
Noname manuscript No.
(will be inserted by the editor)

On the Core and Nucleolus of Directed Acyclic
Graph Games

Balázs Sziklai · Tamás Fleiner · Tamás
Solymosi

Received: date / Accepted: date

Abstract We introduce directed acyclic graph (DAG) games, a generalization
of standard tree games, to study cost sharing on networks. This structure has
not been previously analyzed from a cooperative game theoretic perspective.
Every monotonic and subadditive cost game – including monotonic minimum
cost spanning tree games – can be modeled as a DAG-game. We provide an ef-
ficiently verifiable condition satisfied by a large class of directed acyclic graphs
that is sufficient for the balancedness of the associated DAG-game. We intro-
duce a network canonization process and prove various structural results for
the core of canonized DAG-games. In particular, we characterize classes of
coalitions that have a constant payoff in the core. In addition, we identify a
subset of the coalitions that is sufficient to determine the core. This result also
guarantees that the nucleolus can be found in polynomial time for a large class
of DAG-games.

Keywords Cooperative game theory · Core · Nucleolus · Directed acyclic
graphs · Dually essential coalitions

B. Sziklai
Momentum Game Theory Research Group, Centre for Economic and Regional Studies, Hun-
garian Academy of Sciences and Corvinus University of Budapest, Department of Operations
Research and Actuarial Sciences
E-mail: sziklai.balazs@krtk.mta.hu

T. Fleiner
Budapest University of Technology and Economics, