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Abstract 

The purpose of this article is to give an overview of different molecular techniques which have been used in studies 
concerning population genetic issues of Lepus species and specifically of L. europaeus. The importance of these 
researches is ever-growing as the European populations of the brown hare have suffered several falloffs as a 
consequent upon both natural and anthropogenic effects. With developing tools and techniques molecular genetics 
have become the centrepiece of population genetics and conservation biology. Nucleic acid methods based on both 
bi- and uniparentally inherited DNA (allozymes, microsatellites, Y chromosome, mtDNA) are often used to study 
genetic structure, diversity and phylogeography of different species’ populations due to their effectiveness in 
identifying genetic variability. 
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1. Methods  
 
Allozyme methods 
Developing the method of protein electrophoresis 
have provided a rather large set of marker genes 
thus making possible for researchers to identify 
homo- or heterozygosity at a particular nuclear 
DNA locus. At the beginning of the history of 
allozym surveys they were used to describe 
genetic variations in human and fruit-fly 
populations [1-3]. A considerable amount of these 
genetic variations have been described during 
times hereby there is rich literature available on 
allozyme data concerning for example 
populations' structures or broad scale variations 
across species' ranges [e.g. 4-6]. The method 
clearly has its advantages such as the samples can 
be processed in large quantities and there are 
many statistical procedures available for data 
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assessment so the routine requires less time and 
training as other DNA methods [7].  
On the other hand there are disadvantages of using 
allozyme techniques as well. Endemic species and 
populations which have gone through genetic 
bottlenecks commonly lack polymorphic loci [8]. 
Furthermore it has been described that one can 
find to be monomorphic all or most of the 
allozyme loci even in species with large 
geographic range [9]. Allozymes in addition can 
have different metabolic functions [10, 11] and 
several studies have shown that selection can act 
on allozyme frequencies [12, 13]. Therefore it can 
be determined that noncoding DNA sequences 
may be better genetic markers than gene products 
directly exposed to natural selection.  
Multiple studies have been carried out on Lepus 
europeaus populations of Central and South-
Eastern Europe from Poland to Greece as well as 
Anatolian and British ones [14 – 21] to describe 
genetic diversity within and among them. Along 
with morphological characteristics and 
mitochondrial DNA markers Hartl et al. [16] 
studied allozymes, and this method turned out to 
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be the most informative in that particular case. 
However they found that neither of the methods 
considered separately is representative for overall 
gene pool diversity within populations. They 
found that the average heterozigosity and 
polymorphism was significantly different among 
populations and higher than values reported by 
several other studies of the species (Poland, [15]; 
Austria and Bulgaria, [19]) and those of Lepus 
timidus populations of Europe [22]. They have not 
found correlation between age or gender and 
heterozigosity. Vapa [23] and his colleagues 
surveyed the allozyme variability in brown hare 
populations of the region of Vojvodina (Serbia). 
Genetic variability have been found within the 
range described for other Central European 
populations [14-15, 17] as well as for the 
Bulgarian and the Greek [21] populations. 
 
Microsatellite DNA (SSRs, STRs) 
Microsatellite DNA can effectively be used in 
population genetic studies because of the very 
high amount of alleles (30–50) on single loci [24]. 
These fragments of the DNA are composed of 
tandem-repeat units of a few bases. The number of 
alleles is the consequence of the balance between 
the mutation-driven formation of new alleles and 
the elimination of existing ones by natural 
selection or genetic drift [25]. The high 
heterozigosity of microsatellite alleles suggest a 
considerably high mutation pressure along with a 
low value of fitness differences between the 
alleles [25]. These markers are eligible for 
describe allele frequencies in population genetic 
studies [7]. They show high levels of gene 
diversity therefore are used in phylogeographic 
surveys [26]. Furthermore they are not any less 
easy to use than other PCR – gel electrophoresis 
techniques once the primers are identified. Finding 
the usable primers for new species can be 
expressly time-consuming, however there has 
been described that microsatellite regions are 
often flanked by highly conserved sequences at 
the priming sites [27-29]. This phenomenon 
provides an easement for beginning researches on 
species which have not been previously studied if 
there is information on their close relatives. 
Researches on L. europeaus also have used 
microsatellite makers to describe genetic structure 
[e.g. 30, 31], diversity [e.g. 32, 33] or 
introgression by hibridization among Leporids of 
Europe [e. g. 34, 35]. 

