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Abstract Let (M, d, m) be a metric measure space which satisfies the Lott–Sturm–Villani1

curvature-dimension condition CD(K , n) for some K ≥ 0 and n ≥ 2, and a lower2

n-density assumption at some point of M . We prove that if (M, d, m) supports the3

Gagliardo–Nirenberg inequality or any of its limit cases (L p-logarithmic Sobolev inequality4

or Faber–Krahn-type inequality), then a global non-collapsing n-dimensional volume growth5

holds, i.e., there exists a universal constant C0 > 0 such that m(Bx (ρ)) ≥ C0ρ
n for all x ∈ M6

and ρ ≥ 0, where Bx (ρ) = {y ∈ M : d(x, y) < ρ}. Due to the quantitative character of7

the volume growth estimate, we establish several rigidity results on Riemannian manifolds8

with non-negative Ricci curvature supporting Gagliardo–Nirenberg inequalities by explor-9

ing a quantitative Perelman-type homotopy construction developed by Munn (J Geom Anal10

20(3):723–750, 2010). Further rigidity results are also presented on some reversible Finsler11

manifolds.12
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1 Introduction28

An important role in the theory of geometric functional inequalities is played by the29

Gagliardo–Nirenberg interpolation inequality and its limit cases. The present paper is devoted30

to the study of Gagliardo–Nirenberg inequalities on metric measure spaces; to be more pre-31

cise, we shall32

(a) establish quantitative volume non-collapsing properties of metric measure spaces satis-33

fying the Lott–Sturm–Villani curvature-dimension condition CD(K , n) for some K ≥ 034

and n ≥ 2, in the presence of a Gagliardo–Nirenberg inequality or one of its limit cases35

(L p-logarithmic Sobolev inequality or Faber–Krahn-type inequality);36

(b) provide rigidity results in the framework of Riemannian and Finsler manifolds with37

non-negative Ricci curvature which support (almost)optimal Gagliardo–Nirenberg38

inequalities by using the volume non-collapsing property from (a) and a quantitative39

homotopy construction due to Munn [17] and Perelman [22].40

In Sect. 1.1, we recall the optimal Gagliardo–Nirenberg inequalities on normed spaces which41

play a comparison role in our investigations; in Sect. 1.2, we present the main results of the42

paper.43

1.1 Recalling optimal Gagliardo–Nirenberg inequalities on normed spaces44

The optimal Gagliardo–Nirenberg inequality in the Euclidean case has been obtained by Del45

Pino and Dolbeault [7] for a certain range of parameters by using symmetrization arguments.46

By using mass transportation argument, Cordero-Erausquin et al. [6] extended the results47

from [7] to prove optimal Gagliardo–Nirenberg inequalities on arbitrary normed spaces. In48

the sequel, we recall the main theorems from [6] and some related results.49

Let ‖ · ‖ be an arbitrary norm on R
n; without loss of generality, we may assume that the50

Lebesgue measure of the unit ball in (Rn, ‖ ·‖) is the volume of the n-dimensional Euclidean51

unit ball ωn = π
n
2 Ŵ( n

2 + 1)
−1. The dual norm ‖·‖∗ of ‖·‖ is given by ‖x‖∗ = sup‖y‖≤1 x · y52

where ′·′ is the Euclidean inner product. Let p ∈ [1, n) and L p(Rn) be the Lebesgue space53

of order p. As usual, we consider the Sobolev spaces54

Ẇ 1,p(Rn) = {u ∈ L p⋆

(Rn) : ∇u ∈ L p(Rn)}55

and56

W 1,p(Rn) = {u ∈ L p(Rn) : ∇u ∈ L p(Rn)},57

where p⋆ =
pn

n−p
and ∇ is the gradient operator. On account of the Finslerian duality (see58

also Sect. 3.2), if u ∈ Ẇ 1,p(Rn), the norm of ∇u is defined by59

‖∇u‖L p =

(∫

Rn

‖∇u(x)‖
p
∗ dx

)1/p

,60
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 3 of 27 _####_

where dx is the Lebesgue measure on R
n .161

Fix n ≥ 2, p ∈ (1, n) and α ∈ (0, n
n−p

]\{1}; for every λ > 0, let62

hλ
α,p(x) = (λ + (α − 1)‖x‖p′

)
1

1−α

+ , x ∈ R
n, 163

where p′ =
p

p−1 is the conjugate to p, and r+ = max{0, r} for r ∈ R. The following optimal64

Gagliardo–Nirenberg inequalities are known on normed spaces:65

Theorem A. (see [6, Theorem 4]) Let n ≥ 2, p ∈ (1, n) and ‖ · ‖ be an arbitrary norm on66

R
n .67

• If 1 < α ≤ n
n−p

, then68

‖u‖Lαp ≤ Gα,p,n‖∇u‖θ
L p ‖u‖1−θ

Lα(p−1)+1 , ∀u ∈ Ẇ 1,p(Rn), (1.1)69

where70

θ =
p⋆(α − 1)

αp(p⋆ − αp + α − 1)
, (1.2)71

and the best constant72

Gα,p,n =

(

α − 1

p′

)θ

(

p′

n

) θ
p
+ θ

n
(

α(p−1)+1
α−1 − n

p′

) 1
αp

(

α(p−1)+1
α−1

) θ
p
− 1

αp

(

ωnB

(

α(p−1)+1
α−1 − n

p′ ,
n
p′

)) θ
n

73

is achieved by the family of functions hλ
α,p , λ > 0;74

• If 0 < α < 1, then75

‖u‖Lα(p−1)+1 ≤ Nα,p,n‖∇u‖
γ

L p ‖u‖
1−γ

Lαp , ∀u ∈ Ẇ 1,p(Rn), (1.3)76

where77

γ =
p⋆(1 − α)

(p⋆ − αp)(αp + 1 − α)
, (1.4)78

and the best constant79

Nα,p,n =

(

1 − α

p′

)γ

(

p′

n

)
γ
p
+

γ
n

(

α(p−1)+1
1−α

+ n
p′

)
γ
p
− 1

α(p−1)+1
(

α(p−1)+1
1−α

) 1
α(p−1)+1

(

ωnB

(

α(p−1)+1
1−α

, n
p′

))
γ
n

80

is achieved by the family of functions hλ
α,p , λ > 0.81

Hereafter, B(·, ·) is the Euler beta-function.82

The borderline case α = n
n−p

(thus θ = 1) reduces to the optimal Sobolev inequality, see83

Aubin [3] and Talenti [26] in the Euclidean case, and Alvino et al. [1] for normed spaces.84

Furthermore, inequalities (1.1) and (1.3) degenerate to the optimal L p-logarithmic Sobolev85

inequality whenever α → 1 (called also as the entropy-energy inequality involving the86

Shannon entropy), while (1.3) reduces to a Faber–Krahn-type inequality whenever α → 0,87

respectively. More precisely, one has88

1 The function hλ
α,p is positive everywhere for α > 1 while hλ

α,p has always a compact support for α < 1.
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_####_ Page 4 of 27 A. Kristály

Theorem B. Let n ≥ 2, p ∈ (1, n) and ‖ · ‖ be an arbitrary norm on R
n .89

• Limit case I (α → 1) (see [9, Theorem 1.1]2): One has90

Entdx (|u|p) =

∫

Rn

|u|p log |u|pdx ≤
n

p
log

(

Lp,n‖∇u‖
p
L p

)

,91

∀u ∈ W 1,p(Rn), ‖u‖L p = 1, (1.5)92

where the best constant93

Lp,n =
p

n

(

p − 1

e

)p−1 (

ωnŴ

(

n

p′
+ 1

))−
p
n

94

is achieved by the family of functions95

lλp(x) = λ
n

pp′ ω
− 1

p
n Ŵ

(

n

p′
+ 1

)− 1
p

e
− λ

p
‖x‖p′

, λ > 0;96

• Limit case II (α → 0) (see [6, p. 320]): One has97

‖u‖L1 ≤ Fp,n‖∇u‖L p |supp(u)|
1− 1

p⋆ , ∀u ∈ Ẇ 1,p(Rn) (1.6)98

and the best constant99

Fp,n = lim
α→0

Nα,p,n = n
− 1

p ω
− 1

n
n (p′ + n)

− 1
p′

100

is achieved by the family of functions101

f λ
p (x) = lim

α→0
hλ

α,p(x) = (λ − ‖x‖p′

)+, x ∈ R
n,102

where supp(u) stands for the support of u and |supp(u)| is its Lebesgue measure.103

1.2 Statement of main results104

As we already pointed out, the primordial purpose of the present paper is to establish fine105

topological properties of metric measure spaces curved in the sense of Lott–Sturm–Villani106

which support Gagliardo–Nirenberg-type inequalities. In fact, the metric spaces we are work-107

ing on are supposed to satisfy the curvature-dimension condition CD(K , n) for some K ≥ 0108

and n ≥ 2, introduced by Lott and Villani [15] and Sturm [24,25]; see Sect. 2 for its formal109

definition.110

1.2.1 Volume non-collapsing on metric measure spaces111

Let (M, d, m) be a metric measure space (with a strictly positive Borel measure m) and112

Lip0(M) be the space of Lipschitz functions with compact support on M . For u ∈ Lip0(M),113

let114

|∇u|d(x) := lim sup
y→x

|u(y) − u(x)|

d(x, y)
, x ∈ M. (1.7)115

Note that x �→ |∇u|d(x) is Borel measurable on M for u ∈ Lip0(M).116

2 Gentil [9] proved an optimal L p-logarithmic Sobolev inequality for even, q-homogeneous (q > 1), strictly

convex functions C : R
n → [0,∞). In our case, C(x) =

‖x‖p′

p′ .
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 5 of 27 _####_

As before, let n ≥ 2 be an integer, p ∈ (1, n) and α ∈ (0, n
n−p

]\{1}. Throughout this117

section we assume that the lower n-density of the measure m at a point x0 ∈ M is unitary,118

i.e.,119

(D)n
x0

: lim inf
ρ→0

m(Bx0(ρ))

