
Acta Polytechnica Hungarica Vol. 13, No. 2, 2016 

 – 27 – 

Classification of Electroencephalograph Data:  

A Hubness-aware Approach 

Krisztian Buza, Júlia Koller 

BioIntelligence Lab, Institute of Genomic Medicine and Rare Disorders, 

Semmelweis University, Tömő u. 25-29, H-1083 Budapest, Hungary, 

buza@biointelligence.hu, jkoller@biointelligence.hu 

Abstract: Classification of electroencephalograph (EEG) data is the common denominator 

in various recognition tasks related to EEG signals. Automated recognition systems are 

especially useful in cases when continuous, long-term EEG is recorded and the resulting 

data, due to its huge amount, cannot be analyzed by human experts in depth. EEG-related 

recognition tasks may support medical diagnosis and they are core components of EEG-

controlled devices such as web browsers or spelling devices for paralyzed patients. State-

of-the-art solutions are based on machine learning. In this paper, we show that EEG 

datasets contain hubs, i.e., signals that appear as nearest neighbors of surprisingly many 

signals. This paper is the first to document this observation for EEG datasets. Next, we 

argue that the presence of hubs has to be taken into account for the classification of EEG 

signals, therefore, we adapt hubness-aware classifiers to EEG data. Finally, we present the 

results of our empirical study on a large, publicly available collection of EEG signals and 

show that hubness-aware classifiers outperform the state-of-the-art time-series classifier. 
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1 Introduction 

Ongoing large-scale brain research projects – such as the European Human Brain 

Project, the BRAIN initiative announced by President Obama
1
 and the Hungarian 

National Brain Research Project – are expected to generate an unprecedented 

amount of data describing brain activity. This is likely to lead to an increased need 

for enhancement of statistical analysis techniques, development of new methods 

and computer software that support the analysis of such data. 

One of the most wide-spread devices for monitoring and recording the electrical 

activity of the brain is the electroencephalograph (EEG). EEG is used in clinical 

practice, research and various other domains. Its numerous applications contain 

                                                           
1
 see also https://www.humanbrainproject.eu/ , http://braininitiative.nih.gov/ 
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pre-surgical evaluation [1], diagnostic decision-making [2] and the assessment of 

chronic headaches [3]. EEG "is an important diagnostic tool for patients with 

seizures and other paroxysmal behavioral events" [4], it may provide diagnostic 

information in case of epilepsy [5], Alzheimer's disease [6], [7], schizophrenia [8] 

or after a brain injury [9]. EEG is used in various brain-computer interfaces [10] 

which are core components of EEG-controlled devices, such as spelling tools [11] 

or web browsers [12] for paralyzed patients. EEG was used to study sleepiness in 

long distance truck driving [13] and there were attempts to predict upcoming 

emergency braking based on EEG signals [14]. 

Continuous, long-term EEG monitoring is required in many cases, such as some 

forms of epilepsy [15], [16], coma, cerebral ischemia, assessment of a medication 

[17], sleep disorders and disorders of consciousness [18], psychiatric conditions, 

movement disorders [19], during anesthesia, in intensive care units and neonatal 

intensive care units [20], [17]. In these cases, EEG signals are recorded for hours 

or days. Due to the large amount of captured data, the detailed analysis of the 

entire records is usually not possible by human experts. Therefore, in order to 

allow for real-time diagnosis and thorough analysis of the data, various techniques 

were developed to assist medical doctors and other employees of hospitals and to 

allow for the (semi-)automated analysis of EEG signals. 

A common feature of the aforementioned diagnostic problems and EEG-based 

tools (such as EEG-controlled web browsers or spelling tools) is that they involve 

recognition tasks related to EEG signals. As EEG signals can be considered as 

multivariate time-series, these recognition tasks can be formulated as multivariate 

time-series classification problems, for which state-of-the-art solutions are based 

on machine learning. For example, Boostani et al. used Boosted Direct Linear 

Discriminant Analysis for the diagnosis of schizophrenia [21], Sabeti et al. 

selected best channels based on mutual information and utilized genetic 

programming in order to select best features [22], while Srinivasan et al. used 

neural networks for EEG classification [23]. Sun et al. studied ensemble methods 

[24]. For an excellent survey about EEG-related analysis tasks we refer to [25]. 

