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Abstract Let (M, d, m) be a metric measure space which satisfies the Lott—Sturm—Villani
curvature-dimension condition CD(K, n) for some K > 0 and n > 2, and a lower
n-density assumption at some point of M. We prove that if (M, d, m) supports the
Gagliardo—Nirenberg inequality or any of its limit cases (L”-logarithmic Sobolev inequality
or Faber—Krahn-type inequality), then a global non-collapsing n-dimensional volume growth
holds, i.e., there exists a universal constant Cop > 0 suchthatm(By (p)) > Cop" forallx € M
and p > 0, where B;(p) = {y € M : d(x,y) < p}. Due to the quantitative character of
the volume growth estimate, we establish several rigidity results on Riemannian manifolds
with non-negative Ricci curvature supporting Gagliardo—Nirenberg inequalities by explor-
ing a quantitative Perelman-type homotopy construction developed by Munn (J Geom Anal
20(3):723-750, 2010). Further rigidity results are also presented on some reversible Finsler
manifolds.
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1 Introduction

An important role in the theory of geometric functional inequalities is played by the
Gagliardo—Nirenberg interpolation inequality and its limit cases. The present paper is devoted
to the study of Gagliardo—Nirenberg inequalities on metric measure spaces; to be more pre-
cise, we shall

(a) establish quantitative volume non-collapsing properties of metric measure spaces satis-
fying the Lott—Sturm—Villani curvature-dimension condition CD (K, n) for some K > 0
and n > 2, in the presence of a Gagliardo—Nirenberg inequality or one of its limit cases
(LP-logarithmic Sobolev inequality or Faber—Krahn-type inequality);

(b) provide rigidity results in the framework of Riemannian and Finsler manifolds with
non-negative Ricci curvature which support (almost)optimal Gagliardo—Nirenberg
inequalities by using the volume non-collapsing property from (a) and a quantitative
homotopy construction due to Munn [17] and Perelman [22].

In Sect. 1.1, we recall the optimal Gagliardo—Nirenberg inequalities on normed spaces which
play a comparison role in our investigations; in Sect. 1.2, we present the main results of the

paper.

1.1 Recalling optimal Gagliardo—-Nirenberg inequalities on normed spaces

The optimal Gagliardo—Nirenberg inequality in the Euclidean case has been obtained by Del
Pino and Dolbeault [7] for a certain range of parameters by using symmetrization arguments.
By using mass transportation argument, Cordero-Erausquin et al. [6] extended the results
from [7] to prove optimal Gagliardo—Nirenberg inequalities on arbitrary normed spaces. In
the sequel, we recall the main theorems from [6] and some related results.

Let || - || be an arbitrary norm on R”; without loss of generality, we may assume that the
Lebesgue measure of the unit ball in (R”, || - ||) is the volume of the n-dimensional Euclidean
unit ball w,, = n%F(% + 1)~!. The dual norm || - || of || - || is givenby ||x|l. = supy < x-y
where '~/ is the Euclidean inner product. Let p € [1, n) and L?(R") be the Lebesgue space
of order p. As usual, we consider the Sobolev spaces

WhP@®R") = {u € LP"(R") : Vu € LP(R")}

and
WLP(@RY) = {u € LP(R") : Vu € LP(R")},
pn

n—p

also Sect. 3.2), if u € WP (R"), the norm of Vu is defined by

- 1/p
VullLr = (/ IIW(X)IIfdx) )
RV[

where p* = and V is the gradient operator. On account of the Finslerian duality (see
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st where dx is the Lebesgue measure on R” !
62 Fixn>2,pe(l,n)anda € (0 \{1}; for every A > 0, let

7’17

L,
- 63 hy () = (A + (@ — DIIx[P)H]*, xeR", 1
@)
5: e Where p’ = % is the conjugate to p, and ry = max{0, r} for r € R. The following optimal
;5 es Gagliardo—Nirenberg inequalities are known on normed spaces:
——
2 es Theorem A. (see [6, Theorem 4]) Letn > 2, p € (1,n) and || - || be an arbitrary norm on

o7 R,

68

69 lullLer < G, P, n”VMHLp”u“La(p D+l Vu € Wl’p(R”), (1.1)

70 where R |

- o = ple-b , (1.2)

ap(p* —ap+a—1)
72 and the best constant
0 (2 5 (a4l n\@ (ap=1t1)7 5
G (O{ — 1) n a—1 P a—1
73 w,pn =
4 B (*(p=D+1 n n g
CnB\ T T Y

74 is achieved by the family of functions ha o> 0;

75 e If0 < <1, then

76 lull pacr-n+1 < N, pnIIVMIILpllullLap . Vue WhP®RY, (1.3)

7 where

. Y= prl—a) (14)

(p* —ap)ep+1-a)’
79 and the best constant

N _ = — Py,
p)P (ot(p 1)+1 +i/)p alp—D+ (a(p 1)+1)a<p )+

1—al’ (7 I—a P I—a
80 Na,pn = ( p ) 2
a(p—1)+1 n
(0B (52 5)
81 is achieved by the family of functions ha o A> 0.

82 Hereafter, B(-, -) is the Euler beta-function.

83 The borderline case o = - L see
s+ Aubin [3] and Talenti [26] in the Euclidean case, and Alvino et al. [1] for normed spaces.
ss  Furthermore, inequalities (1.1) and (1.3) degenerate to the optimal L?-logarithmic Sobolev
s inequality whenever ¢« — 1 (called also as the entropy-energy inequality involving the
&7 Shannon entropy), while (1.3) reduces to a Faber—Krahn-type inequality whenever « — 0,
ss respectively. More precisely, one has

! The function hé’ p is positive everywhere for « > 1 while hf;’ » has always a compact support for & < 1.
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Theorem B. Letn > 2, p € (1,n) and || - || be an arbitrary norm on R".
e Limit case I (« — 1) (see [9, Theorem 1.1]%): One has
n
Entg,(u1”) = | 1ul? oglul?dx < % log (€,.,1Vul?,)
RY(
Vu e WHPRY), flullLe =1, (15)

where the best constant

p({p—1 p=l n -
Lp’”:— Cl)nr 7/_’_1
n e p

is achieved by the family of functions

Bl

1
[ Po_a /
B = A, T (1, + 1) N
p
e Limit case Il (¢« — 0) (see [6, p. 320]): One has
1--% ;
lullpr < FpulVulLelsupp@)] 7, Yu € WHP(R") (1.6)

and the best constant

he
’

11 —
Fpp=1lm Ny pn=n 7w,"(p'+n) »
a—0
is achieved by the family of functions
A T A _ v p n
o0 = lim B (0 = (= Ix17)p. ¥ R,
where supp(u) stands for the support of u and |supp(u)| is its Lebesgue measure.

1.2 Statement of main results

As we already pointed out, the primordial purpose of the present paper is to establish fine
topological properties of metric measure spaces curved in the sense of Lott—Sturm—Villani
which support Gagliardo—Nirenberg-type inequalities. In fact, the metric spaces we are work-
ing on are supposed to satisfy the curvature-dimension condition CD(K, n) for some K > 0
and n > 2, introduced by Lott and Villani [15] and Sturm [24,25]; see Sect. 2 for its formal
definition.

1.2.1 Volume non-collapsing on metric measure spaces

Let (M, d, m) be a metric measure space (with a strictly positive Borel measure m) and
Lipy (M) be the space of Lipschitz functions with compact support on M. For u € Lipy(M),
let

Vitlg () = lim sup 14 = 4 (I

, XeEM. 1.7
y—>x d(x, y) (17

Note that x — |[Vulq(x) is Borel measurable on M for u € Lipy(M).