ωnρn
= 1,120

where Bx (r) = {y ∈ M : d(x, y) < r}.121

Throughout the whole paper, we shall keep the notations from Theorems A and B [i.e.,122

the four best constants from the Gagliardo–Nirenberg inequalities on normed spaces and the123

numbers θ and γ from (1.2) and (1.4), respectively]; the Lebesgue spaces L p are defined124

on the measure space (M, m). We now are the position to state our quantitative, globally125

non-collapsing volume growth results:126

Theorem 1.1 (Gagliardo–Nirenberg inequalities) Let (M, d, m) be a proper metric measure127

space which satisfies the curvature-dimension condition CD(K , n) for some K ≥ 0 and128

n ≥ 2. Let p ∈ (1, n) and assume that (D)n
x0

holds for some x0 ∈ M. Then the following129

statements hold:130

(i) If 1 < α ≤ n
n−p

and the inequality131

‖u‖Lαp ≤ C‖|∇u|d‖θ
L p ‖u‖1−θ

Lα(p−1)+1 , ∀u ∈ Lip0(M) (GN1)
α,p
C132

holds for some C ≥ Gα,p,n , then K = 0 and133

m(Bx (ρ)) ≥

(

Gα,p,n

C

) n
θ

ωnρn f orall x ∈ M and ρ ≥ 0.134

(ii) If 0 < α < 1 and the inequality135

‖u‖Lα(p−1)+1 ≤ C‖|∇u|d‖
γ

L p ‖u‖
1−γ

Lαp , ∀u ∈ Lip0(M) (GN2)
α,p
C136

holds for some C ≥ Nα,p,n , then K = 0 and137

m(Bx (ρ)) ≥

(

Nα,p,n

C

) n
γ

ωnρn f or all x ∈ M and ρ ≥ 0.138

In the limit case α → 1, we can state139

Theorem 1.2 (L p-logarithmic Sobolev inequality) Under the same assumptions as in140

Theorem 1.1, if141

Entdm(|u|p) =

∫

M

|u|p log |u|pdm ≤
n

p
log

(

C‖|∇u|d‖
p
L p

)

, ∀u ∈ Lip0(M),142

‖u‖L p = 1 (LS)
p
C143

holds for some C ≥ Lp,n, then K = 0 and144

m(Bx (ρ)) ≥

(

Lp,n

C

) n
p

ωnρn f or all x ∈ M and ρ ≥ 0.145

In the remaining limit case α → 0, one can prove146
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_####_ Page 6 of 27 A. Kristály

Theorem 1.3 (Faber–Krahn-type inequality) Under the same assumptions as in Theorem147

1.1, if148

‖u‖L1 ≤ C‖|∇u|d‖L p m(supp(u))
1− 1

p⋆ , ∀u ∈ Lip0(M) (FK)
p
C149

holds for some C ≥ Fp,n , then K = 0 and150

m(Bx (ρ)) ≥

(

Fp,n

C

)n

ωnρn f or all x ∈ M and ρ ≥ 0.151

Some remarks are in order.152

Remark 1.1 (a) The proofs of Theorems 1.1–1.3 are synthetic where we shall exploit some153

basic features of metric measure spaces satisfying the CD(K , n) condition (such as154

generalized Bonnet–Myers and Bishop–Gromov comparison inequalities) and direct155

constructions. Although the lines of the proofs of these results are similar, our arguments156

require different technics, deeply depending on the shape of certain test functions whose157

profiles come from the family of extremals in normed spaces (cf. Theorems A & B).158

Note that instead of the CD(K , n) condition it is enough to consider the slightly weaker159

measure contraction property MCP(K , n), see Ohta [20].160

(b) The case p = 2 and α = n
n−2 (n ≥ 3) is contained in Kristály and Ohta [12], where161

the authors studied Caffarelli–Kohn–Nirenberg inequalities on metric measure spaces.162

We notice that the roots of Theorem 1.1 (i) on Riemannian manifolds with non-negative163

Ricci curvature can be found in do Carmo and Xia [8], Ledoux [13] and Xia [28].164

(c) The generalized Bishop–Gromov inequality and density assumption (D)n
x0

imply165

m(Bx0(ρ)) ≤ ωnρn for all ρ ≥ 0. In particular, the latter inequality and the con-166

clusions of Theorems 1.1–1.3 imply the Ahlfors n-regularity at the point x0; therefore,167

the Hausdorff dimension of (M, d) is precisely n.168

(d) (D)n
x0

clearly holds for every point x0 on n-dimensional Riemannian and Finsler mani-169

folds endowed with the canonical Busemann–Hausdorff measure.170

1.2.2 Applications: rigidity results in smooth settings171

Having fine volume growth estimates in Theorems 1.1–1.3, important rigidity results can172

be deduced in the context of Riemannian and Finsler manifolds supporting Gagliardo–173

Nirenberg-type inequalities.174

In order to state such results, let (M, g) be an n-dimensional complete Riemannian mani-175

fold with non-negative Ricci curvature (n ≥ 2) endowed with its canonical volume form dvg .176

Let αM P (k, n) ∈ (0, 1] be the so-called Munn–Perelman constant for every k = 1, . . . , n,177

see Munn [17]. In fact, based on the double induction argument of Perelman [22], Munn178

determined explicit lower bounds for the volume growth in terms of the constant αM P (k, n)179

which guarantee the triviality of the k-th homotopy group πk(M) of (M, g); see details in180

Sect. 3.181

For sake of simplicity, we restrict here our attention to the L p-logarithmic Sobolev182

inequality(LS)
p
C on (M, g) by proving that once C > 0 is closer and closer to the opti-183

mal Euclidean constant Lp,n , the manifold (M, g) approaches topologically more and more184

to the Euclidean space R
n .185

Theorem 1.4 Let (M, g) be an n-dimensional complete Riemannian manifold with non-186

negative Ricci curvature (n ≥ 2) and assume the L p-logarithmic Sobolev inequality (LS)
p
C187

holds on (M, g) for some p ∈ (1, n) and C > 0. Then the following assertions hold:188
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 7 of 27 _####_

(i) C ≥ Lp,n;189

(ii) The order of the fundamental group π1(M) is bounded above by
(

C
Lp,n

) n
p
;190

(iii) If C < αM P (k0, n)−
p
n Lp,n for some k0 ∈ {1, . . . , n} then π1(M) = · · · = πk0(M) = 0;191

(iv) If C < αM P (n, n)−
p
n Lp,n then M is contractible;192

(v) C = Lp,n if and only if (M, g) is isometric to the Euclidean space R
n .193

Remark 1.2 (a) Theorem 1.4 (v) answers an open question of Xia [29] for generic p ∈194

(1, n). For p = 2 the latter equivalence is well known by using sharp analytic estimates195

for the heat kernel on complete Riemannian manifolds with non-negative Ricci curva-196

ture; see Bakry et al. [4], Ni [18], and Li [14]. Details are presented in Sect. 3.1 (see197

Remark 3.1).198

(b) The conclusion C ≥ Lp,n in Theorem 1.4 (i) is in a perfect concordance with the assump-199

tion of Theorem 1.2. Analogous statements hold for the other Gagliardo–Nirenberg200

inequalities.201

(c) Similar results to Theorem 1.4 can be stated also for Gagliardo–Nirenberg inequalities202

(GN1)C and (GN2)C , and Faber–Krahn inequality (FK)C with trivial modifications. In203

particular, we have:204

Corollary 1.1 (Optimality vs. flatness) Let (M, g) be an n(≥2)-dimensional complete205

Riemannian manifold with non-negative Ricci curvature. The following statements are equiv-206

alent:207

(i) (GN1)
α,p
Gα,p,n

holds on (M, g) for some p ∈ (1, n) and α ∈ (1, n
n−p

];208

(ii) (GN2)
α,p
Nα,p,n

holds on (M, g) for some p ∈ (1, n) and α ∈ (0, 1);209

(iii) (LS)
p
Lp,n

holds on (M, g) for some p ∈ (1, n);210

(iv) (FK)
p
Fp,n

holds on (M, g) for some p ∈ (1, n);211

(v) (M, g) is isometric to the Euclidean space R
n .212

Remark 1.3 (a) The equivalence (i)⇔(v) in Corollary 1.1 is precisely the main result of213

Xia [28].214

(b) A similar rigidity result to Corollary 1.1 can be stated on reversible Finsler manifolds215

endowed with the natural Busemann–Hausdoff measure dVF of (M, F); roughly speak-216

ing, we can replace the notions ‘Riemannian’ and ‘Euclidean’ in Corollary 1.1 by the217

notions ‘Berwald’ and ‘Minkowski’, respectively (see Theorem 3.2). The latter notions218

will be introduced in Sect. 3.2.219

Notations. When no confusion arises, ‖ · ‖L p abbreviates: (a) ‖ · ‖L p(M,dm) on the metric220

measure space (M, d, m); (b) ‖ · ‖L p(M,dvg) on the Riemannian manifold (M, g) where dvg221

stands for the canonical Riemannian measure on (M, g); (c) ‖ · ‖L p(M,dVF ) on the Finsler222

manifold (M, F) where dVF denotes the Busemann-Hausdoff measure on (M, F); and (d)223

‖ · ‖L p(Rn ,dx) on the Euclidean/normed space R
n where dx is the usual Lebesgue measure,224

respectively. When A is not the whole space we are working on, we shall use the notation225

