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Summary. In the early summer of 2014, mass mortality of Sichel (Pelecus cultratus) was 34 

observed in Lake Balaton, Hungary. Histological examination revealed degenerative changes 35 

within the tubular epithelium, mainly in the distal tubules and collecting ducts in the kidneys 36 

and multifocal vacuolisation in the brain stem and cerebellum. The routine molecular 37 

investigations showed the presence of the DNA of an unknown alloherpesvirus in some 38 

specimens. Subsequently, three genes were amplified and sequenced partially from the 39 

putative herpesviral genome (DNA polymerase, terminase, and helicase). Phylogenetic tree 40 

reconstruction, based on the concatenated sequence of these three conserved genes, implied 41 

that the virus undoubtedly belongs to the genus Cyprinivirus within the family 42 

Alloherpesviridae.  The sequences of the Sichel herpesvirus differ markedly from those of the 43 

three known cypriniviruses (CyHV-1, CyHV-2 and CyHV-3); putatively representing the 44 

fourth virus species in the genus. 45 
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The family Alloherpesviridae includes the herpesviruses (HVs) detected or isolated 67 

from amphibian and fish species [4]. The family contains four genera, one of them the genus 68 

Cyprinivirus comprises the HVs of cyprinids (family Cyprinidae) and that of the European eel 69 

(Anguilla anguilla). The genus contains four species accepted by the International Committee 70 

on Taxonomy of Viruses (ICTV) [20]: Cyprinid herpesvirus 1, Cyprinid herpesvirus 2, 71 

Cyprinid herpesvirus 3 and Anguillid herpesvirus 1. Interestingly, members of the genus 72 

Cyprinivirus can infect fish from two different superorders (Elopomorpha, Ostariophysi), 73 

although the HVs are considered to have narrow host range. Cyprinid herpesvirus 1 (CyHV-74 

1) was first isolated from carp (Cyprinus carpio) in Japan [21]. Cyprinid herpesvirus 2 75 

(CyHV-2), originally described as goldfish haematopoietic necrosis virus, was isolated also in 76 

Japan from goldfish (Carassius auratus) [15]. Cyprinid herpesvirus 3 (CyHV-3), is also 77 

known as koi herpesvirus, was described from common and koi carp [13]. The complete 78 

genome sequence of the above mentioned cypriniviruses and that of the Anguillid herpesvirus 79 

1 (AngHV-1) was determined [1, 5, 24]. 80 

During the early summer of 2014, mass mortality occurred among Sichel in Lake 81 

Balaton (Hungary), approximately 20.000 cadavers were collected by fishermen, other species 82 

were not affected. The present study was aimed at genetically characterizing a novel 83 

alloherpesvirus (AHV) detected in Sichel. 84 

Cadavers of six Sichel were sent to our laboratory (64.5-149.7 g) for histopathological 85 

and molecular investigations. All cadavers were necropsied immediately after arrival with 86 

routine tissue collection from the main organ systems (gills, brain, liver, kidney, spleen, 87 

intestine and eyes) for histopathological examination. Tissues were fixed in 10% neutral 88 

buffered formalin, routinely processed, embedded in paraffin, sectioned at approximately 5 89 

micrometer, mounted on glass slides, and stained with hematoxilin and eosin. The exterior 90 

mucus, gills and eyes were sampled for parasite examination through an optical microscope. 91 

For bacteria isolation, kidney tissue was inoculated onto blood agar plates. 92 

For the molecular investigations organ samples were homogenized using 93 

the TissueLyser high-throughput disruption instrument (Qiagen, Hilden, Germany) according 94 

to the manufacturer's recommendations. 200 µL of supernatants from organ homogenates 95 

were extracted using the Roche MagNA Pure LC automated system with a Total Nucleic Acid 96 

Isolation Kit (Roche Diagnostics, Indianapolis, IN) and eluted in 100 µL of elution buffer. 97 

Subsequently, the samples were tested for the presence of CyHV-3 with an expansively used 98 