Mitochondrial DNA 
Mitochondrial DNA has often been used in gene 
flow studies over the past few decades. Its 
popularity is resulting from several attributes 
which make it easy to use, such as being strongly 
conserved, having no introns and very few 
duplications as well as short intergenic regions in 
the sequence. It is easy to be amplified due to the 
small size and the abundance in animal tissues of 
the molecule. The strict orthology of encoded 
genes make it a reliable phylogenetic marker [36]. 
Though it has been established that mtDNA is not 
by any means as perfect test subject as it was 
thought to be [37, 38] its usage in molecular 
ecology and conservation genetics has not been 
decreased due to the above-mentioned 
characteristics. The most frequently used 
mitochondrial markers are the control region [32, 
39 – 41] along with the cytB region [41, 42]. 
Although there are exceptions [43, 44] mtDNA is 
typically inherited maternally in eukaryote 
species. Sperm-derived mitochondria do enter the 
oocyte but they degrade by autophagy almost 
immediately after fertilization in Caenorhabditis 
elegans [45], and it is believed that in mammals 
the method of avoiding heteroplasmy caused by 
paternal mtDNA inheritance could be the same 
[46]. Albeit information can be provided only in 
connection with the female germ line it is 
important that the molecule is transmitted 
consistently across generations. This nature of the 
transmission provides an important easement for 
describing the origin and kinship of a biological 
specimen since large amounts of reference 
samples of closely or distantly related individuals 
may be available for comparison [44]. 
Mitochondrial DNA regions show polymorphism 
in different species thus providing a valuable 
method for determining genetic identity or 
diversity among a species' populations [47] 
Based on main morphological parameters there 
are nine subspecies of the Lepus europaeus [48] 
however genetic surveys do not confirm these 
taxonomic results, which probably have originated 
from the well-known intra- and interspecific 
morphological variability of the genus [e.g. 49]. 
MtDNA-based evolutionary hypotheses are 
inconsistent with those deduced from data of 
proteins or morphology hence practically 
representing the nuclear genome [21, 48, 50]. 
Transmission of the two genomes differ 
remarkably [51] This along with the sex specific 
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natal dispersal of these species [52, 53] possibly 
cause the incongruence. 
Researches using only mtDNA markers have 
shown genetic divergence of some degree between 
European brown hare populations. Hartl et al. [16] 
found the haplotype diversity value to be h=0.158 
in Austria and Central-Europe. In Vojvodina 
region of Serbia and Montenegro the research of 
Djan et al. [47] showed an average value of h = 
0.34. Mamuris et al. [54] described a high level of 
haplotype diversity (h=0.853) and a large number 
of haplotypes in South-Eastern-Europe. This is 
expressly higher than the values described in 
Scandinavia (0.38%; [55]) and Italy [1.3%; 56] 
and three times lower than the average in the 
brown hare populations of the Iberian Peninsula 
(6.2%; 57).  
Screening of single nucleotide polymorphisms 
(SNP) makes possible to use low quality template 
DNA in researches by not needing long molecule 
fragments, and could reduce the surveys' costs 
[58]. This can lead to the complete replacement of 
microsatellite techniques [35], thus they have 
recently been used as genetic markers in 
population genetics researches [59]. They can be 
used to identify alleles within the nuclear genome 
or haplotypes in mitochondrial DNA. The method 
is based on detecting polymorphic nucleotide 
positions in particular DNA sequences. Testing 
the scale of polymorphism and the prevalence of 
different alleles or haplotypes requires DNA 
sequence data and a reference population. Every 
position can provide four polymorphisms at the 
maximum (by the four nucleotides). Thulin et al. 
[35] identified single nucleotide polymorphisms in 
Lepus europaeus and L. timidus mtDNA 
researches.  
 