‖u‖L p(A) for the L p-norm of the function u : A → R.226

2 Volume non-collapsing via Gagliardo–Nirenberg inequalities227

Before the presentation of the proofs of Theorems 1.1–1.3, we recall for completeness some228

notions and results from Lott and Villani [15] and Sturm [24,25], which are indispensable in229

our arguments.230
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_####_ Page 8 of 27 A. Kristály

Let (M, d, m) be a metric measure space, i.e., (M, d) is a complete separable metric space231

and m is a locally finite measure on M endowed with its Borel σ -algebra. In the sequel, we232

assume that the measure m on M is strictly positive, i.e., supp[m] = M. As usual, P2(M, d)233

is the L2-Wasserstein space of probability measures on M , while P2(M, d, m) will denote234

the subspace of m-absolutely continuous measures. (M, d, m) is said to be proper if every235

bounded and closed subset of M is compact.236

For a given number N ≥ 1, the Rényi entropy functional SN (·|m) : P2(M, d) → R with237

respect to the measure m is defined by SN (µ|m) = −
∫

M
ρ− 1

N dµ, ρ being the density of238

µc in µ = µc + µs = ρm + µs , where µc and µs represent the absolutely continuous and239

singular parts of µ ∈ P2(M, d), respectively.240

Let K , N ∈ R be two numbers with K ≥ 0 and N ≥ 1. For every t ∈ [0, 1] and s ≥ 0,241

let242

τ
(t)
K ,N (s) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+∞, if K s2 ≥ (N − 1)π2;

t
1
N

(

sin
(√

K
N−1 ts

)

/

sin
(√

K
N−1 s

))1− 1
N

, if 0 < K s2 < (N − 1)π2;

t, if K s2 = 0.

243

We say that (M, d, m) satisfies the curvature-dimension condition CD(K , N ) if for each244

µ0, µ1 ∈ P2(M, d, m) there exists an optimal coupling γ of µ0, µ1 and a geodesic Ŵ :245

[0, 1] → P2(M, d, m) joining µ0 and µ1 such that246

SN ′(Ŵ(t)|m) ≤ −

∫

M×M

[

τ
(1−t)

K ,N ′ (d(x0, x1))ρ
− 1

N ′

0 (x0) + τ
(t)

K ,N ′(d(x0, x1))ρ
− 1

N ′

1 (x1)

]

dγ (x0, x1)247

for every t ∈ [0, 1] and N ′ ≥ N , where ρ0 and ρ1 are the densities of µ0 and µ1 with respect248

to m. Clearly, when K = 0, the above inequality reduces to the the geodesic convexity of249

SN ′(·|m) on the L2-Wasserstein space P2(M, d, m).250

It is well known that CD(K , n) holds on a complete Riemannian manifold (M, g)251

endowed with the Riemannian volume element dvg if and only if its Ricci curvature ≥K252

and dim(M) ≤n.253

Let Bx (r) = {y ∈ M : d(x, y) < r}. In the sequel we shall exploit properties which are254

resumed in the following results.255

Theorem 2.1 (see [25]) Let (M, d, m) be a metric measure space with strictly positive256

measure m satisfying the curvature-dimension condition CD(K , N ) for some K ≥ 0 and257

N > 1. Then every bounded set S ⊂ M has finite m-measure and the metric spheres ∂ Bx (r)258

have zero m-measures. Moreover, one has:259

(i) [Generalized Bonnet–Myers theorem] If K > 0, then M = supp[m] is compact and260

has diameter less than or equal to

√

N−1
K

π.261

(ii) [Generalized Bishop–Gromov inequality] If K = 0, then for every R > r > 0 and262

x ∈ M,263

m(Bx (r))

r N
≥

m(Bx (R))

RN
.264

Lemma 2.1 Let (M, d, m) be a metric measure space which satisfies the curvature-265

dimension condition CD(0, n) for some n ≥ 2. If266

ℓx0
∞ := lim sup

ρ→∞

m(Bx0(ρ))

ωnρn
≥ a (2.1)267
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 9 of 27 _####_

for some x0 ∈ M and a > 0, then268

m(Bx (ρ)) ≥ aωnρn, ∀x ∈ M, ρ ≥ 0.269

Proof Let us fix x ∈ M and ρ > 0; then we have270

m(Bx (ρ))

ωnρn
≥ lim sup

r→∞

m(Bx (r))

ωnrn
[Bishop − Gromov inequality]271

≥ lim sup
r→∞

m(Bx0(r − d(x0, x)))

ωnrn
[Bx (r) ⊃ Bx0(r − d(x0, x))]272

= lim sup
r→∞

(

m(Bx0(r − d(x0, x)))

ωn(r − d(x0, x))n
·
(r − d(x0, x))n

rn

)

273

= ℓx0
∞274

≥ a, [cf. (2.1)]275

which concludes the proof. ⊓⊔276

We are now in the position to prove our volume non-collapsing results.277

2.1 Cases α > 1 & 0 < α < 1: usual Gagliardo–Nirenberg inequalities278

In this subsection we present the proof of Theorem 1.1 by distinguishing two cases:279

Proof of Theorem 1.1 (i): the case 1 < α ≤ n
n−p

. In this part, we follow the line of [12];280

the proof is divided into several steps. We clearly may assume that C > Gα,p,n in (GN1)
α,p
C ;281

indeed, if C = Gα,p,n we can consider the subsequent arguments for C := Gα,p,n + ε with282

small ε > 0 and then take ε → 0+.283

Step 1 (K = 0). If we assume that K > 0 then the generalized Bonnet-Myers theorem284

(see Theorem 2.1 (i)) implies that M is compact and m(M) is finite. Taking the constant map285

u(x) = m(M) in (GN1)
α,p
C as a test function, one gets a contradiction. Therefore, K = 0.286

Step 2 (ODE from the optimal Euclidean Gagliardo–Nirenberg inequality I). We consider287

the optimal Gagliardo–Nirenberg inequality (1.1) in the particular case when the norm is288

precisely the Euclidean norm | · |. After a simple rescaling, one can see that the function289

x �→ (λ + |x |p′
)

1
1−α , λ > 0, is a family of extremals in (1.1); therefore, we have the290

following first order ODE291

(

1 − α

α(p − 1) + 1
h′

G(λ)

) 1
αp

= Gα,p,n

(

p′

α − 1

)θ (

hG(λ) +
α − 1

α(p − 1) + 1
λh′

G(λ)

) θ
p

292

hG(λ)
1−θ

α(p−1)+1 , (2.2)293

where hG : (0,∞) → R is given by294

hG(λ) =

∫

Rn

(

λ + |x |p′
)

α(p−1)+1
1−α

dx, λ > 0.295

For further use, we shall represent the function hG in two different ways, namely296

hG(λ) = ωn

n

p′
B

(

α(p − 1) + 1

α − 1
−

n

p′
,

n

p′

)

λ
α(p−1)+1

1−α
+ n

p′
297

=

∫ ∞

0
ωnρn fG(λ, ρ)dρ, (2.3)298
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_####_ Page 10 of 27 A. Kristály

where299

fG(λ, ρ) = p′ α(p − 1) + 1

α − 1

(

λ + ρ p′
)

αp
1−α

ρ p′−1. (2.4)300

Step 3 (Differential inequality from (GN1)
α,p
C ). By the generalized Bishop-Gromov301

inequality (see Theorem 2.1 (ii)) and hypothesis (D)n
x0

one has that302

m(Bx0(ρ))

ωnρn
≤ lim inf

r→0

m(Bx0(r))

ωnrn
= 1, ρ > 0. (2.5)303

Inspired by the form of hG , we consider the function wG : (0,∞) → R defined by304

wG(λ) =

∫

M

(

λ + d(x0, x)p′
)

α(p−1)+1
1−α

dm(x), λ > 0.305

By using the layer cake representation, it follows that wG is well-defined and of class C1;306

indeed,307

wG(λ) =

∫ ∞

0
m

({

x ∈ M :
(

λ + d(x0, x)p′
)

α(p−1)+1
1−α

> t

})

dt308

=

∫ ∞

0
m(Bx0(ρ)) fG(λ, ρ)dρ [change t =

(

λ + ρ p′
)

α(p−1)+1
1−α

and see (2.5)]309

≤

∫ ∞

0
ωnρn fG(λ, ρ)dρ [see (2.5)]310

= hG(λ),311

thus312

0 < wG(λ) ≤ hG(λ) < ∞, λ > 0. (2.6)313

For every λ > 0 and k ∈ N, we consider the function uλ,k : M → R defined by314

uλ,k(x) = (min{0, k − d(x0, x)} + 1)+

(

λ + max
{

d(x0, x), k−1}p′)
1

1−α

.315

Note that since (M, d, m) is proper, the set supp(uλ,k) = Bx0(k + 1) is compact. Conse-316

quently, uλ,k ∈ Lip0(M) for every λ > 0 and k ∈ N; thus we can apply these functions in317

(GN1)
α,p
C , i.e.,318

‖uλ,k‖Lαp ≤ C‖|∇uλ,k |d‖θ
L p ‖uλ,k‖

1−θ

Lα(p−1)+1 .319

Moreover,320

lim
k→∞

uλ,k(x) =
(

λ + d(x0, x)p′
) 1

1−α
=: uλ(x).321

By using the dominated convergence theorem, it turns out from the above inequality that uλ322

also verifies (GN1)
α,p
C , i.e.,323

‖uλ‖Lαp ≤ C‖|∇uλ|d‖θ
L p ‖uλ‖

1−θ

Lα(p−1)+1 . (2.7)324

The non-smooth chain rule gives that325

|∇uλ|d(x) =
p′

α − 1

(

λ + d(x0, x)p′
) α

1−α
d(x0, x)p′−1|∇d(x0, ·)|d(x), x ∈ M. (2.8)326
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 11 of 27 _####_

