow condition (a) with and (b) without

the presence of the recombining surface.

As also illustrated in Figure 5, the intensity considerably decreases with the presence of

the recombining surface. In this case the emission mostly originates from the afterglow

present inside the quartz tube. The spectra, being dominated by the NOγ and NOβ

bands, suggests the presence of both N and O-atoms inside the quartz tube.

4.3. Characterization of the afterglow in the reactor

From the application point of view it is important to know the species densities and the

temperature distributions in the reactor, as well as the influence of the treated tube’s

presence on these characteristics and on the flow dynamics.

The system characteristics are studied for the 1000 sccm N2 - 20 sccm O2 flow

condition, when the surfatron is positioned at 7 cm from the reactor inlet, which at the

25 W input power results in a 2 cm long discharge and 5 cm long early-afterglow region.

The discharge pressure depends on the pressure drop [31] occurring along the system at

the different reactor loading conditions, as discussed in the following section.

4.3.1. Estimation of the pressure along the system The afterglow characteristics,

besides the mixture composition and the system parameters are determined by the

gas pressure. The pressure in the system, as illustrated in Figure 1, is measured at

the gas inlet upstream of the discharge tube, and downstream of the reactor. In the
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case of the empty reactor a pressure drop exists along the discharge tube due to its

small diameter and the high gas flow rate used. When the gas flow rate is 1000 sccm

this pressure drop is 16 mbar [31]. Assuming a linear dependence of the pressure drop

on the tube’s length, the pressure in the discharge and early-afterglow regions can be

easily estimated. Meanwhile, the pressure in the reactor (late-afterglow) is equal to the

pressure measured downstream [31].

When the reactor is loaded with the small diameter quartz tube and the afterglow is

guided through it, a pressure gradient develops between the two ends of the treated tube,

i.e. in the non-loaded part of the reactor the pressure increases considerably comparing

to the empty reactor case. In order to measure the pressure in this region, the system

set-up should be redesigned, which could further change the flow dynamics. However,

the pressure here can be estimated by following the optical emissions spectra of species

created in the afterglow through three-body reactions, i.e. species whose densities are

directly influenced by the gas pressure. In the N2-O2 afterglow these are the NO(A) and

NO(B) molecules created through the N + O + M → NO(A,B) + M processes [26].

Figure 7. Spectra recorded in the reactor at 10 cm from the inlet (a) in the empty

reactor and (b) in the reactor loaded with the tube. In the loaded reactor the afterglow

is guided through the tube.

Figure 7 (a) and (b) show the spectra measured in the empty and the loaded reactor

at 10 cm from the reactor’s inlet. In both cases the pressure measured downstream of

reactor, pend, is 2 mbar. In the case of the loaded reactor - where the afterglow is guided

through the tube - one order of magnitude higher intensity is achieved than in the empty
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reactor. The one order of magnitude increase in the intensity suggests a considerable

pressure increase. We also note, that in the loaded reactor the NOβ band - originating

from NO(B) - becomes dominant over the NOγ band of NO(A). The NO(A) molecules in

the discharge are predominantly created through the N2(A) + NO → N2(X) + NO(A)

reaction, which is still important in the early-afterglow (which can be still present in

the reactor close to the inlet) until N2(A) is totally quenched. In the late-afterglow

both NO(A) and NO(B) are exclusively created through the three-body re-association

process.

In order to estimate the pressure in the loaded reactor, the here observed afterglow

can be simulated in the empty reactor - where the pressure can be measured - by

decreasing the pumping efficiency, and as a consequence to increase the pressure. This

can be achieved by closing the valve towards the pumping system. Nevertheless, the

density of radiating species besides the pressure is also influenced by the flow dynamics,

which defines the density distributions. The flow dynamics of the loaded reactor can

be simulated by placing a tube holder ring - which in this case is a 5 mm thick

teflon ring with a 6.5 mm diameter central hole - into reactor while regulating the

pressure. Although a pressure drop through the ring also occurs, the pressure measured

downstream of the reactor can still give a close estimate of the pressure in front of

the ring. The evolution of the species densities along the afterglow depends on the

pressure and is well illustrated by the evolution of the emission originating from the

excited species created in three-body reactions. The axial distribution of the intensity

of one specific bandhead is measured along the system for the empty reactor, and for

the reactor loaded with the tube and the ring, respectively, for different pressures, pend,

measured downstream the reactor.