2 Gentil [9] proved an optimal L”-logarithmic Sobolev inequality for even, g-homogeneous (g > 1), strictly

- P
convex functions C : R" — [0, co). In our case, C(x) = 7”"19, .
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Gagliardo—Nirenberg inequalities on metric measure spaces Page 5 of 27 _##H#H#_

As before, let n > 2 be an integer, p € (1,n) and @ € (0, -2-1\{1}. Throughout this

* n—p

section we assume that the lower n-density of the measure m at a point xo € M is unitary,

1.€e.,

D) fim inf T B0 P) _

1
X ,
0 p—0 wy p"

where B,(r) ={y e M : d(x, y) < r}.

Throughout the whole paper, we shall keep the notations from Theorems A and B [i.e.,
the four best constants from the Gagliardo—Nirenberg inequalities on normed spaces and the
numbers 6 and y from (1.2) and (1.4), respectively]; the Lebesgue spaces L” are defined
on the measure space (M, m). We now are the position to state our quantitative, globally

non-collapsing volume growth results:

Theorem 1.1 (Gagliardo—Nirenberg inequalities) Let (M, d, m) be a proper metric measure
space which satisfies the curvature-dimension condition CD(K, n) for some K > 0 and
n > 2. Let p € (1,n) and assume that (D)ﬁo holds for some xo € M. Then the following

statements hold.:

W) Ifl <a< nfp and the inequality

lullzer < CIIVulgl§, N5l Vu € Lipy(M) (GND)Z?

Le(p—D+1>

holds for some C > Gy, p n, then K = 0 and

Yo pon

G
M(By(p)) > ( ) wpp"  forall x € M and p > 0.

(i) If0 < « < 1 and the inequality

1- . i
lull ap-n1 < CNIVulgll ] pllull jup » Yu € Lipg(M) (GN2)ZP

holds for some C > Ny, p n, then K = 0 and

n

N,
m(By(p)) > (%) ’ wpp" forall x € M and p > 0.

In the limit case « — 1, we can state

Theorem 1.2 (L?”-logarithmic Sobolev inequality) Under the same assumptions as in

Theorem 1.1, if

p P P n P :
Entgm([u|?) = [ |u|?log|ulPdm < ;105; (ClIVulglly,), Yu € Lipy(M),
M

lullLr =1 (LSS

holds for some C > L, ,, then K = 0 and

E}I’l
m(B,(p)) > (1?) ' wyp" forall x € M and p > 0.

In the remaining limit case « — 0, one can prove
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Theorem 1.3 (Faber—Krahn-type inequality) Under the same assumptions as in Theorem

1.1, if
-5 .
lullpr < ClIVulgllem(supp(u))  »*, Vu € Lipy(M) (FK)?Z
holds for some C > Fp ,, then K = 0 and

f n
m(By(p)) = (%) wpp" forall x € M and p > 0.

Some remarks are in order.

Remark 1.1 (a) The proofs of Theorems 1.1-1.3 are synthetic where we shall exploit some
basic features of metric measure spaces satisfying the CD(K, n) condition (such as
generalized Bonnet-Myers and Bishop—Gromov comparison inequalities) and direct
constructions. Although the lines of the proofs of these results are similar, our arguments
require different technics, deeply depending on the shape of certain test functions whose
profiles come from the family of extremals in normed spaces (cf. Theorems A & B).
Note that instead of the CD(K, n) condition it is enough to consider the slightly weaker
measure contraction property MCP (K, n), see Ohta [20].

(b) Thecase p =2 and o = nnTZ (n > 3) is contained in Kristdly and Ohta [12], where
the authors studied Caffarelli-Kohn—Nirenberg inequalities on metric measure spaces.
We notice that the roots of Theorem 1.1 (i) on Riemannian manifolds with non-negative
Ricci curvature can be found in do Carmo and Xia [8], Ledoux [13] and Xia [28].

(c) The generalized Bishop-Gromov inequality and density assumption (D)} imply
M(By,(p)) < wyp" forall p > 0. In particular, the latter inequality and the con-
clusions of Theorems 1.1-1.3 imply the Ahlfors n-regularity at the point x¢; therefore,
the Hausdorff dimension of (M, d) is precisely n.

(d) (D);ﬁ0 clearly holds for every point xp on n-dimensional Riemannian and Finsler mani-
folds endowed with the canonical Busemann—Hausdorff measure.

1.2.2 Applications: rigidity results in smooth settings

Having fine volume growth estimates in Theorems 1.1-1.3, important rigidity results can
be deduced in the context of Riemannian and Finsler manifolds supporting Gagliardo—
Nirenberg-type inequalities.

In order to state such results, let (M, g) be an n-dimensional complete Riemannian mani-
fold with non-negative Ricci curvature (n > 2) endowed with its canonical volume form dvy.
Let app(k, n) € (0, 1] be the so-called Munn—Perelman constant for every k = 1, ..., n,
see Munn [17]. In fact, based on the double induction argument of Perelman [22], Munn
determined explicit lower bounds for the volume growth in terms of the constant oy p (k, 1)
which guarantee the triviality of the k-th homotopy group mx (M) of (M, g); see details in
Sect. 3.

For sake of simplicity, we restrict here our attention to the LP-logarithmic Sobolev
inequality(LS)g on (M, g) by proving that once C > 0 is closer and closer to the opti-
mal Euclidean constant £, ,,, the manifold (M, g) approaches topologically more and more
to the Euclidean space R”.

Theorem 1.4 Let (M, g) be an n-dimensional complete Riemannian manifold with non-
negative Ricci curvature (n > 2) and assume the LP-logarithmic Sobolev inequality (LS)g
holds on (M, g) for some p € (1,n) and C > 0. Then the following assertions hold:
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) C= Ly
(ii) The order of the fundamental group w1(M) is bounded above by ( chn ) ’ ;
@1ii) IfC < app(ko, n)fg[,p,nforsomeko ell,....,n}thenmi(M) = -+ = m, (M) = 0;

@Gv) IfC < apyp(n, n)_%ﬁp,,, then M is contractible;
(v) C= Ly, ifand only if (M, g) is isometric to the Euclidean space R".

Remark 1.2 (a) Theorem 1.4 (v) answers an open question of Xia [29] for generic p €
(1, n). For p = 2 the latter equivalence is well known by using sharp analytic estimates
for the heat kernel on complete Riemannian manifolds with non-negative Ricci curva-
ture; see Bakry et al. [4], Ni [18], and Li [14]. Details are presented in Sect. 3.1 (see
Remark 3.1).

(b) TheconclusionC > L, , in Theorem 1.4 (i) is in a perfect concordance with the assump-
tion of Theorem 1.2. Analogous statements hold for the other Gagliardo—Nirenberg
inequalities.

(c) Similar results to Theorem 1.4 can be stated also for Gagliardo—Nirenberg inequalities
(GN1) and (GN2)c, and Faber—Krahn inequality (FK)¢ with trivial modifications. In
particular, we have:

Corollary 1.1 (Optimality vs. flatness) Let (M, g) be an n(>2)-dimensional complete
Riemannian manifold with non-negative Ricci curvature. The following statements are equiv-
alent:

6)) (GNl)Ogt'appn holds on (M, g) for some p € (1,n) and a € (1, #];

(i) (GNZ);X\’[LYL holds on (M, g) for some p € (1,n) and o € (0, 1);
(iii) (LS)ZW holds on (M, g) for some p € (1, n);
@iv) (FK)p]_-p,n holds on (M, g) for some p € (1,n);
(v) (M, g) is isometric to the Euclidean space R".

Remark 1.3 (a) The equivalence (i)<>(v) in Corollary 1.1 is precisely the main result of
Xia [28].

(b) A similar rigidity result to Corollary 1.1 can be stated on reversible Finsler manifolds
endowed with the natural Busemann—Hausdoff measure d Vr of (M, F); roughly speak-
ing, we can replace the notions ‘Riemannian’ and ‘Euclidean’ in Corollary 1.1 by the
notions ‘Berwald’ and ‘Minkowski’, respectively (see Theorem 3.2). The latter notions
will be introduced in Sect. 3.2.