Since d(x0, ·) is 1-Lipschitz (therefore, |∇d(x0, ·)|d(x) ≤ 1 for all x ∈ M), due to (2.7),327

(2.8) and the form of the function wG , we obtain the differential inequality328

(

1 − α

α(p − 1) + 1
w′

G(λ)

) 1
αp

329

≤ C

(

p′

α − 1

)θ (

wG(λ) +
α − 1

α(p − 1) + 1
λw′

G(λ)

) θ
p

wG(λ)
1−θ

α(p−1)+1 . (2.9)330

Step 4 (Comparisonof wGandhGneartheorigin). We claim that331

lim
λ→0+

wG(λ)

hG(λ)
= 1. (2.10)332

By hypothesis (D)n
x0

, for every ε > 0 there exists ρε > 0 such that333

m(Bx0(ρ)) ≥ (1 − ε)ωnρn for all ρ ∈ [0, ρε]. (2.11)334

By (2.11), one has that335

wG(λ) =

∫ ∞

0
m(Bx0(ρ)) fG(λ, ρ)dρ336

≥ (1 − ε)

∫ ρε

0
ωnρn fG(λ, ρ)dρ = (1 − ε)λ

α(p−1)+1
1−α

+ n
p′

∫ ρελ
− 1

p′

0
ωnρn fG(1, ρ)dρ.337

Thus, by the representation (2.3) of hG and a change of variables, it turns out that338

lim inf
λ→0+

wG(λ)

hG(λ)
≥ (1 − ε) lim inf

λ→0+

∫ ρελ
− 1

p′

0
ωnρn fG(1, ρ)dρ

∫ ∞

0
ωnρn fG(1, ρ)dρ

= 1 − ε.339

The above inequality (with ε > 0 arbitrary small) combined with (2.6) proves the claim340

(2.10).341

Step 5 (Globalcomparisonof wGandhG). We now claim that342

wG(λ) ≥

(

Gα,p,n

C

) n
θ

hG(λ) = h̃G(λ), λ > 0. (2.12)343

Since we assumed that C > Gα,p,n, by (2.10) one has344

lim
λ→0+

wG(λ)

h̃G(λ)
=

(

C

Gα,p,n

) n
θ

> 1.345

Therefore, there exists λ0 > 0 such that for every λ ∈ (0, λ0), one has wG(λ) > h̃G(λ).346

By contradiction to (2.12), we assume that there existsλ# > 0 such thatwG(λ#) < h̃G(λ#).347

If λ∗ = sup{0 < λ < λ# : wG(λ) = h̃G(λ)}, then 0 < λ0 ≤ λ∗ < λ#. In particular,348

wG(λ) ≤ h̃G(λ), ∀λ ∈ [λ∗, λ#].349
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_####_ Page 12 of 27 A. Kristály

The latter relation and the differential inequality (2.9) imply that for every λ ∈ [λ∗, λ#],350

(

1 − α

α(p − 1) + 1
w′

G(λ)

) 1
αθ

351

≤ C
p
θ

(

p′

α − 1

)p (

h̃G(λ) +
α − 1

α(p − 1) + 1
λw′

G(λ)

)

h̃G(λ)
(1−θ)p

θ(α(p−1)+1) . (2.13)352

Moreover, since h̃G(λ) =
(

Gα,p,b

C

) n
θ

hG(λ), the ODE in (2.2) can be equivalently transformed353

for every λ > 0 into the equation354

(

1 − α

α(p − 1) + 1
h̃′

G(λ)

) 1
αθ

355

= C
p
θ

(

p′

α − 1

)p (

h̃G(λ) +
α − 1

α(p − 1) + 1
λh̃′

G(λ)

)

h̃G(λ)
(1−θ)p

θ(α(p−1)+1) . (2.14)356

For λ > 0 fixed we introduce the increasing function jλG : (0,∞) → R defined by357

jλG(t) =

(

α − 1

α(p − 1) + 1
t

) 1
αθ

+ C
p
θ

(

p′

α − 1

)p
α − 1

α(p − 1) + 1
λh̃G(λ)

(1−θ)p
θ(α(p−1)+1) t.358

Relations (2.13) and (2.14) can be rewritten into359

jλG(−w′
G(λ)) ≤ C

p
θ

(

p′

α − 1

)p

h̃G(λ)
1+

(1−θ)p
θ(α(p−1)+1) = jλG(−h̃′

G(λ)), ∀λ ∈ [λ∗, λ#],360

which implies that361

−w′
G(λ) ≤ −h̃′

G(λ), ∀λ ∈ [λ∗, λ#],362

i.e., the function h̃G −wG is non-increasing in [λ∗, λ#]. In particular, 0 < (h̃G −wG)(λ#) ≤363

(h̃G − wG)(λ∗) = 0, a contradiction. This concludes the proof of (2.12).364

Step 6 (Asymptoticvolumegrowthestimatew.r.t.x0). We claim that365

ℓx0
∞ := lim sup

ρ→∞

m(Bx0(ρ))

ωnρn
≥

(

Gα,p,n

C

) n
θ

. (2.15)366

By assuming the contrary, there exists ε0 > 0 such that for some ρ0 > 0,367

m(Bx0(ρ))

ωnρn
≤

(

Gα,p,n

C

) n
θ

− ε0, ∀ρ ≥ ρ0.368

By (2.12) and from the latter relation, we have for every λ > 0 that369

0 ≤ wG(λ) −

(

Gα,p,n

C

) n
θ

hG(λ)370

=

∫ ∞

0

(

m(Bx0(ρ))

ωnρn
−

(

Gα,p,n

C

) n
θ

)

ωnρn fG(λ, ρ)dρ371

≤

(

1 + ε0 −

(

Gα,p,n

C

) n
θ

)

∫ ρ0

0
ωnρn fG(λ, ρ)dρ − ε0

∫ ∞

0
ωnρn fG(λ, ρ)dρ372
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 13 of 27 _####_

By using (2.3), a suitable rearrangement of the terms in the above relation shows that373

ε0
n

p′
B

(

α(p−1)+1

α−1
−

n

p′
,

n

p′

)

λ
1+ n

p′ ≤
p′

n+ p′

(

1+ε0−

(

Gα,p,n

C

) n
θ

)

α(p − 1)+1

α−1
ρ

n+p′

0 .374

If we take the limit λ → +∞ in the last estimate, we obtain a contradiction. Thus, the claim375

(2.15) is proved and it remains to apply Lemma 2.1, which concludes the proof of Theorem376

1.1 (i).377

Proof of Theorem 1.1 (ii): the case 0 < α < 1. We shall invoke some of the arguments378

from the proof of Theorem 1.1 (i), emphasizing that subtle differences arise due to the ‘dual’379

nature of the Gagliardo–Nirenberg inequalities (GN1)
α,p
C and (GN2)

α,p
C , respectively. As380

before, we may assume that the inequality (GN2)
α,p
C holds with C > Nα,p,n .381

Step 1 The fact that K = 0 works similarly as in Theorem 1.1 (i).382

Step 2 Since x �→
(

λp′
− |x |p′

) 1
1−α

+
is an extremal function in (1.3) for every λ > 0, we383

obtain the ODE384

hN (λ)
1

α(p−1)+1 = Nα,p,n

(

p′

1 − α

)γ (

−hN (λ) +
1 − α

p′(α(p − 1) + 1)
λh′

N (λ)

)
γ
p

×385

×

(

1 − α

p′(α(p − 1) + 1)
λ1−p′

h′
N (λ)

)
1−γ
αp

, (2.16)386

where the function hN : (0,∞) → R is defined by387

hN (λ) =

∫

Rn

(

λp′

− |x |p′
)

α(p−1)+1
1−α

+
dx, λ > 0.388

It is clear that hN is well-defined, of class C1 and can be represented as389

hN (λ) = ωn

n

p′
B

(

α(p − 1) + 1

1 − α
+ 1,

n

p′

)

λ
αpp′

1−α
+n+p′

=

∫ λ

0
ωnρn fN (λ, ρ)dρ,390

where391

fN (λ, ρ) = p′ α(p − 1) + 1

1 − α

(

λp′

− ρ p′
)

αp
1−α

ρ p′−1, for every λ > 0 and ρ ∈ (0, λ).

(2.17)392

Step 3 Let wN : (0,∞) → R be the function defined by393

wN (λ) =

∫

M

(

λp′

− d(x0, x)p′
)

α(p−1)+1
1−α

+
dm(x), λ > 0,394

where x0 ∈ M is from (D)n
x0

. By the layer cake representation and relations (2.5) and (2.17),395

wN is well-defined, positive, of class C1 and396

0 < wN (λ) =

∫ λ

0
m(Bx0(ρ)) fN (λ, ρ)dρ ≤

∫ λ

0
ωnρn fN (λ, ρ)dρ = hN (λ) < ∞, λ > 0.