Nearest-neighbor classifiers using dynamic time warping (DTW) as distance 

measure have been shown to be competitive, if not superior, to many state-of-the-

art time-series classification methods such as neural networks or hidden Markov 

models, see, e.g. [26]. The experimental evidence is underlined by theoretical 

results about error bounds for the nearest neighbor classifiers. While classic 

works, such as [27], considered vector data, in their recent work, Chen et al. [28] 

focused on the nearest neighbor classification of time series and proved error 

bounds for nearest neighbor-like time-series classifiers. Besides their accuracy, 

nearest neighbor classifiers deliver human-understandable explanations for their 

classification decisions in the form of sets of similar instances which makes them 

preferable to medical applications. As nearest neighbor classifiers are attractive 

both from the theoretical and practical points of view, considerable research was 

performed to enhance nearest neighbor classification. Some of the most promising 
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recent methods were based on the observation that a few time-series tend to be 

nearest neighbors of surprisingly large amount of other time-series [62]. We refer 

to this phenomenon as the presence of hubs or hubness for short, and the 

classifiers that take this phenomenon into account are called hubness-aware 

classifiers. Hubness-aware classifiers were originally proposed for vector data and 

image data [29], [30], [31], and only few works considered hubness-aware 

classification of time series [32], [33], [34], but none of them considered hubness-

aware classifiers for EEG data. 

In this paper, we focus on hubness-aware classification of EEG signals. As we 

will show, hubness-aware classifiers lead to statistically significant improvements 

over the state-of-the-art in terms of accuracy, precision, recall and F-score. 

The paper is organized as follows. In Section 2 we introduce basic concepts and 

notations, while Section 3 is devoted to the presence of hubs in EEG data and 

hubness-aware classifiers. In Section 4 we present the results of our experiments. 

Finally, we conclude in Section 5. 

2 Basic Concepts and Notations 

We use D to denote the set of EEG signals used to construct the recognition 

model, called classifier. D is called training data and each signal in D is 

associated with a class label. For example, in the simplest case of diagnosing 

epilepsy, there are two classes of signals, one of them contains the EEG signals of 

healthy individuals, while the second class contains the EEG signals of epileptic 

patients. The class label of each signal denotes to which class that signal belongs, 

i.e., in the previous example, the class label of a particular signal denotes whether 

this signal originates from a healthy or epileptic individual. The class labels of the 

training data are known while constructing the classifier. The process of 

constructing the classifier is called training. Once the classifier is trained, it can be 

applied to new signals, i.e., the classifier can be used to predict the class labels of 

new signals. In order to evaluate our classifier we will use a second set of EEG 

signals D
test

, called test data. D
test

 is disjoint from D and the class labels of the 

signals in D
test

 are unknown to the classifier. We only use the class labels of the 

signals in D
test

 to quantitatively assess the performance of the classifier (by 

comparing the predicted and true class labels and calculating statistics regarding 

the performance). 
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3 Hubness-aware Classification of EEG Data 

3.1 Hubs in EEG Data 

The presence of hubs, i.e., the presence of a few instances (objects, signals) that 

occur surprisingly frequently as neighbors (peers) of other instances, while many 

instances (almost) never occur as neighbors, has been observed for various natural 

and artificial networks, such as protein-protein-interaction (PPI) networks or the 

internet [40], [41], [42], [43], [44]. Hubs were shown to be relevant in various 

contexts, including text mining [45], [46], music retrieval and recommendation 

[47], [48], [49], [50], image data [51], [52] and time series [34], [53]. 

In this study, we focus on EEG signals, and we will describe our novel 

observation that nearest neighbor graphs built from EEG signals contain hubs. 

In context of EEG classification, informally, the hubness phenomenon means that 

some (relatively few) EEG signals appear as nearest neighbors of many EEG 

signals. Note that, throughout this paper, an EEG signal is never treated as the 

nearest neighbor of itself. Intuitively speaking, very frequent neighbors, or hubs, 

dominate the neighbor sets and therefore, in the context of similarity-based 

learning, they represent the centers of influence within the data. In contrast to 

hubs, there are signals that occur rarely as neighbors and therefore they contribute 

little to the analytic process. We will refer to them as orphans or anti-hubs. 