PCR for the detection of cyprinid HVs [10]. 99 
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After realizing that the samples contain a probably novel virus species, virus isolation 100 

was attempted on EPC (Epithelioma papulosum cyprini) and CCG (Common carp gill) cell 101 

lines [11, 18]. The pooled organ homogenates were diluted to a 10% (w/v) suspension in an 102 

MEM medium (Gibco) complemented with antibiotics (Penicillin 300 U/ml, Streptomycin 103 

300 µg/ml). The suspension was centrifuged at 2000 × g for 10 min, and the supernatant was 104 

transferred into a new tube immediately. Three parallel inoculations (500 µl suspension per 105 

flask) were made in 25-cm
2 

flasks of EPC and CCG monolayers at 80% confluency. The 106 

flasks were incubated at 20C and 25C and checked for the appearance of cytopathic effect 107 

(CPE) daily. 108 

For amplifying longer regions from the DNA polymerase, terminase and helicase genes 109 

consensus primers were designed (Table 1) using the sequences of CyHV-1 and 2 and 3 and 110 

AngHV-1 (GenBank Acc. No.: NC_013668.3; NC_019491.1; NC_019495.1; NC_009127.1 ). 111 

The PCR mixtures for amplifying the above mentioned regions contained 34 µl distilled 112 

water, 10 µl Phusion® 5X HF buffer, 1.5 µl dNTP solution (10 mM), 1 µl of each primer (50 113 

pM), 0.5 µl Phusion® High-Fidelity DNA polymerase enzyme (Thermo Scientific) and 2 µl 114 

target DNA. The PCR programs consisted of an initial step at 98 C for 3 min, followed by 45 115 

cycles with denaturation at 98 C for 10 sec, annealing at 56 C for 30 sec, and elongation at 116 

72 C for 1 min. The final extension was at 72 C for 3 min. All PCR products were excised 117 

from agarose gel (1%), purified with the QIAquick Gel Extraction Kit (Qiagen), and 118 

sequenced directly with the forward and reverse primers. The sequencing reactions were 119 

performed with the use of the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied 120 

Biosystems). The electrophoresis was carried out by a commercial service provider on an ABI 121 

PRISM 3100 Genetic Analyzer. 122 

The quality of the sequence reads was analyzed using BioEdit [12] and Staden [23] 123 

program packages. Phylogenetic relations among alloherpesviruses (AHVs) were inferred 124 

from the analysis of 263 nt sequence alignment of the DNA polymerase gene (15 fish AHVs), 125 

and from the analysis of 835 aa sequence alignment consisting of the concatenated sequences 126 

of 3 conserved genes (DNA polymerase, terminase, helicase) from 6 AHVs. The nucleotide 127 

sequences of the DNA polymerase and the deduced amino acid sequences of the DNA 128 

polymerase, terminase and helicase genes were aligned using Mafft v6.935b [16]. Bayesian 129 

phylogenetic analyses were performed using MrBayes [14] within the TOPALi v2.5 program 130 

package and interface [19] with the following parameters: Markov chain was run for 10 131 

million generations, four independent analyses were conducted, each with 1 cold and 3 heated 132 
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chains. Sampling occurred every 10 generations with the first 25% of Markov chain Monte 133 

Carlo samples discarded as burn-in. The WAG amino acid and the HKY nucleotide 134 

substitution models were found to be the best fit for the data using the TOPALI v2.5 program. 135 

The cadavers of six Sichels found dead were in slightly emaciated condition. 136 

Macroscopically no external or internal lesions were observed except the red foci in the 137 

ventral part of the eyes (4 specimens). Microscopic lesions were more frequent in the kidneys. 138 