Notations. When no confusion arises, || - [|.» abbreviates: (a) || - ||Lr(m,am) on the metric
measure space (M, d, m); (b) | - | > (M.dv,) on the Riemannian manifold (M, g) where dv,
stands for the canonical Riemannian measure on (M, g); (¢) || - llLr(m,avy) on the Finsler

manifold (M, F) where d Vg denotes the Busemann-Hausdoff measure on (M, F); and (d)
Il - llz»rn,ax) on the Euclidean/normed space R" where dx is the usual Lebesgue measure,
respectively. When A is not the whole space we are working on, we shall use the notation
llullzra) for the LP-norm of the function u : A — R.

2 Volume non-collapsing via Gagliardo-Nirenberg inequalities
Before the presentation of the proofs of Theorems 1.1-1.3, we recall for completeness some

notions and results from Lott and Villani [15] and Sturm [24,25], which are indispensable in
our arguments.
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231 Let (M, d, m) be a metric measure space, i.e., (M, d) is a complete separable metric space
232 and mis a locally finite measure on M endowed with its Borel o-algebra. In the sequel, we
233 assume that the measure m on M is strictly positive, i.e., supp[m] = M. As usual, P> (M, d)
s is the L2-Wasserstein space of probability measures on M, while P,(M, d, m) will denote
235 the subspace of m-absolutely continuous measures. (M, d, m) is said to be proper if every
236 bounded and closed subset of M is compact.

237 For a given number N > 1, the Rényi entropy functional Sy (-|m) : Po(M, d) — R with

28 respect to the measure m is defined by Sy (u|m) = — f M p_%d W, p being the density of
239 pufinp = puf + p® = pm+ u®, where u¢ and u® represent the absolutely continuous and
240 singular parts of u € P> (M, d), respectively.

241 Let K, N € R be two numbers with K > 0 and N > 1. Forevery ¢t € [0, 1] and s > O,

G
]
]
S
(=W}
-
o
=
+—
=
<

222 let
+o0, if Ks?2> (N = Dr?;
1—L
243 fl((z,)N(S) =1¥ (sin (J%ts) /sin( %s)) " , if0<Ks? < (N—Dn?;
t, if Ks?=0.

244 We say that (M, d, m) satisfies the curvature-dimension condition CD(K, N) if for each
25 (o, 1 € P2(M,d, m) there exists an optimal coupling y of wg, 1 and a geodesic I :
26 [0, 1] = Pr(M, d, m) joining wo and pq such that

_ L _ L
ar Sy(D()Im) < — / [r,g‘;)(d(xo,xl)mo V' (x0) + T i (Ao, x)py Y (xl)} dy (x0, x1)
MxM

23 foreveryt € [0, 1]and N’ > N, where pg and p; are the densities of 11 and w; with respect
249 to M. Clearly, when K = 0, the above inequality reduces to the the geodesic convexity of
20 Syr(-|m) on the L2-Wasserstein space P>(M, d, m).

251 It is well known that CD(K, n) holds on a complete Riemannian manifold (M, g)
252 endowed with the Riemannian volume element dv, if and only if its Ricci curvature >K
253 and dim(M) <n.

254 Let By (r) = {y € M : d(x, y) < r}. In the sequel we shall exploit properties which are
255 resumed in the following results.

256 Theorem 2.1 (see [25]) Let (M,d, m) be a metric measure space with strictly positive
257 measure M satisfying the curvature-dimension condition CD(K, N) for some K > 0 and
28 N > 1. Then every bounded set S C M has finite m-measure and the metric spheres d By (r)
259 have zero M-measures. Moreover, one has:

260 (i) [Generalized Bonnet-Myers theorem] If K > 0, then M = supp[m] is compact and

261 has diameter less than or equal to ./ %7[.
262 (i1) [Generalized Bishop—Gromov inequality] If K = 0, then for every R > r > 0 and

263 xeM,

M(Bx(r)) _ M(Bx(R))
rN - RN :

264

265 Lemma 2.1 Let (M,d,m) be a metric measure space which satisfies the curvature-
266 dimension condition CD(0, n) for some n > 2. If

m(B
267 €0 :=lim supM >a
— Wy P
p—>00 n

(2.1)
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for some xog € M and a > 0, then
M(Bx(p)) = aw,p”, Vx e M, p > 0.

Proof Letus fix x € M and p > 0; then we have

m(Bx(p)) _ .. M(Bx (1)) . . )
———— = limsup ——— [Bishop — Gromov inequality]

wp P r—00 W™
By, (r — d(xo,

> lim sup 1o — 40, 1) [By(r) > Bay (r — d(xo. x))]
r—00 wpt

-1 M(By, (r — d(xo, x)))  (r — d(xp, x))"

= lim sup .
r—00 wp(r — d(X(), x))" ri

=3

> a, [cf. (2.1)]

which concludes the proof. O

We are now in the position to prove our volume non-collapsing results.

2.1 Cases @ > 1 & 0 < a < 1: usual Gagliardo-Nirenberg inequalities

In this subsection we present the proof of Theorem 1.1 by distinguishing two cases:

Proof of Theorem 1.1 (i): the case 1 < o < nfp. In this part, we follow the line of [12];
the proof is divided into several steps. We clearly may assume that C > Gy p , in (GNl)z'p ;
indeed, if C = Gy, p,» We can consider the subsequent arguments for C := G, , » + & with
small & > 0 and then take ¢ — 0.

Step 1 (K = 0). If we assume that K > O then the generalized Bonnet-Myers theorem
(see Theorem 2.1 (i)) implies that M is compact and m(M) is finite. Taking the constant map
u(x) =m(M) in (GNl)g’p as a test function, one gets a contradiction. Therefore, K = 0.

Step 2 (ODE from the optimal Euclidean Gagliardo—Nirenberg inequality I). We consider
the optimal Gagliardo—Nirenberg inequality (1.1) in the particular case when the norm is
precisely the Euclidean norm | - |. After a simple rescaling, one can see that the function

x = (A + |x|P/)ﬁ, A > 0, is a family of extremals in (1.1); therefore, we have the
following first order ODE

=@ & $—g ?\ (hoo =1 o ’
(m G( )) = Ya,p,n (ﬁ) ( G( )+m G( ))
h ()T 2.2)

where h¢ : (0, c0) — R is given by

a(p=D+1

hg(k):/ (A+|x|1”) T dx, A > 0.
Rn

For further use, we shall represent the function /¢ in two different ways, namely

— a(p—1)+1 n
a(p-DH+1 n n))Lpi'F?

n
ho() = wn B L P
¢(A) wnp, ( o —1 P

=A onp" £, p)dp., 2.3)
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where
ap

—-1D+1 NTE
.fc(k,p)zp’a(pa%(k+p”)' P L. (2.4)

Step 3 (Differential inequality from (GN1)5”). By the generalized Bishop-Gromov
inequality (see Theorem 2.1 (ii)) and hypothesis (D)ﬁ0 one has that

”'(Bxi"i’m < tliminf MB ) _ 2.5)

wy P r—0 wu "
Inspired by the form of 4, we consider the function wg : (0, 00) — R defined by

a(p—D+1

wc(k):/ (x+d(xo,x)1”) S amx), A > 0.
M

By using the layer cake representation, it follows that w¢ is well-defined and of class C';
indeed,

o0 a(p—1)+1
wg(A) = / m([x eEM: (k +d(x0,x)p/) e S t])dt
0

00 a(p—1)+1
= / M(Ba () f G p)dp  [change = (1 + ") ™ and see 2.5)]
0
< /0 onp” f(h. p)dp [see (2.5)]
= ha(b),
thus
0 < wg(h) < hg(h) < 00, A > 0. (2.6)

For every A > 0 and k € N, we consider the function u, ; : M — R defined by
1

i k(6) = (min{0, & — d(xo, 1)} + 1D (& + max {d(xo, 0, k7)) -

Note that since (M, d, m) is proper, the set supp(uy k) = By, (k + 1) is compact. Conse-
quently, uy x € Lipg(M) for every A > 0 and k € N; thus we can apply these functions in
(GNI)Z"”, ie.,
i illzer < CHIVuklall T lur k) 26
. = , LP WA KN a(p—1)+1-

Moreover,

1

klingo u) ;(x) = (A + d(xo,x)p/)m =: uy (x).