Figure 8. The axial distribution of the intensity at 236 nm measured in the empty

and in the loaded reactor when the afterglow flows inside the tube at different pressures

measured downstream the reactor.
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Figure 9. The axial distribution of the intensity at 236 nm measured in the reactor

loaded with the tube holder ring, and with the tube when the afterglow flows inside

and on both sides of the tube, respectively, at different pressures measured downstream

the reactor.

Figure 8 shows the axial distribution of the intensity at 236 nm for the different

reactor and pressure conditions. The presence of the tube holder ring in the reactor can

be observed at around x = 18.5 cm. The results show that the intensity distribution

measured in the reactor loaded with the quartz tube can be reproduced with the intensity

distribution measured in the reactor with the presence of the ring when the pressure

downstream of reactor is 9 mbar. On the other hand, in the reactor loaded with the

tube holder ring slightly higher intensities are obtained than in the empty reactor for

the same pend pressures. This suggests that the pressure in front of the tube holder ring

is higher than the one measured downstream the reactor. The intensity distribution also

shows the effect of the flow on the distribution, while in the empty reactor the intensity

decreases exponentially, in the loaded reactor, where the outlet is much smaller (5 mm

and 6.5 mm versus 25 mm) and closer to the inlet (18 cm versus 40 cm), the intensity

decrease is more moderate.

In the second case presented in Section 4.2, when the afterglow is guided both inside

and around the quartz tube (which is held by a teflon ring with four pairs of 2 mm holes

around the tube’s position), the pressure increase in the non-loaded part of the reactor

is more moderate. The axial distribution of the 236 nm bandhead’s intensity, as shown

in Figure 9, can be reproduced in the case of the reactor loaded with the ring alone at

pend = 4 mbar. The emission spectra measured in front of the ring for these two cases,

presented in Figure 10, show a perfect fit for the whole spectra range covered by the

NOγ and NOβ emission.

For a better estimation of the pressure in the reactor and to get an insight into the

species densities and temperature distributions in the reactor we can use the modelling

technique. The comparison of the measured emission intensity and the calculated

density distributions give the possibility to show the validity of the model (presented in
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Figure 10. Spectra recorded at 10 cm from the reactor’s inlet (a) in the reactor

loaded with the tube, when the afterglow flows both inside and around the tube, and

(b) in the reactor loaded with the tube holder ring. The spectra illustrate the pressure

increase due to the presence of the tube.

Figure 11. Measured intensity (symbols) and normalized calculated density (lines)

distributions in the empty and in the reactor loaded with the ring at 2 mbar and 9 mbar

downstream pressures. The symbols represent the same conditions as in Figure 8.

Section 3) [26], and afterwards, to estimate the pressure increase in the reactor in front

of the treated tube. Under each afterglow condition the discharge and early-afterglow
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conditions have been modified accordingly, by taking into account the change of the

pressure drop along the discharge tube (The procedure and the effect of the pressure has

been discussed in details in our previous publication [31]). Figure 11 shows the measured

intensity and the calculated NO(A) density distributions for the empty reactor and for

the reactor loaded with the tube holder ring at pend = 2 mbar and 9 mbar conditions

(We remind that, as shown in Figure 8, the same afterglow condition has been found

in front of the ring in the reactor loaded only with the ring at pend = 9 mbar and in

the reactor loaded with the tube at pend = 2 mbar.). In the case of the empty reactor,

where the pressure in the reactor is equal with the pressure measured downstream, we

find a very good agreement between the measured and calculated distributions. The

calculated densities are normalized to the measured emission intensity distributions

using the same normalization factor for both pressure cases. For the reactor loaded with

the ring, we have found, that the measured intensity distributions can be reproduced

by the calculated distributions when the pressure in front of the ring is chosen 3.5 mbar

and 10.5 mbar instead of 2 mbar and 9 mbar, respectively. Here the same normalization

factors are used as in the case of the empty reactor. Further on, Figure 12 shows

the measured intensity and calculated NO(A) density distributions in front of the tube

holder ring for the two type of tube treatment conditions. The measured and calculated

distributions are in good agreement and indicate, that when the afterglow is guided

through the tube the pressure in front of the tube in the reactor is about 11 mbar, while

when the afterglow flows both inside and around the tube the pressure is 6.5 mbar. In

both cases the pressure measured downstream the reactor is 2 mbar.

Figure 12. Measured intensity (symbols) and normalized calculated density (lines)

distributions in the reactor loaded with the tube for the two type of treatments.