Degenerative changes within tubular epithelium mainly in the distal tubules and collecting 139 

ducts were observed. The dilatation of these tubules, and the exfoliation of tubular epithelial 140 

cells from the basement membrane were characteristic (Figure 1a). Caryomegalia, and 141 

necrotic changes of nucleus, picnosis, rhexis were frequent. In the brain samples congestion 142 

and multifocal vacuolisation in the brain stem and cerebellum (Figure 1b) were observed. No 143 

histological lesions occurred in the gills, liver, splen and eyes. Microscopic examination of 144 

fresh preparations from the gills revealed a minor infestation of Ergasilus sp. and Myxobolus 145 

spores, and in one case Trichodina sp. The external mucus proved to be negative for the 146 

presence of parasites, whilst in the eyes Myxobolus spores were observed. Bacterial isolation 147 

attempts gave negative results. 148 

No CPE was observed during the virus isolation attempt. After 2 weeks a blind passage 149 

was carried out. There was not any CPE in this second passage, as well, and even the PCR for 150 

the detection of the viral DNA failed. 151 

Of the 6 Sichel samples tested for the presence of cyprinid AHVs, the PCR [10] 152 

produced a 363 bp DNA fragment in two samples with identical nt sequences. Subsequently, 153 

the positive samples were applied for obtaining longer sequences from more genes. From the 154 

DNA polymerase, terminase and helicase genes, 1134, 1127 and 694 bp fragments were 155 

amplified, respectively (representing approximately the half of the terminase and the ¼ of the 156 

polymerase and helicase genes). The sequences were deposited to GenBank (Acc. Nos. 157 

KM357276-KM357278). The G+C content of the concatenated nucleotide sequences of the 158 

Sichel HV proved to be 60.07%. The Figure 2a shows phylogenetic relations within the 159 

family Alloherpesviridae (amphibian AHVs excluded); the Sichel HV undoubtedly clusters in 160 

the genus Cyprinivirus, as the sister species to Cyprinid herpesvirus 2. The phylogenetic tree 161 

reconstruction (based on 10x longer sequences) presented in Figure 2b, illustrates the clear 162 

separation of species Sichel HV from the other CyHVs. Additionally, the nucleotide 163 

comparison of the CyHV-1, -2, -3 and Sichel HV (2955 bp) was calculated (Table 2). 164 

In this paper we provide the first molecular data from the genome of a novel AHV 165 

originating from Sichel. More than a decade passed since the last cyprinid HV had been 166 
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described [13]; moreover almost all known AHVs were at least reported by EM investigation 167 

before the year of 2000, and in some cases these results were confirmed by virus isolation 168 

and/or DNA sequence data, as well [2, 3, 25]. Since then, in the new millennium, further 169 

studies were carried out on the formerly reported viruses; lots of herpesviral sequences were 170 

deposited to the GenBank confirming that the viruses previously described as HVs are really 171 

belonging to the family Alloherpesviridae ([1, 7, 8, 24, 25]. And in some cases, already 172 

known AHVs were reported from novel hosts [6, 9, 17, 22]. In this work, we report a novel, 173 

yet unseen AHV. 174 

Three partial gene fragments of the viral genome (DNA polymerase, terminase and 175 

helicase genes) were amplified, sequenced and analyzed suggesting that the Sichel HV is 176 

probably a new virus species in the genus Cyprinivirus. The phylogenetic tree (Figure 2a) 177 

contains all the known fish AHVs with available DNA polymerase sequences, even the two 178 

recently described variants of the CyHV-3 (strain 3468/10 and 12ITT-426) [10]. The Sichel 179 

HV seems to be a sister species of the CyHV-2 on this figure. It could be seen that the 180 

phylogenetic distances between the CyHV-3 variants are remarkably less than that of between 181 

the Sichel HV and CyHV-2, suggesting that the Sichel HV is a novel virus species and not 182 

only a variant of the CyHV-2, which seems to have a narrow host range, it was described 183 

from two very closely related fish species (goldfish and Prussian carp). The DNA polymerase 184 

gene of the CyHV-1 and CyHV-3 does not contain any intron; however that of the CyHV-2 is 185 

composed of five exons [5]. The amplified region of the Sichel HV also contains an intron on 186 

this 1 kb long fragment like CyHV-2. The second phylogenetic tree contains only the 187 