In order to express hubness more precisely, for an EEG dataset D one can define 

the k-occurrence of a signal t from D, denoted by Nk(t), as the number of signals 

in D having t among their k-nearest neighbors: 

 (1) 

where k(ti) denotes the set of k-nearest neighbors of ti. With the term hubness 

we refer to the phenomenon that the distribution of Nk(t) becomes significantly 

skewed to the right. We can measure this skewness with the third standardized 

moment of Nk(t): 

 (2) 

where   and  are the mean and standard deviation of the distribution of  

Nk(t) and the notation E stands for the expected value of the quantity between the 

brackets. When the skewness is higher than zero, the corresponding distribution is 

skewed to the right and starts presenting a long tail. It should be noted, though, 

that the occurrence distribution skewness is only one of indicator statistics and 

that the distributions with same or similar skewness can still take different shapes. 
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In the presence of class labels, we distinguish between good hubness and bad 

hubness: we say that an EEG signal t' is a good k-nearest neighbor of the signal t, 

if (i) t' is one of the k-nearest neighbors of t, and (ii) both have the same class 

labels. Similarly: we say that the signal t' is a bad k-nearest neighbor of the signal 

t, if (i) t' is one of the k-nearest neighbors of t, and (ii) they have different class 

labels. This allows us to define good (bad) k-occurrence of a signal t, GNk(t) (and 

BNk(t) respectively), which is the number of other signals that have t as one of 

their good (bad respectively) k-nearest neighbors. For EEG signals, both 

distributions of GNk(t) and BNk(t) are skewed, as it is exemplified in Fig. 1, which 

depicts the distributions of GN1(t), BN1(t) and N1(t) for a publicly available EEG 

dataset from the UCI Machine Learning repository. We describe this dataset in 

more detail in Section 4. As shown, the distributions have long tails. 

 

Figure 1 

Distribution of GN1(t), BN1(t) and N1(t) for the EEG dataset from the UCI Machine Learning 

repository. Note that the scale is logarithmic on the vertical axis. 

We say that a signal t is a good (or bad) hub, if GNk(t) (or BNk(t) respectively) is 

exceptionally large for t. For the nearest neighbor classification of time series, 

such as EEG signals, the skewness of good occurrence is of major importance, 

because some few time series are responsible for large portion of the overall error: 

bad hubs tend to misclassify a surprisingly large number of time series [34]. 

Therefore, one has to take into account the presence of good and bad hubs in EEG 

datasets. 

In the light of the previous discussion, the total occurrence count Nk(t) of an EEG 

signal t can be decomposed into good and bad occurrence counts: Nk(t) = GNk(t) + 

BNk(t). More generally, we can decompose the total occurrence count into the 

class-conditional counts: 

, (3) 

where  denotes the set of all the classes and  denotes how many times t 

occurs as one of the k-nearest neighbors of signals belonging to class C, i.e., 

, (4) 

where yi denotes the class label of ti. 
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3.2 Hubness-aware Classifiers 

In this section, we give a detailed description of classifiers that work under the 

assumption of hubness. In our experiments in Section 4, we will examine how 

these algorithms perform on EEG signals. The algorithms are general, in the sort 

of sense that they can be applied to any kind of data, provided that an appropriate 

distance measure between the instances of the dataset is available. In case of EEG-

data, we use multivariate DTW as distance measure as described in [36]. As in our 

case instances are EEG-signals, we will mostly use the term EEG-signal instead of 

instance while describing hubness-aware classifiers. 

In order to predict how hubs will affect classification of non-labeled signals (e.g. 

signals arising from observations in the future), we can model the influence of 

hubs by considering the training data. The training data can be utilized to learn a 

neighbor occurrence model that can be used to estimate the probability of 

individual neighbor occurrences for each class. There are many ways to exploit 

the information contained in the occurrence models. Next, we will review the 

most prominent approaches. While describing these approaches, we will consider 

the case of classifying the signal t*. We will denote its unknown class label as y* 

and its nearest neighbors as ti, where i is an integer number in the range from 1 to 

k. We assume that the test data is not available when building the model, and 

therefore Nk(t),  Nk,C(t), GNk(t) and BNk(t) are calculated on the training data. 

3.2.1 hw-kNN: Hubness-aware Weighting 

The weighting scheme proposed by Radovanović et al. [54] is one of the simplest 

ways to reduce the influence of bad hubs. In this approach, lower voting weights 

are assigned to bad hubs in the nearest neighbor classifier. In hw-kNN, the vote of 

each neighbor ti is weighted by , where 

 (5) 

is the standardized bad hubness score of the neighbor signal ti in k(t*), while 

 and 
 
are the mean and standard deviation of BNk(t). 