(2.18)397

Since uλ =
(

λp′
− d(x0, ·)

p′
) 1

1−α

+
is a Lipschitz function on M with compact support Bx0(λ),398

it belongs to Lip0(M). Therefore, we may apply uλ in (GN2)
α,p
C ; a similar reasoning as in399

(2.8) leads to the differential inequality400
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_####_ Page 14 of 27 A. Kristály

wN (λ)
1

α(p−1)+1 ≤ C

(

p′

1 − α

)γ (

−wN (λ) +
1 − α

p′(α(p − 1) + 1)
λw′

N (λ)

)
γ
p

401

×

(

1 − α

p′(α(p − 1) + 1)
λ1−p′

w′
N (λ)

)
1−γ
αp

, λ > 0. (2.19)402

Step 4 For an arbitrarily fixed ε > 0, let ρε > 0 from (2.11). If 0 < λ < ρε, one has that403

wN (λ) =

∫ λ

0
m(Bx0(ρ)) fN (λ, ρ)dρ ≥ (1 − ε)

∫ λ

0
ωnρn fN (λ, ρ)dρ = (1 − ε)hN (λ).404

Consequently, the latter relation together with (2.18) implies that405

lim
λ→0+

wN (λ)

hN (λ)
= 1. (2.20)406

Step 5 We shall prove that407

wN (λ) ≥

(

Nα,p,n

C

) n
γ

hN (λ) = h̃N (λ), λ > 0. (2.21)408

By (2.20) one has409

lim
λ→0+

wN (λ)

h̃N (λ)
=

(

C

Nα,p,n

) n
γ

> 1,410

which implies the existence of a number λ0 > 0 such that wN (λ) > h̃N (λ) for every411

λ ∈ (0, λ0).412

We assume by contradiction that there exists λ# > 0 such that wN (λ#) < h̃N (λ#). If413

λ∗ = sup{0 < λ < λ# : wN (λ) = h̃N (λ)}, then 0 < λ0 ≤ λ∗ < λ# and414

wN (λ) ≤ h̃N (λ), ∀λ ∈ [λ∗, λ#]. (2.22)415

For every λ > 0, let jλN :
(

p′(α(p−1)+1)
(1−α)λ

,∞
)

→ R be the function defined by416

jλN (t) = C

(

p′

1 − α

)γ (

−1 +
1 − α

p′(α(p − 1) + 1)
λt

)
γ
p

(

1 − α

p′(α(p − 1) + 1)
λ1−p′

t

)
1−γ
αp

.417

It is clear that jλN is well-defined, positive and increasing. A direct computation yields that418

both values (log wN )′(λ) =
w′

N (λ)

wN (λ)
and (log h̃N )′(λ) =

h̃′
N (λ)

h̃N (λ)
are greater than p′(α(p−1)+1)

(1−α)λ
419

for every λ > 0. Taking into account (1.4), we have420

1

α(p − 1) + 1
−

γ

p
−

1 − γ

αp
= −

γ

n
;421

therefore, if we divide the inequality (2.19) by wN (λ)
γ
p
+

1−γ
αp , we obtain that422

wN (λ)−
γ
n ≤ jλN

(

(log wN )′(λ)
)

, ∀λ > 0. (2.23)423

In a similar manner, by h̃N (λ) =
(

Nα,p,n

C

) n
γ

hN (λ) and relation (2.16), we have that424

h̃N (λ)−
γ
n = jλN

(

(log h̃N )′(λ)

)

, ∀λ > 0. (2.24)425

123

Journal: 526 Article No.: 1065 TYPESET DISK LE CP Disp.:2016/9/17 Pages: 27 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d 

pr
oo

f

Gagliardo–Nirenberg inequalities on metric measure spaces Page 15 of 27 _####_

Thus, by (2.22), (2.23) and (2.24), it turns out that426

jλN

(

(log h̃N )′(λ)

)

= h̃N (λ)−
γ
n ≤ wN (λ)−

γ
n ≤ jλN

(

(log wN )′(λ)
)

, ∀λ ∈ [λ∗, λ#].427

Since the inverse of jλN is also increasing, it follows that (log h̃N )′(λ) ≤ (log wN )′(λ) for428

every λ ∈ [λ∗, λ#]. Therefore, the function λ �→ log h̃N (λ)
wN (λ)

is non-increasing in the interval429

[λ∗, λ#]. In particular, it follows that430

0 < log
h̃N (λ#)

wN (λ#)
≤ log

h̃N (λ∗)

wN (λ∗)
= 0,431

a contradiction, which proves the validity of the claim (2.21).432

Step 6 We shall prove that433

lim sup
ρ→∞

m(Bx0(ρ))

ωnρn
≥

(

Nα,p,n

C

) n
γ

. (2.25)434

By contradiction, we assume that there exists ε0 > 0 such that for some ρ0 > 0,435

m(Bx0(ρ))

ωnρn
≤

(

Nα,p,n

C

) n
γ

− ε0, ∀ρ ≥ ρ0.436

The above inequality and (2.21) imply that for every λ > ρ0,437

0 ≤ wN (λ) −

(

Nα,p,n

C

) n
γ

hN (λ) =

∫ λ

0

(

m(Bx0(ρ))

ωnρn
−

(

Nα,p,n

C

) n
γ

)

ωnρn fN (λ, ρ)dρ438

≤

(

1 + ε0 −

(

Nα,p,n

C

) n
γ

)

∫ ρ0

0
ωnρn fN (λ, ρ)dρ − ε0

∫ λ

0
ωnρn fN (λ, ρ)dρ.439

Reorganizing the latter estimate, it follows that for every λ > 0,440

ε0
n

p′
B

(

α(p − 1) + 1

1 − α
+ 1,

n

p′

)

λn+p′

441

≤
p′

n + p′

(

1 + ε0 −

(

Nα,p,n

C

) n
γ

)

α(p − 1) + 1

1 − α
ρ

n+p′

0 .442

Once we let λ → ∞, we get a contradiction. Therefore, (2.25) holds and Lemma 2.1 yields443

that444

m(Bx (ρ))

ωnρn
≥

(

Nα,p,n

C

) n
γ

, ∀x ∈ M, ρ > 0,445

which concludes the proof of Theorem 1.1 (ii). ⊓⊔446

2.2 Limit case I (α → 1): L p-logarithmic Sobolev inequality447

In this subsection we shall provide the proof of Theorem 1.2. We shall assume that C > Lp,n448

in (LS)
p
C .449

Step 1 As in the previous proofs, we obtain that K = 0; the only difference is that we shall450

consider u(x) = m(M)−1/p as a test function in (LS)
p
C , in order to fulfil the normalization451

assumption ‖u‖L p = 1.452
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_####_ Page 16 of 27 A. Kristály

Step 2 Since the functions lλp (λ > 0) in Theorem B are extremals in (1.5), once we plug453

them we obtain a first order ODE of the form454

− log hL(λ) + λ
h′

L(λ)

hL(λ)
=

n

p
log

(

−Lp,n

(

p′

p

)p

λp h′
L(λ)

hL(λ)

)

, λ > 0, (2.26)455

where hL : (0,∞) → R is defined by456

hL(λ) =

∫

Rn

e−λ|x |p′

dx .457

For later use, we recall that hL can be represented alternatively by458

hL(λ)=
2π

n
2

p′λ
n
p′

·
Ŵ

(

n
p′

)

Ŵ
(

n
2

) =λp′ωn

∫ ∞

0
e−λρ p′

ρn+p′−1dρ = λ
− n

p′ p′ωn

∫ ∞

0
e−t p′

tn+p′−1dt.

(2.27)459

Step 3 Let wL : (0,∞) → R be defined by460

wL(λ) =

∫

M

e−λd(x0,x)p′

dm(x),461

where x0 ∈ M is the element from hypothesis (D)n
x0

. Note that wL is well-defined, positive462

and differentiable. Indeed, by the layer cake representation, for every λ > 0 we obtain that463

wL(λ)=

∫ ∞

0
m

({

x ∈ M : e−λd(x0,x)p′

> t
})

dt =

∫ 1

0
m

({

x ∈ M : e−λd(x0,x)p′

> t
})

dt464

= λp′

∫ ∞

0
m(Bx0(ρ))e−λρ p′

ρ p′−1dρ [change t =e−λρ p′

]465

≤ λp′ωn

∫ ∞

0
e−λρ p′

ρn+p′−1dρ [see (2.5)]466

= hL(λ) < +∞.467

Let us consider the family of functions ũλ : M → R (λ > 0) defined by468

ũλ(x) =
e
− λ

p
d(x0,x)p′

wL(λ)
1
p

, x ∈ M.469

It is clear that ‖ũλ‖L p = 1 and as in the proof of Theorem 1.1 (i), the function ũλ can be470

approximated by elements from Lip0(M); in fact, ũλ can be used as a test function in (LS)
p
C .471

Thus, plugging ũλ into the inequality (LS)
p
C, applying the non-smooth chain rule and the472

fact that |∇d(x0, ·)|d(x) ≤ 1 for every x ∈ M , it yields473

− log wL(λ) + λ
w′

L(λ)

wL(λ)
≤

n

p
log

(

−C

(

p′

p

)p

λp w′
L(λ)

wL(λ)

)

, λ > 0. (2.28)474

Step 4 We prove that475

lim
λ→+∞

wL(λ)

hL(λ)
= 1. (2.29)476
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 17 of 27 _####_

For a fixed ε > 0, let ρε > 0 from (2.11). Then one has477

wL(λ) = λp′

∫ ∞

0
m(Bx0(ρ))e−λρ p′

ρ p′−1dρ ≥ λp′(1 − ε)ωn

∫ ρε

0
e−λρ p′

ρn+p′−1dρ478

= λ
− n

p′ p′(1 − ε)ωn

∫ ρελ
1
p′

0
e−t p′

tn+p′−1dt. [change t = λ
1
p′ ρ]479

Therefore, by the third representation of hL (see (2.27)) it turns out that480

lim inf
λ→+∞

wL(λ)

hL(λ)
≥ 1 − ε.481

The arbitrariness of ε > 0 together with Step 3 implies the validity of (2.29).482