By using the dominated convergence theorem, it turns out from the above inequality that i,
also verifies (GNl)g‘p, ie.,

0 1-6
lurlizer < CIIVurldllzp lluall a1 2.7

The non-smooth chain rule gives that

/

Vit |g(x) = (x + d(xo, x)f”)E d(xo, x)” V| Vd(x0, )g(x), x e M. (2.8)

a—1

@ Springer

:é: Journal: 526 Article No.: 1065 [ TYPESET [_]DISK [_]LE [_]CP Disp.:2016/9/17 Pages: 27 Layout: Small



Gagliardo—Nirenberg inequalities on metric measure spaces Page 11 of 27 _####

7 Since d(xo, -) is 1-Lipschitz (therefore, |Vd(xo, -)|q(x) < 1 for all x € M), due to (2.7),
s (2.8) and the form of the function wg, we obtain the differential inequality

3

]

3.

Y

— l —«a , ap
o 329 711)(;()\)
o a(p—1+1
2 RN 3
5 <c(-2L we+ —2"1 ) wem @I, (29)

330 — alp= . .
= “ a1 G a1 ¢
=
<< 331 Step 4 (Comparisonofwgandhgneartheorigin). We claim that

A
w2 im WSW (2.10)
r—0t hg (L)

w3 By hypothesis (D)}, for every & > 0 there exists ps > 0 such that

334 M(By,(0)) = (1 — &)w, p" for all p € [0, p¢]. 2.11)

sss By (2.11), one has that

[e.¢]
e wg(d) = / M(Bx, () fG(*, p)dp
0
_1
Pe ot(p—l)+l+i Peh v
a7 > —8)/ wpp" fo(h, p)dp = (1 —e)r =@ P’/ wnp" fe(1, p)dp.
0 0

sss  Thus, by the representation (2.3) of & and a change of variables, it turns out that

Pek

~ |-

wnp" f6 (1, p)dp

A

500 iminf 2% < (1 — &) lim inf = —1—¢
A—0

- o0
0" he () / wap" fG (1, p)dp
0

a0 The above inequality (with ¢ > 0 arbitrary small) combined with (2.6) proves the claim
s (2.10).

342 Step 5 (Globalcomparisonofwgandhg). We now claim that

b

Gu p.n i ~
343 wg (L) > (T) hg(A) =hg(X), A >0. (2.12)

as  Since we assumed that C > Gy . 5, by (2.10) one has

. wg () c \?
345 Iim ——— = —— > 1.

A—0T EG(A) N ga,p,n
as Therefore, there exists Ag > O such that for every A € (0, A¢), one has wg(X) > ﬁG SA).
347 By contradictionto (2.12), we assume that there exists A* > Osuchthat wg (A\*) < hg(W).
ws  IfA* =sup{0 < A < A" wg(L) = hg(M)}, then 0 < A9 < A* < A¥. In particular,

49 we(\) < hg(h), Va e [A*, A%
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The latter relation and the differential inequality (2.9) imply that for every A € [A*, A¥],

l—«a ' a
(a(p—1>+1wG( ))

i (2N (i W+ —2 "L ) ) e T . (2.13)
w alp— . .
- a—1 ¢ alp-—+1"7° ¢

Moreover, since fzc A) = (%) v h (X)), the ODE in (2.2) can be equivalently transformed

for every A > 0 into the equation

_ e ”
(a(p—1>+1 o( ))

p r \' (- a—1 ~, = 1-0)p
=Co p— hg(X) + mkhc(k) hg (L) e@=D+D  (2.14)

For A > 0 fixed we introduce the increasing function j(’\; : (0, 00) — R defined by

G = o=l $+Cg P ezl (0) Tt ¢
G = a(p—1D+1 a—1 a(p—1+1 G ’
Relations (2.13) and (2.14) can be rewritten into

/

A pf PN et s ¥
Jo(—wg(A) =Co o hg(A) TTEPTDID = je(—hg (L), YA € [AF, 7],
o —
which implies that
—wg(W) < —hg(), Vi e,

i.g., the function fzc — wg is non-increasing in [A*, A1 In particular, 0 < (ﬁg —we)0H) <
(hg — wg)(A*) = 0, a contradiction. This concludes the proof of (2.12).
Step 6 (Asymptoticvolumegrowthestimatew.r.t.xo). We claim that

M(By, (p)) _ (ga,p,n)g
L)

(2.15)

X0 .— 13
£ :=lim sup "
p—>00 @ P

By assuming the contrary, there exists &g > 0 such that for some py > 0,

m(B g
( X0 (0) < ga,p,n — 0, Vo> po.
wp P C

By (2.12) and from the latter relation, we have for every A > 0 that

0 < wg) - (gaép,n)g yo
o] By, a,p.n g
:/ (m( O(np)) _(g P ) )wnp"fc(?np)dp
0 Wn P ¢
Gopn\*\ [ " onp”
< 1+80_( i ) /0 wn p fc(k,p)dp—b?o/o @np” fG (., p)dp
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Gagliardo—Nirenberg inequalities on metric measure spaces Page 13 of 27 _####

By using (2.3), a suitable rearrangement of the terms in the above relation shows that

—_— n ! g —_— /
0l B a(p 1)+1_£’£ W <P Ieg Ga,p.n a(p 1)+lp6,+p.
p’ a—1 pp n+p’ C a—1

If we take the limit A — o0 in the last estimate, we obtain a contradiction. Thus, the claim
(2.15) is proved and it remains to apply Lemma 2.1, which concludes the proof of Theorem
1.1 Q).

Proof of Theorem 1.1 (ii): the case 0 < o < 1. We shall invoke some of the arguments
from the proof of Theorem 1.1 (i), emphasizing that subtle differences arise due to the ‘dual’
nature of the Gagliardo—Nirenberg inequalities (GN1);” and (GN2)g”, respectively. As
before, we may assume that the inequality (GN2)g” holds with C > Ng, p .

Step I The fact that K = 0 works similarly as in Theorem 1.1 (i).

1
Step 2 Since x +—> ()J’/ — |x|1") "% is an extremal function in (1.3) for every A > 0, we
+
obtain the ODE

Y

hN()L)‘a(p—llm =N (p/)y (—hN(k) + I——a)\h, (A)); x
PN -« pPlap-nH+n""
11—« 1—p' 7 )]apV 21
) (p’(a(p— TERNES) B (210

where the function Ay : (0, c0) — R is defined by

a(p—D+1

hy (L) :/ ()\1’/ - lep,) T dx, A > 0.
R" i

It is clear that /iy is well-defined, of class C! and can be represented as

— D41 wr [
By = o, B (FPZ DALy RN =/ onp v (h. 0)dp,
P’ R’ P’ 0
where
—1 1 ’ ’ % ’
fyGh, p) = p’% (A” ~ P )' p? =1, forevery A > 0and p € (0, 1).
—

2.17)
Step 3 Let wy : (0, 00) — R be the function defined by

a(p—D+1

wN(A)z/ (AP’—d(xO,x)P’)+l‘“ dm(x), >0,
M

where xg € M is from (D QO. By the layer cake representation and relations (2.5) and (2.17),
wy is well-defined, positive, of class C! and

2 2
0 <wy() =/0 M(By, () fn (&, p)dp =< /0 wonp" fn (&, p)dp = hy(A) < 00, A > 0.

(2.18)

e .

Since u; = ()J’/ — d(xo, -)P/) " isa Lipschitz function on M with compact support By, (L),
+

it belongs to Lipg(M). Therefore, we may apply u; in (GNZ)‘é’p ; a similar reasoning as in
(2.8) leads to the differential inequality
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Y

WNO)Egﬁﬂ‘<C( . )y(_wNOJ+-1_lekao)p
- \-e Pap-D+1)
1l -« la_y
I e S RO z
) (p’(a(p - 1)+ 1)A wN(A)) . A>0. (2.19)

Step 4 For an arbitrarily fixed ¢ > 0, let p > 0 from (2.11). If 0 < A < p;, one has that

A A
wy () =/0 M(By, () fn (k. p)dp = (1 — 8)/0 onp" fn (&, p)dp = (1 = e)hy(R).