In hw-kNN all neighbors vote by their own label. As this may be disadvantageous 

in some cases [51], in the algorithms considered below, the neighbors do not 

always vote by their own labels, which is a major difference to hw-kNN. 

3.2.2 h-FNN: Hubness-based Fuzzy Nearest Neighbors 

Consider the relative class hubness uC(ti) of each nearest neighbor ti: 

 (6) 
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where C denotes one of the classes. The above uC(ti) can be interpreted as the 

fuzziness of the event that ti occurred as one of the neighbors. Integrating 

fuzziness as a measure of uncertainty is usual in k-nearest neighbor methods and 

h-FNN [30] uses the relative class hubness when assigning class-conditional vote 

weights. The approach is based on the fuzzy k-nearest neighbor voting framework 

[55]. Therefore, the probability of each class C for the signal t* is estimated as: 

. (7) 

Special care has to be devoted to anti-hubs. Their occurrence fuzziness is 

estimated as the average fuzziness of points from the same class. Optional 

distance-based vote weighting is possible. 

3.2.3 NHBNN: Naive Hubness Bayesian k-Nearest Neighbor 

For each class C, Naive Hubness Bayesian k-Nearest Neighbor (NHBNN) 

estimates P(y* = C | k(t*)), i.e., the probability that t* belongs to class C given 

its nearest neighbors. Then, NHBNN selects the class with highest probability. 

NHBNN follows a Bayesian approach to assess P(y* = C | k(t*)). For each 

training EEG signal t of the training dataset, one can estimate the probability of 

the event that t appears as one of the k-nearest neighbors of any training instance 

belonging to class C. This probability is denoted by . 

Assuming conditional independence between the nearest neighbors given the 

class, P(y* = C | k(t*)) can be assessed as follows: 

 (8) 

where P(C) denotes the prior probability of the event that an instance belongs to 

class C. From the labeled training data, P(C) can be estimated as |DC|/|D|, where 

|DC| denotes the number of EEG signals instances belonging to class C in the 

training data, and |D| is the total number of EEG signals in the training data. The 

maximum likelihood estimate of   is the fraction 

 (9) 

Estimating  according to Eq. (9) may simply lead to zero 

probabilities. In order to avoid it, we can use a simple Laplace-estimate for  

 as follows: 

 (10) 
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where m > 0 and q denotes the number of classes. Informally, this estimate can be 

interpreted as follows: we consider m additional pseudo-instances from each class 

and we assume that ti appears as one of the k-nearest neighbors of the pseudo-

instances from class C. We use m=1 in our experiments. 

Even though k-occurrences are highly correlated, as shown in [61], NHBNN 

offers improvement over the basic k-NN. This is in accordance with other results 

from the literature that state that Naive Bayes can deliver good results even in 

cases with high independence assumption violation [56]. 

3.2.4 HIKNN: Hubness Information k-Nearest Neighbor 

In h-FNN, as in most kNN classifiers, all neighbors are treated as equally 

important. The difference is sometimes made by introducing the dependency on 

the distance to t*, the signal to be classified. However, it is also possible to deduce 

some sort of global neighbor relevance, based on the occurrence model, which is 

the basic idea behind HIKNN [29]. It embodies an information-theoretic 

interpretation of the neighbor occurrence events. In that context, rare occurrences 

have higher self-information, see Equation (11). The more frequently an EEG 

signal t occurs as nearest neighbor of other EEG signals, the less surprising is the 

occurrence of t as one of the nearest neighbors while classifying a new signal. 

The EEG signals that rarely occur as neighbors are, therefore, more informative 

and they are favored by HIKNN. The reasons for this lies hidden in the geometry 

of high-dimensional feature spaces. Namely, hubs have been shown to lie closer to 

the cluster centers [57], as most high-dimensional data lies approximately on 

hyper-spheres. Therefore, hubs are points that are somewhat less 'local'. Therefore, 

favoring the rarely occurring points helps in consolidating the neighbor set 

locality. The algorithm itself is a bit more complex, as it not only reduces the vote 

weights based on the occurrence frequencies, but also modifies the fuzzy vote 

itself so that the rarely occurring points vote mostly by their labels and the hub 

points vote mostly by their occurrence profiles. Next, we will present the approach 

in more detail. 