officially accepted members of the genus Cyprinivirus, and the Sichel HV with the AciHV-2 188 

as an outgroup (Figure 2b). This calculation based on much longer sequences concatenated 189 

from three genes (unfortunately from the different CyHV-3 variants there are no sequence 190 

data from these genes). This calculation and the nucleotide comparison (Table 2) may support 191 

our theory that the Sichel HV is not a variant of any known cypriniviruses, but a novel virus 192 

species within the genus Cyprinivirus. However, more sequence data (full genes or rather the 193 

whole genome) needs to confirm that the Sichel HV is undoubtedly a novel AHV species, in 194 

this case it would be the fourth virus species (CyHV-4) in the genus Cyprinivirus. 195 

As for the Sichel loss in Lake Balaton, toxicological examinations were not carried out, 196 

the bacterial investigations proved to be negative, the minor infestation of different parasites 197 

do not explain the massive mortality event. The presence of the novel herpesviral DNA was 198 

detected only in one-third of the examined specimens. The histopathological abnormalities 199 

found in the samples could be a result of simple degradation, not neccesseraly due to viral 200 



7 

effect. Taken together these facts, a direct connection between the presence of the herpesviral 201 

DNA and the mass mortality of Sichel could not be revealed. The causative agent of the 202 

outbreak remains unknown, further virological and toxicological studies would be needed for 203 

answering this question. As for the role of the novel HV acting in Sichel mortality, examining 204 

the pathogenicity of Sichel HV in experimental infections, the isolation of the virus would be 205 

essential. 206 

 207 

Acknowledgements 208 

The excellent technical assistance of Gyöngyi Daróczi, Ágnes Juhász, and Ottinger 209 

Ernőné is gratefully acknowledged. This work was supported by a grant provided by the 210 

Hungarian Scientific Research Fund (OTKA PD104315), and by the János Bolyai Research 211 

Scholarship of the Hungarian Academy of Sciences. 212 

 213 

References 214 

 215 

1. Aoki T, Hirono I, Kurokawa K, Fukuda H, Nahary R, Eldar A, Davison AJ, Waltzek 216 

TB, Bercovier H, Hedrick RP (2007) Genome sequences of three koi herpesvirus 217 

isolates representing the expanding distribution of an emerging disease threatening koi 218 

and common carp worldwide. J Virol 81:5058–5065 219 

2. Davison AJ (1992) Channel catfish virus: a new type of herpesvirus. Virology 186: 9–220 

14 221 

3. Davison AJ (1998) The genome of salmonid herpesvirus 1. J Virol 72: 1974–1982 222 

4. Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, 223 

Roizman B, Studdert MJ, Thiry E (2009) The order Herpesvirales. Arch Virol 224 

154:171–177 225 

5. Davison AJ, Kurobe T, Gatherer D, Cunningham C, Korf I, Fukuda H, Hedrick RP, 226 

Waltzek TB (2013) Comparative genomics of carp herpesviruses. J Virol. 87:2908–22  227 

6. Doszpoly A, Benkő M, Csaba G, Dán Á, Láng M, Harrach B (2011) Introduction of 228 

the family Alloherpesviridae: the first molecular detection of herpesviruses of cyprinid 229 

fish in Hungary. Magy Allatorvosok 133:174–181 230 

7. Doszpoly A, Kovács ER, Bovo G, LaPatra SE, Harrach B, Benkő M (2008) Molecular 231 

confirmation of a new herpesvirus from catfish (Ameiurus melas) by testing the 232 

performance of a novel PCR method, designed to target the DNA polymerase gene of 233 

alloherpesviruses. Arch Virol 153:2123–2127 234 

http://www.ncbi.nlm.nih.gov/pubmed/23269803


8 

8. Doszpoly A, Karaseva TA, Waltzek TB, Kalabekov IM, Shchelkunov IS (2013) 235 

Atlantic salmon papillomatosis in Russia and molecular characterization of the 236 

associated herpesvirus. Dis Aquat Organ 107:121–127 237 

9. Doszpoly A, Shchelkunov IS (2010) Partial genome analysis of Siberian sturgeon 238 

alloherpesvirus suggests its close relation to AciHV-2. Acta Vet Hung 58:269–274 239 