Y chromosome 
As mentioned above most of times mtDNA 
surveys have been used in population genetics and 
conservation biology researches [e.g. 39; 60]. 
Although plenty of very important data have been 
provided by those, one can say, that neither of the 
methods are enough for getting an adequate 
panorama on the subject since no information 
about the male lineage is added to the results [61, 
62]. This cannot be satisfactory in relation to 
species with females characteristically philopatric 
and among them the European brown hare [31, 63, 
64]. This is the reason why researchers tend to use 
biparentally inherited genetic markers such as 

microsatellites [65 - 67]. These methods seem to 
resolve the problem of lacking paternal data but 
the recombining loci and the mostly uncharted 
mutation model [68] present obstacles to the 
comprehensive analysis. Though the stepwise 
mutation model might explain the allele size 
distribution in satellites with short repeat units 
[69]. A viable solution to the problem of getting 
adequately synthetic image on the population 
genetics of species like the Lepus europeaus is 
using mtDNA and Y chromosome markers in 
comparison. 
The Y chromosome in mammalian species is 
inherited strictly paternally, is characterized by a 
slow mutation rate in proportion to the mtDNA 
[70] and is almost entirely, approximately in 95%, 
nonrecombining (NRY). However, it has been 
described that the NRY can form palindromes by 
self-recombination and gene conversion [71, 72] 
at least in primates. This discovery has changed 
the terminology from NRY to MSY (male-specific 
region on Y). Mammalian Y chromosomes have 
lost most of their genes (in humans, more than 
95%; [73]) and for this reason have become far 
smaller than their allosomal counterparts. They are 
believed to evolve by gene loss by certain theories 
[74, 75] and eventually settle in stasis. The 
sexdetermining region of Y (SRY) whose 
expression is the basis of the male sex 
development [76, 77], is the most conspicuous 
locus on the MSY.  It has probably evolved by the 
truncation of the SOX3 gene on X [78]. About 5% 
of the Y chromosome's sequence recombines with 
the X chromosome. These recombining regions 
are termed as pseudo-autosomal due to their 
essentially diploidic nature. They code genes like 
the zink finger protein region (ZFY) or the 
amelogenin gene [79, 80]. Likewise autosomes 
MSY contains microsatellites [81], but there is 
little known regarding their evolution. 
Y connected markers have been used by several 
studies in population genetics with the aim of 
shedding light on issues like male-driven 
evolution [e.g. 82, 83], demographic history of 
certain populations [84, 85] or the origin of male 
lineages [86, 87]. 
Hughes et al. [88, 89] have carried out a research 
to compare the conservation of Y-linked genes in 
humans and chimpanzees which revealed that 
there is excessive divergence between the two 
species' sequence structure. As a result of this 
study the MSY of the chimpanzee is now 
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sequenced as accurately as that of the human. 
However there is relatively few information on the 
Y chromosome of other mammalian species. On 
species of Lagomorpha a few studies have been 
carried out. There have been mapped Y 
chromosomal markers for Lepus europaeus 
including the complete coding sequence of the 
LeSRY locus, microsatellite loci (LeMS-Y) and 
introns of the zinc finger protein (ZFY) [62, 90]. 
Information on the Y chromosome sequence of 
Oryctolagus cuniculus have been published as 
well [91, 92]. 
 
2. Summary 
 
This study have been given forth with the aim of 
making an attempt at providing an overview of 
what we have known of the nucleic acid markers 
used in brown hare (Lepus europaeus Pallas, 
1778) studies concerning distribution, 
phylogeography, population structure and 
taxonomic status to this day. This Leporid is an 
important game species with an extended 
geographic range from Western-Europe to 
Mongolia. Being a species of economic value it 
has been introduced to various countries such as 
Argentina, Australia, Canada and Sweden [49]. 
These circumstances have motivated several 
researchers in carrying out studies on brown hare 
populations all over the European continent. Data 
have been provided on population structure, 
hibridization and introgression among species, 
however there are unclarified questions about the 
taxonomic status or the phylogeography of the 
brown hare. The molecular genetic techniques and 
large amount of markers identified so far could 
lead to a rapid progress in gaining population 
genetic data during conservation biology surveys. 
In studies concerning the populations of L. 
europaeus mtDNA markers have been used most 
frequently [e.g. 16, 56]. There are however 
valuable results of microsatellite and Y 
chromosome [63, 91] studies as well as provided 
by allozyme [e.g. 19, 23] researches. Though all 
of the above mentioned methods are useful and 
necessary they all have their disadvantages. For 
this reason one must consider carefully which 
technique is the best option to answer their 
particular questions having regard to both 
financial and scientific aspects. 
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