4.3.2. Temperature The reactor being filled with neutral late-afterglow the

temperature measurement by thermocouple may be possible, as it does not influence
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the discharge operation. Placing thermocouple in the reactor may influence the flow

dynamics and minor decrease the atomic densities due to their recombination on the

thermocouple surface, resulting in the increase of its temperature (similarly to the

catalytic probes used for atomic density measurements [29, 52, 53]). Nevertheless, it

can give a very good estimate of the gas temperature, as also demonstrated by our

calculations.

We measured the temperature in the system with a thermocouple in three different

cases. In the first case the thermocouple is positioned in the unloaded reactor on a

teflon holder of 1 cm hight at 16 cm from the inlet. The temperature here is measured

to be 323-328 K after 15 s the discharge has been turned on. Due to the recombination

of species on the thermocouple the temperature rises and saturates at 343 K after

5 min. When the discharge is turned off the temperature rapidly falls, and when the

temperature decrease slows down thermocouple shows the temperature of the teflon,

which is found to be 323 K. In the second case the thermocouple is held at 2 cm height

at 16.5 cm from the inlet with the help of a teflon ring, where the flow of the afterglow

is allowed by eight symmetrically positioned 6 mm holes. Here the temperature is found

to be 323 K at 20 W discharge power, 343 K at 25 W and 363 K at 30 W. In the last case

the loaded reactor is simulated. In this case the reactor is loaded with the quartz tube

held by the teflon rings with four pairs of 2 mm holes, allowing the flow of the afterglow

both inside and around the tube, as discussed in Section 4.2. Here the thermocouple is

fixed in one of the 2 mm holes at 2.8 cm height at 17 cm from the reactor inlet. Here

the measured temperature is 323 K.

In the next step the temperature distribution in the reactor is determined with the

3-D hydrodynamic model for the different reactor conditions. The obtained distributions

are presented in the middle vertical plane of the reactor - which is the symmetry plane

- and shown in Figure 13. Figure 13 (a) and (b) present the temperature distribution

in the empty reactor for 2 mbar and 9 mbar pressures, showing that with pressure the

temperature does not change significantly in the reactor. The calculated temperatures

show very good agreement with the measured temperatures presented in the previous

paragraph.

During the present studies the tube has been placed in the reactor at the x = 17 cm

position. According to the calculated temperature distributions, the gas temperature

at the tube inlet is about 342 K. The temperature distributions in the loaded reactors

in front of the tube holder ring are shown in Figure 13 (c) and (d). Although the

distributions slightly change due to the different size and position of the outlet, in

the central axis of the reactor, where the tube is positioned, similar temperatures

are obtained as in the case of the empty reactor. Nevertheless, the increase of the

temperature can be expected from the recombination of the atoms on the tube holder

ring. The heating of the tube holder ring by surface recombination processes becomes

more important with increasing the pressure, i.e. of the absolute density of species, as

well as with the treatment time. Therefore it is very important to choose materials with

low surface recombination probabilities.
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Figure 13. The temperature distribution in the middle vertical plane of the reactor

in the case of empty (a)-(b) and loaded (c)-(d) reactors.

4.3.3. Active species In the reactor the density distribution of species are calculated

for the empty reactor case and for the loaded reactor case in front of the tube holder

ring, in order to follow the changes in the density distributions due to the load and as

a consequence, of the pressure increase. Figure 14 and Figure 15 show the density

distributions of the oxygen and nitrogen atoms, respectively. Due to the pressure

increase, in the case of both atomic species a considerable density increase can be

observed when the reactor is loaded. However, for the same reason - i.e. due to the

enhanced three body gas phase recombination - the relative densities decrease, more
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pronounced in the case of N-atoms from 5.3×10−3 to 3.4×10−3. On the other hand,

in the case of the O2(a) molecules both the relative and absolute densities increase,

as shown in Figure 16. Furthermore, the density distribution of O2(a) is close to

homogeneous, slight increase in absolute density along the reactor is observed due to

the temperature decrease.

Figure 14. Density distribution of O-atoms (a) in the empty reactor, and in the

loaded reactor in front of the tube holder ring when (b) the afterglow flows both inside

and around the small diameter tube, and (c) the afterglow is guided through the tube.

The distributions are shown in the vertical symmetry plane.
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Figure 15. Density distribution of N-atoms in the reactor for the same conditions as

in Figure 14.
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Figure 16. Density distribution of O2(a) molecules in the reactor for the same

conditions as in Figure 14.