10. Engelsma MY, Way K, Dodge MJ, Voorbergen-Laarman M, Panzarin, V, Abbadi 240 

M, El-Matbouli M, Skall HF, Kahns S, Stone DM (2013) 241 

Detection of novel strains of cyprinid herpesvirus closely related to koi herpesvirus. 242 

Dis Aquat Org 107:113–120 243 

11. Fijan N, Sulimanovic D, Bearzotti M, Muzinic D, Zwillenberg LO, Chilmonczyk S, 244 

Vautherot JF, Dekinkelin P (1983). Some properties of the Epithelioma Papulosum 245 

Cyprini (EPC) cell line from carp Cyprinus carpio. Ann Virol 134: 207–220 246 

12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and 247 

analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98 248 

13. Hedrick RP, Gilad O, Yun S, Spangenberg JV, Marty GD, Nordhausen RW, Kebus 249 

MJ, Bercovier H, Eldar A (2000) A herpesvirus associated with mass mortality of 250 

juvenile and adult koi, a strain of a common carp. J Aquat Anim Health 12:44 –57 251 

14. Huelsenback JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. 252 

Bioinformatics 17:754–755 253 

15. Jung SJ, Miyazaki T (1995) Herpesviral haematopoietic necrosis of goldfish, 254 

Carassius auratus (L.). J Fish Dis 18:211–220 255 

16. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in 256 

accuracy of multiple sequence alignments. Nucleic Acids Res 33:511-518 257 

17. Kelley GO, Waltzek TB, McDowell TS, Yun SC, LaPatra SE, Hedrick RP (2005) 258 

Genetic relationships among herpes-like viruses isolated from sturgeon. J Aquat Anim 259 

Health 17:297–303 260 

18. Ku CC, Chen SN (1992) Characterization of three cell lines derived from Color carp 261 

Cyprinus carpio. J Tiss Cult Meth 14:63–72 262 

19. Milne I, Wright F, Rowe G, Marshall DF, Husmeier D, McGuire G (2004) TOPALi: 263 

software for automatic identification of recombinant sequences within DNA multiple 264 

alignments. Bioinformatics 20:1806–1807 265 

20. Pellett, P.E., Davison, A.J., Eberle, R., Ehlers, B., Hayward, G.S., Lacoste, V., 266 

Minson, A.C., Nicholas, J., Roizman, B., Studdert, M.J. and Wang, F. (2011) Family 267 

Herpesviridae, in: King, A.M.Q., Adams, M.J., Carstens, E.B., Leftkowitz, E.J. (Eds.), 268 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Engelsma,%20MY
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Way,%20K
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Dodge,%20MJ
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Voorbergen-Laarman,%20M
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Panzarin,%20V
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Abbadi,%20M&cacheurlFromRightClick=no
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Abbadi,%20M&cacheurlFromRightClick=no
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=El-Matbouli,%20M
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Skall,%20HF&ut=16424565&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Kahns,%20S
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=P1JYCjVxCMybhlPGRgX&field=AU&value=Stone,%20DM


9 

Virus Taxonomy, IXth Report of the International Committee on Taxonomy of 269 

Viruses, Elsevier, Academic Press, London, pp. 99–123 270 

21. Sano T, Fukuda H, Furukawa M, Hosoya H, Moriya Y (1985) A herpesvirus isolated 271 

from carp papilloma in Japan, in Ellis AE (Eds), Fish and shellfish pathology. 272 

Academic Press, London, pp. 307–311 273 

22. Shchelkunov IS, Shchelkunova TI, Shchelkunov AI, Kolbasova YP, Didenko LV 274 

Bykovsky AF (2009) First detection of a viral agent causing disease in farmed 275 

sturgeon in Russia. Dis Aquat Organ 86:193–203 276 

23. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5: 233-241 277 

24. van Beurden SJ, Bossers A, Voorbergen-Laarman MH, Haenen OL, Peters S, Abma-278 