The self-information  associated with the event that ti occurs as one of the 

nearest neighbors of an EEG signal to be classified can be calculated as 

 (11) 

Occurrence self-information is used to define the relative and absolute relevance 

factors in the following way: 

 (12) 
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The final fuzzy vote of a neighbor ti combines the information contained in its 

label with the information contained in its occurrence profile. The relative 

relevance factor is used for weighting the two information sources. This is shown 

in Eq. (13). 

. (13) 

Hubness-aware classifiers are illustrated by an elaborated example in [61]. 

3.2.5 On the Computational Aspects of the Implementation of Hubness-

aware Classifiers 

When classifying EEG signals, i.e., multivariate time series, with hubness-aware 

classifiers, the computationally most expensive step is the computation of the 

nearest neighbors of training instances, which is used to determine hubness-scores 

such as Nk(t), Nk,C(t), GNk(t) and BNk(t). On the one hand, approaches known to 

speed-up nearest neighbor classification of time series can be used to reduce the 

computational costs of hubness-aware classifiers. Such techniques include: 

speeding-up the calculation of the distance of two time series (by, e.g. limiting the 

warping window size), indexing and reducing the length of the time series used. 

For more details we refer to [32] and the references therein. On the other hand, we 

note that distances between different pairs of training instances can be calculated 

independently, therefore, computations can be parallelized and implemented on a 

distributed supercomputer (cloud). 

4 Experimental Evaluation 

In this section, first, we describe the data we used in our experiments. Next, we 

provide details of the experimental settings. Subsequently, we present our 

experimental results. 

4.1 Data 

In order to evaluate our approach, we used the publicly available EEG dataset
2
 

from the UCI machine learning repository. This collection contains in total 11028 

EEG signals recorded from 122 people. Out of the 122 people, 77 were alcoholic 

patients and 45 were healthy individuals. Each signal was recorded using 64 

electrodes at 256 Hz for 1 second. Therefore, each EEG signal is a 64 dimensional 

                                                           
2
 http://archive.ics.uci.edu/ml/datasets/EEG+Database 
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time series of length 256 in this collection. In order to filter noise, as a simple 

preprocessing step, we reduced the length of the signals from 256 to 64 by binning 

with a window size of 4, i.e., we averaged consecutive values of the signal in non-

overlapping windows of length 4. 

As noted before, the examined EEG dataset exhibits remarkable hubness, as the 

neighbor occurrence frequency is significantly skewed. For instance, if we set 

k=1, there exists a hub signal that acts as a nearest neighbor of 113 other signals 

from the data. For k = 10, the top neighbor occurrence frequency peaks at 707. 

This illustrates the significance of hub signals in practice. They influence many 

classification decisions. 

As shown in Figure 2, the distribution of such hub signals, as well as detrimental 

(bad) hubs and anti-hubs differ between the two classes of the EEG dataset and do 

not follow the prior class distribution. In particular, most hub signals emerge 

among the Alcoholic class, while most anti-hubs appear among the signals from 

the Healthy class. Many anti-hubs are in fact known to be outliers and points that 

lie in borderline regions, far away from local cluster means – and they are, 

therefore, more difficult to handle and properly associate with a particular class in 

a prospective study. This suggests that the two classes might not be equally 

difficult for k-NN classification. 

 

Figure 2 

Distribution of hub signals, bad hubs and anti-hubs in the Healthy and Alcoholic class 

4.2 Experimental Settings 

In our experiments we examined the performance of hubness-aware classifiers. 

We compared these algorithms to k-NN. Both in case of k-NN and the hubness-

aware classifiers, we used multivariate DTW as distance measure as described in 

[36]. We set k = 10 for the hubness-aware classifiers. This value was chosen, 

since most hubness-aware methods are known to perform better in cases when k is 

somewhat larger than 1, because more reliable neighbor occurrence models can be 

inferred from more occurrence information, see also [29]. In case of the baseline, 

k-NN, we experimented with both k = 1 and k = 10. 
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Based on the EEG signals, we aimed to recognize whether a person is affected by 

alcoholism or not. In other words: the class label of an EEG-signal reflects 

whether this signal originates from an alcoholic patient or a healthy individual. 

Both for hubness-aware classifiers and the baseline, we make use of the 

information that we know which signals originate from the same person: we 

classify a person as healthy (or alcoholic, respectively) if majority of the signals 

originating from that person were classified as healthy (alcoholic, respectively). 