4.4. Afterglow inside the small diameter tube

In order to follow the evolution of the afterglow inside the 5 mm diameter quartz tube,

the axial distribution of the UV radiation has been measured, as presented in Section 4.1.

Furthermore, an attempt has been made to access also the density distribution of species

in the tube, by calculating the evolution of the afterglow as flows through the tube. The

difficulty is given by the pressure drop occurring along the tube. As a first approximation

calculations have been conducted for the medium pressure, and the change of pressure

along the tube has been taken into account only in the chemical kinetic scheme.

Figure 17 shows the comparison of the measured intensity and the calculated NO(A)

density distributions. As shown by the figure, assuming a linear pressure drop along the

tube, the measured distribution could not be reproduced. The axial distribution of the

emission resulting from the NO(A) molecules created through the three-body reaction,

and as such reflecting the evolution of the pressure, suggest a second order pressure drop

along the tube. The density distribution calculated assuming a second order pressure
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Figure 17. Measured intensity (symbols) and normalized calculated density (lines)

distributions along the 5 mm diameter quartz tube, when the afterglow is guided

through it. The broken and full lines show the density distributions when the pressure

drop along the tube is assumed to be linear and second order, respectively, as illustrated

in the inserted panel.

drop, as illustrated in the inserted panel of Figure 17, reproduces well the measured

distribution. Afterwards, using this condition the density distributions of active species

along the tube are also calculated.

Figure 18 (a) shows the relative density of NO(A) in the symmetry plane of the

0.5 mm tube, when the afterglow is guided through it. The relative density of NO(A)

decreases one order of magnitude along the tube, while the pressure decreases from

11 mbar to 2 mbar. Meanwhile, the relative densities of atomic species, whose kinetics

are not governed by three-body reactions, do not decrease considerably. Furthermore,

the relative density of O2(a) molecules stays constant along the tube. These results

show, that the absolute density of active species along the tube decrease mostly due to

the pressure (i.e. total density) drop, while the UV emission decreases due to the lower

sources of NO(A) and NO(B) molecules from the three-body reactions.

5. Conclusions

In the present study we have investigated the possibility of treating the surfaces of heat

sensitive small diameter tubes in the flowing afterglow of a low pressure surface-wave

microwave discharge, using an N2-O2 mixture discharge. We have demonstrated, that

the afterglow can be efficiently guided through a 4.5 mm inner diameter tube, as well

as, the inner and outer wall surfaces can be simultaneously treated.

We have followed the evolution of the afterglow in the reactor and in a 5 mm ID

quartz tube placed into reactor through the optical emission, namely the UV radiation

originating from the excited NO molecules, and demonstrated that the emission spectra
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Figure 18. Species density distributions in the vertical symmetry plane of the 5 mm

diameter tube, when the afterglow is guided through it.

can serve as a good diagnostic for the estimation of the pressure in the system and

to prove the presence of the N and O-atoms. The measured axial distribution of the

emission intensity served also to show the validity of the 3-D hydrodynamic model

used to calculate the afterglow characteristics, both in the reactor and inside the small

diameter tube.

We have shown that the pressure in the reactor increases considerably when it is

loaded with a small diameter tube. This results the increase of the density of active

species: N and O-atoms, and O2(a) molecules in the non-loaded part of the reactor,
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which further enter the tube placed into reactor. On the other hand, as a consequence

of the pressure drop developed along this tube, the UV emission strongly decreases along

it, which is the result of the decreasing sources of the excited molecules from the three-

body processes. Meanwhile the absolute density of active species decrease mostly due

to the pressure (density) drop, since their relative density do not change considerably

along the tube. Therefore, in this region the UV emission is not a good indicator for

the behaviour of the atomic densities.

Keeping in mind the requirements for the treatment of heat sensitive tubes, we

have measured the temperature in the reactor at chosen locations and also calculated

its distribution. We have shown that the temperature does not change considerably with

the load, however its positioning should be carefully chosen. In the present reactor, that

is a 4.4 cm diameter 40 cm long tube, the heat sensitive samples should be placed in

the second half of the reactor. Furthermore, the tube holder should be made from a

material with a low surface recombination probability, as its temperature can increase

due to the surface recombination processes, more significantly at higher pressures and

treatment times.

From the application point of view, we note that the system would also allow the

simultaneous treatment of several tubes at different gas mixtures (e.g. non UV emitting

Ar-O2 afterglow).
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