Henkens MH, Peeters BP, Rottier PJ, Engelsma MY (2010) Complete genome 279 

sequence and taxonomic position of anguillid herpesvirus 1. J Gen Virol 91:880–887 280 

25. Waltzek TB, Kelley GO, Alfaro ME, Kurobe T, Davison AJ, Hedrick RP (2009) 281 

Phylogenetic relationships in the family Alloherpesviridae. Dis Aquat Organ 84:179–282 

194 283 

 284 

Figures and Legends 285 

 286 

Figure 1a. Exfoliation of degenerated tubular epithelial cells from the basement membrane, 287 

karyomegalia (upward arrow) and necrotic changes of nucleus (downward arrow). 288 

Haematoxilin – eosin, 400X. 2a. Congestion and focal vacuolization (arrows) in the 289 

cerebellum. Haematoxilin – eosin, 200X. 290 

http://www.ncbi.nlm.nih.gov/pubmed/20016040?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1
http://www.ncbi.nlm.nih.gov/pubmed/20016040?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1
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 292 

Figure 2a. Phylogenetic tree for the fish alloherpesviruses, the analysis was based on the 293 

Bayesian analysis (HKY nucleotide substitution model) of the partial DNA polymerase 294 

sequences (263 nt). High statistical values confirm the topology of the tree. The main lineages 295 

within the family (genera) are signed with different colored lines on the tree.  2a. Phylogeny 296 

reconstruction for the genus Cyprinivirus inferred by Bayesian analysis (WAG amino acid 297 

model) using the concatenated amino acid sequences of DNA polymerase, terminase and 298 

helicase genes (835 amino acid characters). High statistical values confirm the branching 299 

topology. Abbreviations: AciHV: acipenserid herpesvirus; AngHV: anguillid herpesvirus; 300 

CyHV cyprinid herpesvirus; IcHV: ictalurid herpesvirus; SalHV: salmonid herpesvirus. 301 
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 302 

 303 

 304 

 305 

Table 1. Consensus primers used in the PCRs to amplify well-conserved regions of the DNA 306 

polymerase, terminase, and helicase genes 307 

 308 

 309 

 310 

 311 

 312 

 AciHV-2 

 AngHV-1 

 CyHV-1 

 CyHV-2 

 CyHV-3 

 Sichel HV 

100 

100 

62 

0.1 

 AngHV-1 

CyHV-3 (3468/10) 

 CyHV-3 

 CyHV-3 (12ITT-426) 

 CyHV-1 

 Sichel HV 

 CyHV-2 

 AciHV-1 

 AciHV-2 

 IcHV-2 

 IcHV-1 

 SalHV-3 

 SalHV-4 

 SalHV-2 

 SalHV-1 

70 

85 

100 

94 

100 

84 

98 

53 

100 

86 

60 

0.1 

100 

86 



13 

target primers 

DNA polymerase 
forward: 5’- GGN GCN ATG GTN CAR WSN ACN AA -3’ 

reverse: 5’- ACN GTN GCN GTR TTY TCR TAN GC -3’ 

terminase 
forward: 5’- GCG CTG AGK ATG TCG TCY TTG -3’ 

reverse: 5’- YGA CAT CTA CAA GCC CGA CCA -3’ 

helicase 
forward: 5’- GTN GGN WSN GTN ACN CAR YT -3’ 

reverse: 5’- CCY TGR CAR AAR TAN GTR TTC AT -3’ 

 313 

Table 2. Comparison of the nt sequences of the different CyHVs (DNA polymerase, helicase 314 

and terminase). The values in the body of the table are percentages of nucleotide similarities 315 

 316 

 CyHV-1 CyHV-2 CyHV-3 Sichel HV 

CyHV-1 - 73% 75% 72% 

CyHV-2 73% - 74% 73% 

CyHV-3 75% 74% - 74% 

Sichel HV 72% 73% 74% - 

 317 