Step 5 We claim that483

wL(λ) ≥

(

Lp,n

C

) n
p

hL(λ) =: h̃L(λ), λ > 0. (2.30)484

Since C > Lp,n, by (2.29) it follows that485

lim
λ→+∞

wL(λ)

h̃L(λ)
=

(

C

Lp,n

) n
p

> 1.486

Consequently, there exists λ̃ > 0 such that wL(λ) > h̃L(λ) for all λ > λ̃. If we introduce487

the notations488

W (λ) = log wL(λ) and H̃(λ) = log h̃L(λ), λ > 0,489

the latter relation implies that490

W (λ) > H̃(λ), ∀λ > λ̃, (2.31)491

while relations in (2.28) and (2.26) can be rewritten in terms of W and H̃ as492

− W (λ) + λW ′(λ) ≤
n

p
log

(

−C

(

p′

p

)p

λpW ′(λ)

)

, λ > 0, (2.32)493

and494

− H̃(λ) + λH̃ ′(λ) =
n

p
log

(

−C

(

p′

p

)p

λp H̃ ′(λ)

)

, λ > 0. (2.33)495

Claim (2.30) is proved once we show that W (λ) ≥ H̃(λ) for all λ > 0. By contradiction,496

we assume there exists λ# > 0 such that W (λ#) < H̃(λ#). Due to (2.31), λ# < λ̃. On the497

one hand, let λ∗ = inf{λ > λ# : W (λ) = H̃(λ)}. In particular,498

W (λ) ≤ H̃(λ), ∀λ ∈ [λ#, λ∗]. (2.34)499

On the other hand, if we introduce for every λ > 0 the function jλL : (0,∞) → R by500

jλL (t) =
n

p
log

(

C

(

p′

p

)p

λpt

)

+ λt, t > 0,501

relations (2.32) and (2.33) become502

−W (λ) ≤ jλL (−W ′(λ)) and − H̃(λ) = jλL (−H̃ ′(λ)), λ > 0.503
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_####_ Page 18 of 27 A. Kristály

By the above relations and (2.34) it yields that504

jλL (−H̃ ′(λ)) = −H̃(λ) ≤ −W (λ) ≤ jλL (−W ′(λ)), ∀λ ∈ [λ#, λ∗].505

Since jλL is increasing, it follows that W − H̃ is a non-increasing function on [λ#, λ∗], which506

implies507

0 = (W − H̃)(λ∗) ≤ (W − H̃)(λ#) < 0,508

a contradiction. This completes the proof of (2.30).509

Step 6 We claim that510

lim sup
ρ→∞

m(Bx0(ρ))

ωnρn
≥

(

Lp,n

C

) n
p

. (2.35)511

By assuming the contrary, there exists ε0 > 0 such that for some ρ0 > 0,512

m(Bx0(ρ))

ωnρn
≤

(

Lp,n

C

) n
p

− ε0, ∀ρ ≥ ρ0.513

Combining the latter relation with (2.30) and (2.27), for every λ > 0 we obtain that514

0 ≤ wL(λ) −

(

Lp,n

C

) n
p

hL(λ)515

≤ λp′

∫ ρ0

0
m(Bx0(ρ))e−λρ p′

ρ p′−1dρ + λp′ωn

(

(

Lp,n

C

) n
p

− ε0

)

∫ ∞

ρ0

e−λρ p′

ρn+p′−1dρ516

−λp′ωn

(

Lp,n

C

) n
p
∫ ∞

0
e−λρ p′

ρn+p′−1dρ.517

Rearranging the above inequality, by virtue of (2.5) it follows for every λ > 0 that518

ε0

∫ ∞

0
e−λρ p′

ρn+p′−1dρ ≤

(

1 −

(

Lp,n

C

) n
p

+ ε0

)

∫ ρ0

0
e−λρ p′

ρn+p′−1dρ.519

Due to (2.27), the latter inequality implies520

ε0
1

p′λ
1+ n

p′
Ŵ

(

n

p′
+ 1

)

≤

(

1 −

(

Lp,n

C

) n
p

+ ε0

)

ρ
n+p′

0

n + p′
, λ > 0.521

Now, letting λ → 0+ we arrive to a contradiction. Therefore, the proof of (2.35) is concluded.522

Thus, Lemma 2.1 gives that523

m(Bx (ρ))

ωnρn
≥

(

Lp,n

C

) n
p

, ∀x ∈ M, ρ > 0,524

concluding the proof of Theorem 1.2. ⊓⊔525

2.3 Limit case II (α → 0): Faber–Krahn-type inequality526

In this part we sketch the proof of Theorem 1.3. Similarly as before, we assume that C > Fp,n .527

Step 1 Analogously to Theorem 1.1 (i), it follows that K = 0.528
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 19 of 27 _####_

Step 2 The function x �→
(

λp′
− |x |p′

)

+
being extremal in (1.6) for every λ > 0, a direct529

computation shows that530

hF (λ) = Fp,n p′

(

−hF (λ) +
1

p′
λh′

F (λ)

) 1
p
(

1

p′
λ1−p′

h′
F (λ)

)1− 1
p⋆

, (2.36)531

where hF : (0,∞) → R is given by532

hF (λ) =

∫

Rn

(

λp′

− |x |p′
)

+
dx, λ > 0.533

Step 3 Let x0 ∈ M from (D)n
x0

. Since uλ =
(

λp′
− d(x0, ·)

p′
)

+
∈ Lip0(M), we may534

insert uλ into (FK)
p
C obtaining535

‖uλ‖L1 ≤ C‖|∇uλ|d‖L p m(supp(uλ))
1− 1

p⋆ . (2.37)536

First, we observe that537

|∇uλ|d(x) = p′
d(x0, x)p′−1|∇d(x0, ·)|d(x) ≤ p′

d(x0, x)p′−1, ∀x ∈ Bx0(λ),538

while |∇uλ|d(x) = 0 for every x /∈ Bx0(λ). Moreover, since the spheres have zero539

m-measures (see Theorem 2.1), we have that540

m(supp(uλ)) = m(Bx0(λ)) = m(Bx0(λ)).541

We now introduce the function wF : (0,∞) → R given by542

wF (λ) =

∫

M

(

λp′

− d(x0, x)p′
)

+
dm(x), λ > 0.543

Due to the layer cake representation, one has544

wF (λ) =

∫

Bx0 (λ)

(

λp′

− d(x0, x)p′
)

dm(x) = λp′

m(Bx0(λ)) −

∫

Bx0 (λ)

d(x0, x)p′

dm(x)545

= λp′

m(Bx0(λ)) −

∫ λp′

0
m

(

{x ∈ Bx0(λ) : d(x0, x)p′

> t}
)

dt546

= λp′

m(Bx0(λ)) − p′

∫ λ

0

(

m(Bx0(λ)) − m(Bx0(ρ))
)

ρ p′−1dρ [change t = ρ p′

]547

= p′

∫ λ

0
m(Bx0(ρ))ρ p′−1dρ.548

Therefore,549

‖uλ‖L1 = wF (λ), m(supp(uλ)) = m(Bx0(λ)) =
1

p′
λ1−p′

w′
F (λ),550

and551

‖|∇uλ|d‖L p ≤ p′

(

∫

Bx0 (λ)

d(x0, x)p′

dm(x)

) 1
p

= p′

(

−wF (λ) +
1

p′
λw′

F (λ)

) 1
p

.552

Consequently, inequality (2.37) takes the form553

wF (λ) ≤ C p′

(

−wF (λ) +
1

p′
λw′

F (λ)

) 1
p
(

1

p′
λ1−p′

w′
F (λ)

)1− 1
p⋆

, λ > 0,554
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_####_ Page 20 of 27 A. Kristály

which is formally (2.19) if α → 0 since due to (1.4), limα→0 γ = 1 and limα→0
1−γ
αp

=555

1 − 1
p⋆ .556

Therefore, we may proceed as in the proof of Theorem 1.1 (ii) (Steps 4–6), proving that557

lim
λ→0+

wF (λ)

hF (λ)
= 1,558

559

wF (λ) ≥

(

Fp,n

C

)n

hF (λ), ∀λ > 0,560

and finally561

m(Bx (ρ))

ωnρn
≥

(

Fp,n

C

)n

, ∀x ∈ M, ρ > 0,562

which concludes the proof of Theorem 1.3. ⊓⊔563

3 Rigidity results in smooth settings564

As a starting point, we need an Aubin–Hebey-type result (see [3] and [11]) for Gagliardo–565

Nirenberg inequalities which is valid on generic Riemannian manifolds.566

Lemma 3.1 Let (M, g) be a complete n-dimensional Riemannian manifold and C > 0. The567

following statements hold:568

(i) If (GN1)
α,p
C holds on (M, g) for some p ∈ (1, n) and α ∈ (1, n

n−p
] then C ≥ Gα,p,n;569

(ii) If (GN2)
α,p
C holds on (M, g) for some p ∈ (1, n) and α ∈ (0, 1) then C ≥ Nα,p,n;570

(iii) If (LS)
p
C holds on (M, g) for some p ∈ (1, n) then C ≥ Lp,n;571

(iv) If (FK)
p
C holds on (M, g) for some p ∈ (1, n) then C ≥ Fp,n .572

Proof (i) By contradiction, we assume that (GN1)
α,p
C holds on (M, g) for some p ∈ (1, n),573

α ∈ (1, n
n−p

], and C < Gα,p,n . Let x0 ∈ M be fixed arbitrarily. For every ε > 0, there exists574

a local chart (�, φ) of M at the point x0 and a number δ > 0 such that φ(�) = B0(δ) =575

{x̃ ∈ R
n : |x̃ | < δ} and the components gi j = gi j (x) of the Riemannian metric g on (�, φ)576

satisfy577

(1 − ε)δi j ≤ gi j ≤ (1 + ε)δi j (3.1)578

in the sense of bilinear forms. Since (GN1)
α,p
C is valid, relation (3.1) shows that for every579