Consequently, the latter relation together with (2.18) implies that
wy(A)

im = (2.20)
A—>07F hN()»)
Step 5 We shall prove that
Napn'\7? .
wy (3) > (T”)y hyG) = hy(), &> 0. .21)

By (2.20) one has

oy () ¢\’
lim — = > 1,
A0t Iy (D) Na,p.n
which implies the existence of a number Ao > O such that wy(A) > h N (A) for every
A € (0, 1o). ~
We assume by contradiction that there exists A* > 0 such that wy (A\*) < Ay ¥, If
A =sup{0 < A < A*:wy (W) =hy(W)}, then 0 < 29 < 1* < A and

wy (L) < hy(), VA e [AF, A7), (2.22)
For every A > 0, let j])\‘, : (W, oo) — R be the function defined by

Y 1—y
a _ p/ 14 _ 1l -« );( l—« ]_P/)W
In® _C(l —a) ( Y oee-ven”) Gew-nrnt )

Itis clear that j 1)\‘, is well-defined, positive and increasing. A direct computation yields that

(R ~ () ' _
both values (logwy)' (L) = % and (loghy)' (A) = EZ(,\) are greater than %
for every A > 0. Taking into account (1.4), we have

oy =y v
ap—DH+1 p ap n’

Y

1
therefore, if we divide the inequality (2.19) by wy (1) AT , we obtain that

wyW)"7 < jk (logwy) (W), VA > 0. (2.23)
. ~ ( Napa \ 7 .
In a similar manner, by iy () = (T) hy (1) and relation (2.16), we have that
7 - vy 7o\
iy ~r = g ((loghN) (x)), Vi > 0. (2.24)
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Gagliardo—Nirenberg inequalities on metric measure spaces Page 15 of 27 _####

Thus, by (2.22), (2.23) and (2.24), it turns out that
. e ~ _r _r .
i (Qoghn) ) = v Gy ™% < wn()7F < jiy (dogwn)' (), Vh € [2%,24].

Since the inverse of jk, is also increasing, it follows that (logﬁN)’(A) < (logwy)'(A) for

every A € [A*, A*]. Therefore, the function A > log hy ) g non-increasing in the interval

wy (1)
[x*, A*]. In particular, it follows that
hy (W F hy (W*
0 <log V) _ oo ANOD)
wy (M) wy (A%)

a contradiction, which proves the validity of the claim (2.21).
Step 6 We shall prove that

n

lim sup (B2 (P) (N“*”’");. (2.25)

p—>00 wp p" C

By contradiction, we assume that there exists &g > 0 such that for some py > 0,

M(By,(p)) _ (Na,,,,n
W P" C

n

v
) —¢0, Yp = po.

The above inequality and (2.21) imply that for every A > po,

Nepn'\? * (m(B, Nap'\ ¥
Oswm)—(%) = [ (m(w ;ff))—( g”) )wnp"fN(x,mazp

N“P” % rn n * n
1+80—(#) /0 o) fN(k,p)dp—ao/o wnp" fn (X, p)dp.

Reorganizing the latter estimate, it follows that for every A > 0,

n a(p—1)+1 n /
P p

’ z _ ,
SR Py (0 1 LU R
n—+p C l -«

Once we let . — oo, we get a contradiction. Therefore, (2.25) holds and Lemma 2.1 yields
that

IA

m(By(p)) > Not,p,n 4 . VxeM, p>0,
W P C

which concludes the proof of Theorem 1.1 (ii). ]

2.2 Limit case I (¢ — 1): L?-logarithmic Sobolev inequality

In this subsection we shall provide the proof of Theorem 1.2. We shall assume thatC > L, ,
in (LS)%.

Step 1 As in the previous proofs, we obtain that K = 0; the only difference is that we shall
consider u(x) = m(M)~!/? as a test function in (LS)g, in order to fulfil the normalization
assumption ||u|zr = 1.
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Step 2 Since the functions l; (A > 0) in Theorem B are extremals in (1.5), once we plug
them we obtain a first order ODE of the form

() n r"\* ph/L()\.)

where iy, : (0, 00) — R is defined by

hp(x) = / e gy
For later use, we recall that 17, can be represented alternatively by

n
7

2”% r (%) ’ OO AP '—1 - ’ 9 v '—1
hp (L) = - - =Ap a),,/ e M p" P lgp =3V p wn/ e "t —lgr,
p'Ar r (5) 0 )

Step 3 Let wy, : (0, 0c0) — R be defined by

(2.27)

wr (L) = / e M@0 am(x),
M

where xog € M is the element from hypothesis (D)ﬁo. Note that wy, is well-defined, positive
and differentiable. Indeed, by the layer cake representation, for every A > 0 we obtain that

wL(K)Z/OOOm ({x e M : e 00" ,}) d,:/o

1 ,
m ([x eM : e 200" o t}) dt

o0 2 , !
=’ /0 M(Bx,(p))e " p? ~dp [change 1 =¢™*" ]
[e%s} o ,
< Ap'wn / L ) [see (2.5)]
0
= hr(A) < +o0.

Let us consider the family of functions #; : M — R (A > 0) defined by

y e—%d(XOVX)”/
i)(x) = ——, xeM.

w (AP

It is clear that ||, ||» = 1 and as in the proof of Theorem 1.1 (i), the function i, can be
approximated by elements from Lipg(M); in fact, i, can be used as a test function in (LS) Z
Thus, plugging i, into the inequality (LS)g, applying the non-smooth chain rule and the
fact that |Vd(xo, -)|g(x) < 1 for every x € M, it yields

) Ot (o () k)
long()»)—i—)»wL()L) < plog( C(p) A o) A>0. (2.28)

Step 4 We prove that
wr ()
im =
r—+oo hp (L)

(2.29)
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For a fixed ¢ > 0, let p, > 0 from (2.11). Then one has

o0 ’ , Pe p ’
wr () = Ap’ /0 M(By, (0))e ™" p? "ldp = ap'(1 — &), /0 e " p" P dp

1

_n pgk? ’ , s
=1 7p'(1— g)a),,/ e P =gy [change t = A7 p]
0
Therefore, by the third representation of &y, (see (2.27)) it turns out that

A
timint 22?5

>1—e.
h—too hp, (%)

The arbitrariness of ¢ > 0 together with Step 3 implies the validity of (2.29).
Step 5 We claim that

Lon\7 -
wr(A) > T hp(A) =:hp(A), A>0. (2.30)
Since C > L ,, by (2.29) it follows that
o we () c\?
lim — = > 1.
A=>+00 1y (M) Lpn

Consequently, there exists % > 0 such that w L(A) > h L (A) for all A > . If we introduce
the notations

W) = logwy (A) and H(A) = loghz (), A >0,
the latter relation implies that
W) > H), VYA> 4, (2.31)

while relations in (2.28) and (2.26) can be rewritten in terms of W and H as

/\ P
W)+ AW ) < %log (—c (%) A”W’(k)) . A>0, (2.32)
and
7 7/ n P/ P 7/
~ A0 +2H/0) = log (—c (;) WP H (x)) >0 (2.33)

Claim (2.30) is proved once we show that W (1) zf] (&) forall A > 0. By cont£adicti0n,
we assume there exists A* > 0 such that W(A#) < HO*). Due to (2.31), A* < A. On the
one hand, let A* = inf{x > A* : W(L) = H()}. In particular,

W) < H), Vae 2, a5, (2.34)

On the other hand, if we introduce for every A > 0 the function j 2\ : (0, 00) - Rby

/\ P
i) = Zlog (c (ﬁ) m) YA, 150,
p p
relations (2.32) and (2.33) become
W) < jp(=W ) and — HQ) = ji(=H'(L), *> 0.
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By the above relations and (2.34) it yields that
JL=H' ) = =H0) < =WQ) < ji (=W (), VaeF i

Since j 1)} is increasing, it follows that W — Hisa non-increasing function on [A#, A*], which
implies

0=W-H0"<W-H0" <o,

a contradiction. This completes the proof of (2.30).