In all the experiments, we used the 10x10-fold crossvalidation protocol to evaluate 

hubness aware classifiers and the baseline. With 10-fold crossvalidation we mean 

that we partition the entire dataset into 10 disjoint random splits and we use 9 out 

of these splits as train data, while the remaining split is used as test data. We 

repeat the experiment 10 times, in each round we use a different split as test data. 

With 10x10-fold crossvalidation we mean that we repeat the above 10-fold 

crossvalidation procedure 10 times, each time beginning with a different random 

partitioning of the data. While partitioning the data, we pay attention that all the 

signals belonging to the same person are assigned to the same split, and therefore 

each person either appears in the training data or in the test data, but not in both. 

On the one hand, this allows to simulate the real-world scenario in which the 

recognition system is applied to new users; on the other hand, EEG signals are 

somewhat characteristic to individuals, see e.g. person identification systems 

using EEG [58], therefore, if the same person would appear in both the train and 

test data, this could lead to overoptimistic results. 

4.3 Performance Metrics 

As primary performance measure we used accuracy, i.e., the number of correctly 

classified persons divided by the number of all the persons in the dataset. We 

performed t-test at significance level of 0.05 in order to decide whether the 

differences are statistically significant. 

Additionally, we measured precision, recall and F-score for the class of alcoholic 

patients. Precision and recall regarding class C are defined as Prec(C) = TP(C) / 

(TP(C) + FP(C)) and Recall(C) = TP(C) / (TP(C) + FN(C)) respectively, where 

TP(C) denotes the true positive signals, i.e., signals that are classified as belonging 

to class C and they really belong to this class; FP(C) denotes false positive 

signals, i.e., signals that are classified as belonging to class C, but they belong to 

some other class in reality; and FN(C) denotes false negative, i.e., signals that are 

not classified as belonging to class C, but they belong to class C in reality. F-score 

is the harmonic mean of precision and recall: F(C) = 2 Prec(C) Recall(C) / 

(Prec(C) + Recall(C)). 
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4.4 Results 

The results of our experiments are summarized in Tab. 1 and Tab. 2. Tab. 1 shows 

accuracy of the examined methods averaged over 10x10 folds, while Tab. 2 shows 

precision, recall and F-score for the identification of alcoholic patients. This 

experiment simulates the medically relevant application scenario in which EEG is 

used to diagnose a disease. In both tables, we provide standard deviations after the 

± sign. Additionally, in the last two columns of Tab. 1 we provide the results of 

statistical significance tests (t-test at significance level of 0.05) in the form of a 

symbol ± where + denotes significance, and – its absence when comparing to 1-

NN and 10-NN respectively. In both tables, we underlined those hubness-aware 

classifiers that outperformed both baselines (in terms of accuracy and F-score). 

Table 1 

Accuracy ± standard deviation of hubness-aware classifiers and the baselines 

Method Accuracy  Significant difference compared to 

  1-NN 10-NN 

1-NN 0.650 ± 0.055   

10-NN 0.662 ± 0.053   

h-FNN 0.690 ± 0.060  + + 

NHBNN 0.780 ± 0.112  + + 

HIKNN 0.663 ± 0.050   + – 

hw-kNN 0.660 ± 0.050  + – 

Table 2 

Precision, recall and F-score ± its standard for the class of alcoholic patients 

Method Precision Recall F-score 

1-NN 0.65 ± 0.04 0.99 ± 0.04 0.78 ± 0.03 

10-NN 0.65 ± 0.04 1.00 ± 0.00 0.79 ± 0.03 

h-FNN 0.67 ± 0.05 1.00 ± 0.00 0.80 ± 0.03 

NHBNN 0.81 ± 0.10 0.87 ± 0.11 0.83 ± 0.09 

HIKNN 0.65 ± 0.04 1.00 ± 0.00 0.79 ± 0.03 

hw-kNN 0.65 ± 0.04 1.00 ± 0.00 0.79 ± 0.03 

4.5 Discussion 

Hubness-aware classifiers yield significant overall improvements over k-NN. 

However, some hubness-aware methods perform better than others. 

In particular, all of the hubness-aware classifiers significantly outperformed 1-NN 

in terms of classification accuracy, whereas two hubness-aware classifiers, namely 

h-FNN and NHBNN, outperformed 10-NN significantly. Although in terms of 

accuracy, HIKNN appears to have outperformed 10-NN on average, the difference 
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is not significant statistically. The simple weighting approach (hw-kNN) did not 

outperform 10-NN of the examined task of EEG signal classification. The highest 

improvements in accuracy were achieved by NHBNN, which seems to be very 

promising for this task. 