ε > 0 small enough, there exists δε > 0 and Cε ∈ (C, Gα,p,n) such that for every δ ∈ (0, δε)580

and v ∈ Lip0(B0(δ)),581

‖v‖Lαp(B0(δ),dx) ≤ Cε‖∇v‖θ
L p(B0(δ),dx)‖v‖1−θ

Lα(p−1)+1(B0(δ),dx)
. (3.2)582

Let us fix u ∈ Lip0(R
n) arbitrarily and set vλ(x) = λ

n
p u(λx), λ > 0. For λ > 0 large enough,583

one has vλ ∈ Lip0(B0(δ)). If we plug in vλ into (3.2), by using the scaling properties584

‖∇vλ‖L p(B0(δ),dx) =λ‖∇u‖L p(Rn ,dx) and ‖vλ‖Lq (B0(δ),dx) =λ
n
p
− n

q ‖u‖Lq (Rn ,dx), ∀q >0,

(3.3)585

and the form of the number θ (see (1.2)), it follows that586

‖u‖Lαp(Rn ,dx) ≤ Cε‖∇u‖θ
L p(Rn ,dx)‖u‖1−θ

Lα(p−1)+1(Rn ,dx)
.587
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Gagliardo–Nirenberg inequalities on metric measure spaces Page 21 of 27 _####_

If we insert the extremal function hλ
α,p of the optimal Gagliardo–Nirenberg inequality on R

n
588

(α > 1) into the latter relation, Theorem A yields that Gα,p,n ≤ Cε, a contradiction.589

The proofs of (ii) (iii) and (iv) are analogous to (i), taking into account in addition to (3.3)590

that591

Entdx (|vλ|
p) = Entdx (|u|p) + n‖u‖

p
L p log λ,592

and593

Hn(supp(vλ)) = λ−nHn(supp(u)),594

respectively. ⊓⊔595

3.1 Gagliardo–Nirenberg inequalities on Riemannian manifolds with Ricci≥ 0596

Before presenting the proofs of Theorem 1.4 and Corollary 1.1, we recall some results from597

Munn [17].598

To do this, let (M, g) be an n(≥2)-dimensional complete Riemannian manifold with non-599

positive Ricci curvature endowed with its canonical volume element dvg . The asymptotic600

volume growth of (M, g) is defined by601

AVG(M,g) = lim
r→∞

Volg(Bx (r))

ωnrn
.602

By Bishop-Gromov comparison theorem it follows that AVG(M,g) ≤1 and this number is603

independent of the point x ∈ M.604

Given k ∈ {1, . . . , n}, let us denote by δk,n > 0 the smallest positive solution to the605

equation 10k+2Ck,n(k)s
(

1 + s
2k

)k
= 1 in variable s, where606

Ck,n(i) =

{

1 if i = 0,

3 + 10Ck,n(i − 1) + (16k)n−1(1 + 10Ck,n(i − 1))n if i ∈ {1, . . . , k}.
607

We now consider the smooth, bijective and increasing function hk,n : (0, δk,n) → (1,∞)608

defined by609

hk,n(s) =

[

1 − 10k+2Ck,n(k)s
(

1 +
s

2k

)k
]−1

.610

For every s > 1, let611

β(k, s, n) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 −

[

1 + sn

[h−1
1,n(s)]n

]−1

if k = 1,

max

{

β(1, s, n), β(i, 1+
h−1

k,n(s)

2k
, n) : i =1, . . . , k−1

}

if k ∈ {2, . . . , n}.

612

Note that the constant β(k, s, n), which is used to prove the Perelman’s maximal volume613

lemma, denotes the minimum volume growth of (M, g) needed to guarantee that any con-614

tinuous map f : S
k → Bx (ρ) has a continuous extension g : D

k+1 → Bx (cρ), where615

D
k+1 = {y ∈ R

k+1 : |y| ≤ 1} and S
k = ∂D

k+1, see [17, Definition 3.3]. Finally, the616

Munn-Perelman constant is defined as617

αM P (k, n) = inf
s∈(1,∞)

β(k, s, n).618

By construction, αM P (k, n) is non-decreasing in k; for numerical values of αM P (k, n) one619

can consult [17, Appendix A].620
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_####_ Page 22 of 27 A. Kristály

Proof of Theorem 1.4. Let (M, g) be an n-dimensional complete Riemannian manifold621

with non-negative Ricci curvature (n ≥ 2) and assume the L p-logarithmic Sobolev inequality622

(LS)
p
C holds on (M, g) for some p ∈ (1, n) and C > 0.623

(i) It follows from Lemma 3.1 (iii), i.e., C ≥ Lp,n .624

(ii) Anderson [2] and Li [14] stated that if there exists c0 > 0 such that Volg(Bx (ρ)) ≥625

c0ωnρn for every ρ > 0, then (M, g) has finite fundamental group π1(M) and its order626

is bounded above by c0
−1. Thus it remains to apply Theorem 1.2.627

(iii) Assume that C < αM P (k0, n)−
p
n Lp,n for some k0 ∈ {1, . . . , n}. By Theorem 1.2, we628

have that629

AVG(M,g) = lim
r→∞

Volg(Bx (r))

ωnrn
≥

(

Lp,n

C

) n
p

> αM P (k0, n) ≥ · · · ≥ αM P (1, n).630

By Munn [17, Theorem 1.2], it follows that π1(M) = · · · = πk0(M) = 0.631

(iv) If C < αM P (n, n)−
p
n Lp,n , then π1(M) = · · · = πn(M) = 0, which implies the632

contractibility of M , see e.g. Luft [16].633

(v) If C = Lp,n then by Theorem 1.2 and the Bishop-Gromov volume comparison theorem634

follows that Volg(Bx (ρ)) = ωnρn for every x ∈ M and ρ > 0. The equality in635

Bishop-Gromov theorem implies that (M, g) is isometric to the Euclidean space R
n .636

The converse trivially holds.637

⊓⊔638

Remark 3.1 In the study of heat kernel bounds on an n-dimensional complete Riemannian639

manifold (M, g) with non-negative Ricci curvature, the logarithmic Sobolev inequality640

Entdvg (u
2) ≤

n

2
log

(

C‖∇gu‖2
L2(M,dvg)

)

, ∀u ∈ C∞
0 (M), ‖u‖L2 = 1, (3.4)641

plays a central role, C > 0. In fact, (3.4) is equivalent to an upper bound of the heat kernel642

pt (x, y) on M , i.e.,643

sup
x,y∈M

pt (x, y) ≤ C̃t−
n
2 , t > 0, (3.5)644

for some C̃ > 0. According to Theorem B (from Sect. 1.1), the optimal constant in (3.4) in645

the Euclidean space R
n is given by C = Ln,2 = 2

nπe
; this scale invariant form on R

n can be646

deduced by Gross [10] logarithmic Sobolev inequality647

Entdγn (u
2) ≤ 2‖∇u‖2

L2(Rn ,dγn)
, ∀u ∈ C∞

0 (Rn), ‖u‖L2(Rn ,dγn) = 1,648

where the canonical Gaussian measure γn has the density δn(x) = (2π)−
n
2 e−

|x |2

2 , x ∈ R
n,649

see Weissler [27]. Sharp estimates on the heat kernel shows that on a complete Riemannian650

manifold (M, g) with non-negative Ricci curvature the L2-logarithmic Sobolev inequality651

(3.4) holds with the optimal Euclidean constant C = Ln,2 = 2
nπe

if and only if (M, g) is652

isometric to R
n , cf. Bakry et al. [4], Ni [18], and Li [14]. In this case, C̃ = (4π)−

n
2 in (3.5).653

In particular, Theorem 1.4 (v) gives a positive answer to the open problem of C. Xia654

[29] concerning the validity of the optimal L p-logarithmic Sobolev inequality for generic655

p ∈ (1, n) in the same geometric context as above. Xia’s formulation was deeply motivated656

by the lack of sharp L p-estimates (p �= 2) for the heat kernel on Riemannian manifolds with657

non-negative Ricci curvature.658
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Similar results to Theorem 1.4 can be stated for the other three Gagliardo–Nirenberg-type659

inequalities; here we formulate one for (GN1)
α,p
C , the other two inequalities are left to the660

reader.661

Theorem 3.1 Let (M, g) be an n-dimensional complete Riemannian manifold with non-662

negative Ricci curvature (n ≥ 2) and assume the (GN1)
α,p
C holds on (M, g) for some663

p ∈ (1, n), α ∈ (1, n
n−p

] and C > 0. Then the following assertions hold:664

(i) C ≥ Gα,p,n;665

(ii) The order of the fundamental group π1(M) is bounded above by
(

C
Gα,p,n

) n
θ

;666

(iii) If C < αM P (k0, n)−
θ
n Gα,p,n for some k0 ∈ {1, . . . , n} then π1(M) = · · · = πk0(M) =667

0;668

(iv) If C < αM P (n, n)−
θ
n Gα,p,n then M is contractible;669

(v) C = Gα,p,n if and only if (M, g) is isometric to the Euclidean space R
n .670

3.2 Gagliardo–Nirenberg inequalities on Finsler manifolds with n-Ricci≥ 0671

Let M be a connected n-dimensional C∞-manifold and T M =
⋃

x∈M Tx M be its tangent672

bundle. The pair (M, F) is called a reversible Finsler manifold if a continuous function673

F : T M −→ [0,∞) satisfies the conditions:674

(a) F ∈ C∞(T M\{0});675

(b) F(x, tv) = |t |F(x, v) for all t ∈ R and (x, v) ∈ T M ;676

(c) the n × n matrix gi j (x, v) = 1
2

∂2(F2)