Step 6 We claim that

m(B Lpn\7

lim sup (Bx (P)) > ( p’”)l . (2.35)
p—>00 wp p" C

By assuming the contrary, there exists 9 > 0 such that for some pp > 0,

m(B L b
L e
wp P C

Combining the latter relation with (2.30) and (2.27), for every A > 0 we obtain that
£ n
0 < wp () — (%) he(h)

;[ —2o?  pl—1 / Lpn , ol ntp—1
skp/o M(By,(0))e™ """ pP ~dp + rp'wy, ) / e p"TP " dp
P

0
L % o0 / ’
—)»p/a)n( gﬂ) / e—App ,0”+p—1d,0.
0

Rearranging the above inequality, by virtue of (2.5) it follows for every A > O that

0 o , L % 144 ’ ,
80/ e—)upl pn+p _ld,O < (1 _ (%) + 80)/ e—App pn+p _ld,O.
0 0

Due to (2.27), the latter inequality implies

1 Lpn\? ntr
SOWF(E/”)E 1_( M)pﬂo =0,
P p C n+p

Now, letting A — 0™ we arrive to a contradiction. Therefore, the proof of (2.35) is concluded.
Thus, Lemma 2.1 gives that

MB: ) (Lo viem p=0
Wy p" o C ' , '

concluding the proof of Theorem 1.2. O

2.3 Limit case II (¢ — 0): Faber—Krahn-type inequality

In this part we sketch the proof of Theorem 1.3. Similarly as before, we assume thatC > F), .
Step 1 Analogously to Theorem 1.1 (i), it follows that K = 0.
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529 Step 2 The function x — ()LP/ —|x Ip/) being extremal in (1.6) for every A > 0, a direct
+

s30 computation shows that

1 1—-L
1 1 / *
. he() = Fpup' (—h PO+ ?Ah;(x)) ' (?Al_l’ h’F(A)) T 236

sz where hp : (0, 00) — R is given by

G
]
]
S
(=W}
-
o
=
+—
=
<

- hr(h) :/ (M”—|x|f”) dx, > 0.
R” +

534 Step 3 Let xg € M from (D)j’m. Since u; = ()J’/ — d(xo, -)p/) € Lipy(M), we may
+
sa5  insert u) into (FK)g obtaining

536 sl < CIlIVuzlall o m(supp(us))' 7" (2.37)
ss7  First, we observe that

538 [Vurlg(x) = p'd(xo, x)” ! [Vd(xo, )lg(x) < p'd(xo, x)” 7", Vax € By (1),

ss9  while |Vu,|q(x) = 0 for every x ¢ B,,(A). Moreover, since the spheres have zero
ss0 M-measures (see Theorem 2.1), we have that

M(supp(u3)) = M(By, (1)) = M(By,(1)).

se2 We now introduce the function wr : (0, 00) — R given by

543 wr (L) :/ (AP’ —d(xo,x)f") dm(x), A > 0.
M +

s« Due to the layer cake representation, one has

s wr(h) =/ (M’/ _ d(xo,x)p/) dm(x) = A’ m(By, (M) —/ d(x0, )" dm(x)
on()\) By

oS,
A
" = 2P m(By, (1)) —/ m ({x € By (W) : d(xg, 1) > z}) dt
0
’ A‘ ’ ’
547 = A" m(By, (V) — p// (M(By, (1) — M(By, (0))) p” ~'dp  [change t = p”']
0
)\‘ /
548 = p// M(By, (p))p” ~'dp.
0
sag  Therefore,
I ,_
550 lurllpr = wr(A), m@supp(uy)) = M(By, (1)) = ?kl w0,
ss1 and
1 1
/ b 1 P
552 Vurldlir < p' / d(xp, x)P dmx) ) =p’ (—wF()») + T)“w%(l)) .
Byy () p
ss3 Consequently, inequality (2.37) takes the form
1 1—L
/ 1 , P l 1—p' s r*
554 wrp() <Cp | —wr(A) + S 2wp () —A P wk () , A>0,
p P
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which is formally (2.19) if « — 0 since due to (1.4), limy_oy = 1 and limy_,¢ la_—py =
-
Tﬁerefore, we may proceed as in the proof of Theorem 1.1 (ii) (Steps 4-6), proving that
wr(A)
im =1
A=0+ hp(X)

f n
wr(d) > (%) hp(), Ya >0,

and finally
m(B Fou\"
(Bx(p)) Z( p,n) VreM. p=0.
wp P C
which concludes the proof of Theorem 1.3. O

3 Rigidity results in smooth settings

As a starting point, we need an Aubin—Hebey-type result (see [3] and [11]) for Gagliardo—
Nirenberg inequalities which is valid on generic Riemannian manifolds.

Lemma 3.1 Let (M, g) be a complete n-dimensional Riemannian manifold and C > 0. The
Sfollowing statements hold:

(1) If(GNl)g’p holds on (M, g) for some p € (1,n) and a € (1, ﬁ] then C > Gy, pn;
(ii) If (GN2)Z'" holds on (M., g) for some p € (1,n) and a € (0, 1) then C > Ny, p.n;
(iii) If(LS)g holds on (M, g) for some p € (1,n) thenC > L n;

@iv) If(FK)g holds on (M, g) for some p € (1, n) then C > Fp .

Proof (i) By contradiction, we assume that (GN1)z” holds on (M, g) for some p € (1,n),
o€ (1, ﬁ], and C < Gy p,n- Let xo € M be fixed arbitrarily. For every ¢ > 0, there exists
a local chart (2, ¢) of M at the point xo and a number § > 0 such that ¢(2) = By(§) =
{x € R" : |x] < &} and the components g;; = g;;(x) of the Riemannian metric g on (2, ¢)
satisfy

(1 —-98)dij < gij < (1+¢)d (3.1

in the sense of bilinear forms. Since (GNl)g'p is valid, relation (3.1) shows that for every
& > 0 small enough, there exists §; > 0 and C; € (C, Gq, p,n) such that for every § € (0, &)
and v € Lipy(Bo(9)),

6 1-6
||v||L°‘1’(B()(6),dx) =< CEHVU”LP(BO((S)’dx)”v”La(p—lH»l(BO(S)ydx)' (3-2)

Letus fixu € Lipy(R") arbitrarily and set vy (x) = }\% u(ix), . > 0.For A > (large enough,
one has v; € Lipy(Bo(8)). If we plug in v;, into (3.2), by using the scaling properties

IVUillLr (Bys),dx) =AIVullLr@e.axy and |villLa(Bys).axy=A? ?llullLa®e ax). Yg>0,
(3.3)
and the form of the number 0 (see (1.2)), it follows that

0 1-6
[l ”L“P(R”,dx) <C:||Vu ”LP(R”,dx) [|u ||Loc(p—l)+l (R, dx)"
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sss  If we insert the extremal function hg p of the optimal Gagliardo-Nirenberg inequality on R"
sso (o > 1) into the latter relation, Theorem A yields that G, , , < Cq, a contradiction.

590 The proofs of (ii) (iii) and (iv) are analogous to (i), taking into account in addition to (3.3)
— so1  that
o
i - Entgy (|v217) = Entgy (|u|?) +nlul7, log 1,
‘6‘ se3  and
4'5_; n —nAayn
= H" (supp(va)) = A~"H" (supp(u)),
< .
ses  respectively. O

sis 3.1 Gagliardo—Nirenberg inequalities on Riemannian manifolds with Ricci> 0

sz Before presenting the proofs of Theorem 1.4 and Corollary 1.1, we recall some results from
s Munn [17].