In medical applications, as we have to deal with class-imbalanced data in many 

cases, precision and recall are often more important than accuracy. Therefore, in 

order to further assess the performance of hubness-aware classifiers, we measured 

their precision, recall and F-score on the class of alcoholic patients. We observed 

similar trends as in case of accuracy: the performance of the simple hw-kNN was 

comparable to the baselines, while NHBNN, h-FNN and HIKNN showed clear 

advantages. Again, NHBNN showed the best overall performance: NHBNN 

achieved the highest F-score as the relatively low recall of NHBNN was 

compensated by precision. 

In order to interpret these improvements, we have analyzed how different signal 

types were handled by the tested classifiers. According to [59], we distinguish 

between four different types of signals: safe signals, that lie in class interiors and 

have all or most of their neighbors belong to the same class, borderline signals, 

that lie in borderline regions between different classes, rare signals that are 

somewhat unusual and distant from the class prototypes and outliers. Apart from 

safe signals, all other signal types are difficult to properly classify. 

Figure 3 shows that the two classes in this EEG dataset are formed of different 

signal type distributions. Most signals of healthy individuals seem to be either 

borderline, rare or outliers. On the other hand, most signals of alcoholic patients 

seem to be safe in terms of k-NN classification. This indicates that there is 

probably a common pattern to most alcoholic EEG signals, while the healthy 

group might be less coherent and comprise different subgroups. 

 

Figure 3 

Distribution of different signal types in the Healthy and Alcoholic classes. The two classes have 

different signal type distributions: compared to the Healthy class, the Alcoholic class seems to be 

composed of more compact clusters, where most signals lie in class/cluster interiors. 
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The examined hubness-aware classifiers that improve over 10-NN achieve their 

improvement by increasing precision of classification for difficult signal types, 

i.e., borderline, rare and outlier signals, see Fig. 4. This is in concordance with 

prior observations in other class-imbalanced classification studies [60]. 

Finally, in order to clarify why hubness-aware classifiers might be well suited for 

EEG signal classification, we briefly discuss the merits of using neighbor 

occurrence models on this EEG dataset. Namely, unlike the baseline k-NN, 

hubness-aware classifiers are based on building neighbor occurrence models that 

learn from prior occurrences on the training set. Predicting the occurrence profiles 

of individual points requires us to consider reverse neighbor sets, in contrast to the 

direct k-NN sets in the k-NN baseline. With reverse neighbors of a signal x, we 

mean the set of signals that have x as one of their k-nearest neighbors. As Fig. 5 

suggests, the average entropy of the reverse neighbor sets in the EEG dataset is 

lower that the entropy of the direct k-NN sets. This means that less uncertainty is 

present on average in the reverse neighbor sets. 

 

Figure 4 

Precision of hubness-aware classifiers and k-NN on different signal types. Performance decomposition 

indicates clear improvements in case of the difficult signal types (borderline and rare signals, outliers). 

 

Figure 5 

Average entropy (vertical axis) of k-nearest neighbor sets and reverse k-neighbor sets for various 

neighborhood sizes (horizontal axis). The lower uncertainty of reverse neighbor sets may explain why 

hubness-aware classifiers outperform k-NN. 
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Conclusions and Outlook 

Classification is a common denominator across biomedical recognition tasks. We 

examined the effectiveness of hubness-aware classifiers in case of EEG signals. 

Hubness-aware classification methods have recently been proposed for classifying 

complex and intrinsically high-dimensional datasets, under the assumption of 

hubness, which is the skewness of the neighbor occurrence distribution and 

characterizes many high-dimensional datasets. We have demonstrated that EEG 

data indeed exhibits significant hubness and that some recently proposed hubness-

aware classification methods can be successfully used for signal class recognition. 

These recent advances had not been applied to EEG data before and this study 

attempts to evaluate their usefulness in this context, as well as familiarize domain 

experts with the potential that these methods seem to hold for these data types. 

We have experimentally compared several recently proposed hubness-aware 

classifiers on a large, publicly available EEG dataset. Our experiments 

demonstrate significant improvements over the baseline. Naive Hubness-Bayesian 

k-Neareset Neighbor classifier (NHBNN) showed very promising performance. 

As future work, we will consider different possibilities for boosting hubness-

aware methods or combining them into classification ensembles. 
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