∂vi ∂v j (x, v) is positive definite for all (x, v) ∈ T M\{0}.677

Here v =
∑n

i=1 vi ∂

∂x i , and we shall denote by gv the inner product on Tx M induced by678

the above form. If gi j (x) = gi j (x, v) is independent of v then (M, F) is called Riemannian679

manifold. A Minkowski space consists of a finite dimensional vector space V and a Minkowski680

norm which induces a Finsler metric on V by translation, i.e., F(x, v) is independent of x .681

A Finsler manifold (M, F) is called a locally Minkowski space if every point in M admits a682

local coordinate system (x i ) on its neighborhood such that F(x, v) depends only on v and683

not on x .684

We consider on the pull-back bundle π∗T M the Chern connection, see Bao et al. [5, The-685

orem 2.4.1]. The coefficients of the Chern connection are denoted by Ŵi
jk , which are instead686

of the well-known Christoffel symbols from Riemannian geometry. A Finsler manifold is of687

Berwald type if the coefficients Ŵk
i j (x, v) in natural coordinates are independent of v. It is688

clear that Riemannian manifolds and (locally) Minkowski spaces are Berwald spaces. The689

Chern connection induces in a natural manner on π∗T M the curvature tensor R, see Bao et690

al. [5, Chapter 3]. By means of the connection, we also have the covariant derivative Dvu691

of a vector field u in the direction v ∈ Tx M. Note that v �→ Dvu is not linear. A vector field692

u = u(t) along a curve σ is parallel if Dσ̇ u = 0. A C∞ curve σ : [0, a] → M is a geodesic693

if Dσ̇ σ̇ = 0. Geodesics are considered to be parametrized proportionally to arc-length. The694

Finsler manifold is complete if every geodesic segment can be extended to R. For a C∞-curve695

σ : [0, l] −→ M , its integral length is given by L F (σ ) :=

∫ l

0
F(σ (t), σ̇ (t)) dt . Define the696

distance function dF : M × M −→ [0,∞) by697

dF (x1, x2) = inf
σ

L F (σ ),698

where σ runs over all C∞-curves from x1 to x2. Geodesics locally minimize dF -distances.699
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_####_ Page 24 of 27 A. Kristály

Let u, v ∈ Tx M be two non-collinear vectors and S = span{u, v} ⊂ Tx M . By means of700

the curvature tensor R, the flag curvature of the flag {S, v} is defined by701

K (S; v) =
gv(R(U, V )V, U )

gv(V, V )gv(U, U ) − gv(U, V )2
,702

where U = (v; u), V = (v; v) ∈ π∗T M. If (M, F) is Riemannian, the flag curvature703

reduces to the well known sectional curvature.704

Let v ∈ Tx M be such that F(x, v) = 1 and let {ei }i=1,...,n with en = v be a basis for705

Tx M such that {(v; ei )}i=1,...,n is an orthonormal basis for π∗T M . Let Si = span{ei , v}, i =706

1, . . . , n −1. The Ricci curvature Ric: T M → R is defined by Ric(cv) = c2 ∑n−1
i=1 K (Si ; v)707

for every c > 0.708

Let (M, F) be an n-dimensional complete Finsler manifold and let m be an arbitrarily709

positive smooth measure on M ; such a manifold is viewed as a regular metric measure space710

and we denote it by (M, F, m). Let v ∈ Tx M be such that F(x, v) = 1 and let711

ϒ(v) = log

(

volgv (B(0, 1))

mx (B(0, 1))

)

,712

where volgv and mx denote the Lebesgue measures on Tx M induced by gv and m, respectively,713

while B(0, 1) = {y ∈ Tx M : F(x, y) < 1} is the unit tangent ball at Tx M . The latter714

relation can be rewritten into the more familiar form mx (B(0, 1)) = e−ϒ(v)volgv (B(0, 1)).715

We introduce the notation716

∂vϒ =
d

dt
ϒ(σ̇ (t))

∣

∣

t=0, (3.6)717

where σ : (−ε, ε) → M is the geodesic with σ(0) = x and σ̇ (0) = v. We say that the space718

(M, F, m) has n-Ricci curvature bounded below by K ∈ R if and only if Ric(v) ≥ K and719

∂vϒ = 0 for every v ∈ Tx M such that F(x, v) = 1, see Ohta [19, Theorem 1.2] and Ohta and720

Sturm [21, Definition 5.1]. Note that a Berwald space endowed with the Busemann-Hausdorff721

measure mB H (and inducing the volume form dVF ) verifies the property ∂vϒ ≡ 0, see Shen722

[23, Propositions 2.6, 2.7].723

The polar transform of F is defined for every (x, α) ∈ T ∗M by724

F∗(x, α) = sup
v∈Tx M\{0}

α(v)

F(x, v)
. (3.7)725

Note that, for every x ∈ M , the function F∗(x, ·) is a Minkowski norm on T ∗
x M .726

If u ∈ Lip0(M), then relation (1.7) can be interpreted as727

|∇u|dF
(x) = F∗(x, Du(x)) for a.e. x ∈ M, (3.8)728

where Du(x) ∈ T ∗
x (M) is the distributional derivative of u at x ∈ M , see Ohta and Sturm729

[21]. In particular, if (M, F) = (M, g) is a Riemannian manifold, then |∇u|dg = |∇gu|,730

where dg is the distance function on (M, g), ∇g is the Riemannian gradient on (M, g), and731

| · | is the norm coming from the Riemannian metric g, respectively.732

Although a slightly more general result can be proved, we present an application on733

Berwald spaces (M, F) endowed with the canonical Busemann–Hausdorff measure mB H734

(and its induced volume form dVF ), by exploring the results of Cordero–Erausquin, Nazaret735

and Villani [6] and Gentil [9] (see Theorems A, B).736

Theorem 3.2 [Optimality vs. flatness] Let (M, F) be an n-dimensional complete reversible737

Berwald space with non-negative Ricci curvature. The following statements are equivalent:738
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(i) (GN1)
α,p
Gα,p,n

holds on (M, F) for some p ∈ (1, n) and α ∈ (1, n
n−p

];739

(ii) (GN2)
α,p
Nα,p,n

holds on (M, F) for some p ∈ (1, n) and α ∈ (0, 1);740

(iii) (LS)
p
Lp,n

holds on (M, F) for some p ∈ (1, n);741

(iv) (FK)
p
Fp,n

holds on (M, F) for some p ∈ (1, n);742

(v) (M, F) is isometric to an n-dimensional Minkowski space.743

Proof We divide the proof into two parts.744

(i)∨(ii)∨(iii)∨(iv)⇒(v). Note that the Busemann–Hausdorff measure mB H satisfies the745

n-density assumption for every x ∈ M , i.e.,746

lim
ρ→0

mB H (Bx (ρ))

ωnρn
= 1,747

see Shen [23, Lemma 5.2]. Since (M, F) is a Berwald space (thus ∂vϒ ≡ 0 for every748

v ∈ Tx M , x ∈ M , see (3.6)), the non-negativity of the Ricci curvature on (M, F) coin-749

cides with the non-negativity of the n-Ricci curvature on (M, dF , mB H ), thus the metric750

measure space (M, dF , mB H ) satisfies the curvature-dimension condition CD(0, n), see751

Ohta [19]. Moreover, the completeness of (M, F) via Hopf-Rinow theorem implies that752

the (M, dF , mB H ) is proper. Applying now any of the Theorems 1.1, 1.2 or 1.3 (according753

to which of the assumptions (i), (ii), (iii) or (iv) is satisfied), it yields that754

mB H (Bx (ρ)) ≥ ωnρn for all x ∈ M, ρ ≥ 0.755

By the generalized Bishop-Gromov theorem on Finsler manifolds and the n-density property756

we also have the reverse inequality, thus757

mB H (Bx (ρ)) = ωnρn for all x ∈ M, ρ ≥ 0. (3.9)758

The latter relation immediately implies that the flag curvature on (M, F) is identically zero,759

see Ohta [19, Theorem 7.3], and Kristály and Ohta [12, Theorem 3.3]. Due to Bao et al.760

[5, Section 10.5]), every Berwald space with zero flag curvature is necessarily a locally761

Minkowski space. By (3.9) it follows that (M, F) is actually isometric to a Minkowski762

space.763

(v)⇒(i)∧(ii)∧(iii)∧(iv). Let us fix an arbitrary norm ‖ · ‖ on R
n , and let � : (M, F) →764

(Rn, ‖ · ‖) be an isometry. Then765

F(x, y) = ‖d�x (y)‖, x ∈ M, y ∈ Tx M,766

and a simple computation based on the definition of the polar transform (see (3.7)) gives767

F∗(x, α) = ‖αd�−1
�(x)

‖∗, x ∈ M, α ∈ T ∗
x M. (3.10)768

If we consider the change of variables x̃ = �(x), relations (3.8) and (3.10) imply769

|∇v|dF
(x) = F∗(x, Dv(x)) = ‖(D(v ◦ �−1)(x̃))‖∗, v ∈ C∞

0 (M), x ∈ M. (3.11)770

Thus, for every v ∈ C∞
0 (M), p ∈ (1, n) and q > 0, we have771

‖D(v ◦ �−1)‖L p(Rn ,dx̃) =

(∫

Rn

‖(D(v ◦ �−1)(x̃))‖
p
∗ dx̃

) 1
p

=

(∫

M

(|∇v|dF
(x))pdVF (x)

) 1
p

772

= ‖|∇v|dF
‖L p(M,dVF ),773

774

Entdx̃ (|v ◦ �−1|p) = EntdVF
(|v|p) and ‖v ◦ �−1‖Lq = ‖v‖Lq .775
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_####_ Page 26 of 27 A. Kristály

It remains to apply the results of Cordero–Erausquin, Nazaret and Villani [6] and Gentil [9]776

(cf. Theorems A, B) for u = v ◦ �−1. ⊓⊔777
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