599 To do this, let (M, g) be an n(>2)-dimensional complete Riemannian manifold with non-
0 positive Ricci curvature endowed with its canonical volume element dvg. The asymptotic
eo1  volume growth of (M, g) is defined by

Vol, (B
602 AVGy,¢) = rlgr(;lo 7‘2)( r);(r)) .
n

ss By Bishop-Gromov comparison theorem it follows that AVG(y ) <1 and this number is
eo4 independent of the point x € M.

605 Given k € {1,...,n}, let us denote by 6;, > 0O the smallest positive solution to the
606 equation 1052Cy , (k)s (l + 257)/‘ = 1 in variable s, where

Chnli) = 1 ifi =0,
o7 nl) =13 4 10Cka G — 1) + (1661 (1 4+ 10C (i — 1) ifi € {1,.... k).

eos We now consider the smooth, bijective and increasing function hy , : (0, 8¢ ,) — (1, 00)
e0s defined by

k —1
010 hion(s) = [1 —102C (b)s (1+2S—k) ] .

e11  Foreverys > 1, let

—1
1— st ifk=1
[ + [h.‘,l,cv)]"] ' ’

612 Pk,s,n) =
h,:,ll(s)

max‘ﬁ(l,s,n),ﬁ(i,l—i— 5K ,n):i=1,...,k—ll ifke{2,...,n}.

s13  Note that the constant B(k, s, n), which is used to prove the Perelman’s maximal volume
614 lemma, denotes the minimum volume growth of (M, g) needed to guarantee that any con-
615 tinuous map f : S¥ — By (p) has a continuous extension g: Dt — By (cp), where
ste DT = {y € R¥*! ¢ |y| < 1} and S = aD**!, see [17, Definition 3.3]. Finally, the
617 Munn-Perelman constant is defined as

618 ayp(k,n) = inf pBk,s,n).
s€(1,00)

s19 By construction, opsp (k, 1) is non-decreasing in k; for numerical values of oy p (k, n) one
e20 can consult [17, Appendix A].
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Proof of Theorem 1.4. Let (M, g) be an n-dimensional complete Riemannian manifold
with non-negative Ricci curvature (n > 2) and assume the L?-logarithmic Sobolev inequality
(LS)g holds on (M, g) for some p € (1,n) and C > 0.

(1) It follows from Lemma 3.1 (iii), i.e., C > L .
(ii) Anderson [2] and Li [14] stated that if there exists co > 0 such that Volg (By(p)) >
cowp p" for every p > 0, then (M, g) has finite fundamental group 7 (M) and its order
is bounded above by co~!. Thus it remains to apply Theorem 1.2.
(ii1) Assume that C < ayp (ko, n)’gﬁp,n for some kg € {1, ..., n}. By Theorem 1.2, we
have that

Voly (B (r) _

r n
AVG(p,g) = lim > ( g’n) s aypko,n) = --->ayp(l,n).

r—00 Wy 1"
By Munn [17, Theorem 1.2], it follows that 71 (M) = - - - = m, (M) = 0.
v) If C < aMp(n,n)’gﬁp,n, then my(M) = --- = m,(M) = 0, which implies the

contractibility of M, see e.g. Luft [16].

(v) If C = L, , then by Theorem 1.2 and the Bishop-Gromov volume comparison theorem
follows that Voly (B, (p)) = wy,p" for every x € M and p > 0. The equality in
Bishop-Gromov theorem implies that (M, g) is isometric to the Euclidean space R".
The converse trivially holds.

[m}

Remark 3.1 In the study of heat kernel bounds on an n-dimensional complete Riemannian
manifold (M, g) with non-negative Ricci curvature, the logarithmic Sobolev inequality

n
Entg, (%) < 5 log (C||Vgu||2Lz(M,dUg)), Vu e C(M), |lull2 = 1, (3.4)

plays a central role, C > 0. In fact, (3.4) is equivalent to an upper bound of the heat kernel
p:(x,y)on M,i.e.,

n

sup pi(x,y) <Ct™2, >0, (3.5)

x,yeM

for some C > 0. According to Theorem B (from Sect. 1.1), the optimal constant in (3.4) in
the Euclidean space R" is givenby C = £, 2 = #; this scale invariant form on R” can be
deduced by Gross [10] logarithmic Sobolev inequality

Entgy, (u?) < 2[Vul?, Vu € CEERM), Null 2@ ay,) = 1.

R, dyn)’

2
where the canonical Gaussian measure y,, has the density §,(x) = (271)’%6’%, x e R",
see Weissler [27]. Sharp estimates on the heat kernel shows that on a complete Riemannian
manifold (M, g) with non-negative Ricci curvature the L*-logarithmic Sobolev inequality
(3.4) holds with the optimal Euclidean constant C = L, = 2 if and only if (M, g) is

niwe
isometric to R", cf. Bakry et al. [4], Ni [18], and Li [14]. In this case, C= (471)’% in (3.5).
In particular, Theorem 1.4 (v) gives a positive answer to the open problem of C. Xia
[29] concerning the validity of the optimal L”-logarithmic Sobolev inequality for generic
p € (1, n) in the same geometric context as above. Xia’s formulation was deeply motivated
by the lack of sharp L?-estimates (p # 2) for the heat kernel on Riemannian manifolds with
non-negative Ricci curvature.

@ Springer

:é: Journal: 526 Article No.: 1065 [ TYPESET [_]DISK [_]LE [_]CP Disp.:2016/9/17 Pages: 27 Layout: Small



Gagliardo—Nirenberg inequalities on metric measure spaces Page 23 of 27 _####

659 Similar results to Theorem 1.4 can be stated for the other three Gagliardo—Nirenberg-type
es0 inequalities; here we formulate one for (GNl)Z’p , the other two inequalities are left to the
et reader.

G
8 es2 Theorem 3.1 Let (M, g) be an n-dimensional complete Riemannian manifold with non-
5: ees negative Ricci curvature (n > 2) and assume the (GNl)g’p holds on (M, g) for some
S s pe(l,n),ae(l, nfp] and C > 0. Then the following assertions hold:
§ 665 (i) C > Gu,pns
< ess  (ii) The order of the fundamental group (M) is bounded above by (%ﬂ) ! ;
ee7  (iil) IfC < aprp(ko, n)frgzga,py,,for someky € {1,...,n}thenmi(M) = --- = m,(M) =
668 0;

660 (iv) IfC < apyp(n, n)_%ga,,,,n then M is contractible;
60 (V) C =Gy p,nifand only if (M, g) is isometric to the Euclidean space R".

et 3.2 Gagliardo—Nirenberg inequalities on Finsler manifolds with n-Ricci> 0

ez Let M be a connected n-dimensional C*°-manifold and TM = J, ), Tx M be its tangent
673  bundle. The pair (M, F) is called a reversible Finsler manifold if a continuous function
e72a F : TM — [0, 0c0) satisfies the conditions:

675 (a) F e COO(TM\{O});
ezs (b)) F(x,tv) =|t|F(x,v)forallt € Rand (x,v) € TM,;

677 (c) the n X n matrix g;; (x, v) = %gifgjj) (x, v) is positive definite for all (x, v) € T M\{0}.

es Here v = >/, vl %, and we shall denote by g, the inner product on 7, M induced by

7o the above form. If g;;(x) = g;;(x, v) is independent of v then (M, F) is called Riemannian
eso  manifold. A Minkowski space consists of a finite dimensional vector space V and a Minkowski
es1  norm which induces a Finsler metric on V by translation, i.e., F(x, v) is independent of x.
ez A Finsler manifold (M, F) is called a locally Minkowski space if every point in M admits a
ess local coordinate system (x') on its neighborhood such that F(x, v) depends only on v and
684 Nnoton x.

685 We consider on the pull-back bundle 7 *T M the Chern connection, see Bao et al. [5, The-
ess orem 2.4.1]. The coefficients of the Chern connection are denoted by F;. » Which are instead
es7  Of the well-known Christoffel symbols from Riemannian geometry. A Finsler manifold is of
ess Berwald type if the coefficients Ffj (x, v) in natural coordinates are independent of v. It is
ese clear that Riemannian manifolds and (locally) Minkowski spaces are Berwald spaces. The
ss0 Chern connection induces in a natural manner on 7*7T M the curvature tensor R, see Bao et
eo1 al. [5, Chapter 3]. By means of the connection, we also have the covariant derivative Dyu
s02 of a vector field u in the direction v € T M. Note that v — D, u is not linear. A vector field
eos u = u(t) along a curve o is parallel if Dsu = 0. A C* curve o : [0, a] — M is a geodesic
eos if D50 = 0. Geodesics are considered to be parametrized proportionally to arc-length. The
eos Finsler manifold is complete if every geodesic segment can be extended to R. For a C*°-curve

1
eos o0 :[0,/] — M, its integral length is given by L (o) := / F(o(t),o(t))dt. Define the
0
eo7 distance functiondr : M x M — [0, co) by

698 dr(x1,x2) =inf Lp(0),
o

e0s  Where o runs over all C*°-curves from x| to xp. Geodesics locally minimize dg-distances.
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Let u, v € Ty M be two non-collinear vectors and S = span{u, v} C T, M. By means of
the curvature tensor R, the flag curvature of the flag {S, v} is defined by

&(RWU, V)V, U)

K(S;5v) = ,
gv(v, V)gU(Uv U) - gU(Us V)Z

where U = (v;u),V = (v;v) € n*TM. If (M, F) is Riemannian, the flag curvature
reduces to the well known sectional curvature.

Let v € Ty M be such that F(x,v) = 1 and let {e;};=1,....» With e, = v be a basis for
T M such that {(v; e;)};=1,....» is an orthonormal basis for 7, T M. Let S; = span{e;, v}, i =
1,...,n—1.The Ricci curvature Ric: T M — R is defined by Ric(cv) = 2 Z?;ll K (Si;v)
for every ¢ > 0.

Let (M, F) be an n-dimensional complete Finsler manifold and let m be an arbitrarily
positive smooth measure on M ; such a manifold is viewed as a regular metric measure space
and we denote it by (M, F, m). Let v € T, M be such that F(x, v) = 1 and let

volg, (B(0, 1)))

o =1°g( m,(B(0. 1))

where volg, and m, denote the Lebesgue measures on 7\ M induced by g,, and m, respectively,
while B(0,1) = {y € T:M : F(x,y) < 1} is the unit tangent ball at 7, M. The latter
relation can be rewritten into the more familiar form m, (B(0, 1)) = ¢~ T®vol,, (B(0, 1)).
We introduce the notation

d._ .
WY = ET(a(t))L:O, (3.6)

where o : (—¢, &) — M is the geodesic with o (0) = x and 6 (0) = v. We say that the space
(M, F, m) has n-Ricci curvature bounded below by K € R if and only if Ric(v) > K and
0y YT = Oforevery v € Ty M such that F'(x, v) = 1, see Ohta [19, Theorem 1.2] and Ohta and
Sturm [21, Definition 5.1]. Note that a Berwald space endowed with the Busemann-Hausdorff
measure Mp g (and inducing the volume form d V) verifies the property 9, Y = 0, see Shen
[23, Propositions 2.6, 2.7].

The polar transform of F is defined for every (x, o) € T*M by

a(v)

F*(x,a) = sup . 3.7)
ver, m\{oy F(x,v)
Note that, for every x € M, the function F*(x, -) is a Minkowski norm on 7M.
If u € Lipy(M), then relation (1.7) can be interpreted as
|Vulg, (x) = F*(x, Du(x)) fora.e. x € M, (3.8)

where Du(x) € T,7(M) is the distributional derivative of u at x € M, see Ohta and Sturm
[21]. In particular, if (M, F) = (M, g) is a Riemannian manifold, then |Vu|dg = |Vgul,
where d, is the distance function on (M, g), V is the Riemannian gradient on (M, g), and
| - | is the norm coming from the Riemannian metric g, respectively.

Although a slightly more general result can be proved, we present an application on
Berwald spaces (M, F) endowed with the canonical Busemann—Hausdorff measure mpy
(and its induced volume form d V), by exploring the results of Cordero—Erausquin, Nazaret
and Villani [6] and Gentil [9] (see Theorems A, B).

Theorem 3.2 [Optimality vs. flatness] Let (M, F) be an n-dimensional complete reversible
Berwald space with non-negative Ricci curvature. The following statements are equivalent:
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739 6) (GNI)Ogtfp.n holds on (M, F) for some p € (1,n) and @ € (1, nfp];
o (i) (GNz)j‘vgp.” holds on (M, F) for some p € (1,n) and a € (0, 1);
741 (iii) (LS)ZM holds on (M, F) for some p € (1, n);

722 (iv) (FK)P]_-M holds on (M, F) for some p € (1, n);

s (v) (M, F) is isometric to an n-dimensional Minkowski space.

744 Proof We divide the proof into two parts.

745 >1)Vv(i)v(ii)Vv(iv)=(v). Note that the Busemann—Hausdorff measure mpy satisfies the
76 n-density assumption for every x € M, i.e.,

. Mpp(Bx(p))
747 lim ———~ =
p—0 wpp"

G
]
]
S
(=W}
-
o
=
+—
=
<

L,

748 see Shen [23, Lemma 5.2]. Since (M, F) is a Berwald space (thus 9, = 0 for every
e v e TyM,x € M, see (3.6)), the non-negativity of the Ricci curvature on (M, F) coin-
70 cides with the non-negativity of the n-Ricci curvature on (M, dr, Mpy), thus the metric
751 measure space (M, dr, Mppy) satisfies the curvature-dimension condition CD(0, n), see
752 Ohta [19]. Moreover, the completeness of (M, F') via Hopf-Rinow theorem implies that
753 the (M, dp, mpp) is proper. Applying now any of the Theorems 1.1, 1.2 or 1.3 (according
754 to which of the assumptions (i), (ii), (iii) or (iv) is satisfied), it yields that

755 Mgy (By(p)) > w,p" forallx e M, p > 0.

76 By the generalized Bishop-Gromov theorem on Finsler manifolds and the n-density property
757 we also have the reverse inequality, thus

758 Mgy (By(p)) = w,p" forallx e M, p > 0. (3.9)

759 The latter relation immediately implies that the flag curvature on (M, F) is identically zero,
760 see Ohta [19, Theorem 7.3], and Kristdly and Ohta [12, Theorem 3.3]. Due to Bao et al.
761 [5, Section 10.5]), every Berwald space with zero flag curvature is necessarily a locally
72 Minkowski space. By (3.9) it follows that (M, F) is actually isometric to a Minkowski

763  Space.

764 (V)= A(i)Ai)A(IV). Let us fix an arbitrary norm || - || on R”, and let ® : (M, F) —
75 (R™, || - ||) be an isometry. Then

766 Fe,y)=1ddx(Wll, x e M,y € Tx M,

767 and a simple computation based on the definition of the polar transform (see (3.7)) gives

768 F*(x,@) = |ad®g, I+, x € M,a € T¥M. (3.10)
769 If we consider the change of variables X = ®(x), relations (3.8) and (3.10) imply

770 [Vvlgp (x) = F*(x, Dv(x)) = [(D(v o O HE) s v e C°(M), x e M. (3.11)
771 Thus, for every v € Cgo(M), p € (1,n) and g > 0, we have

1
~ ~ p p
m ||[D(vo d>_1)||LP(R”.d)?) = (/ (Do ‘D_l)(x))llfdx) = (/ (IVvlap (X))PdVF(x))
R" M
773 = [IVvlapllLrm,ave)
774

775 Entg; ([v o @~ !1P) = Entgy, (|v]”) and [[v o |10 = [|v] 1.
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It remains to apply the results of Cordero—Erausquin, Nazaret and Villani [6] and Gentil [9]
(cf. Theorems A, B) foru = vo &~ L. O
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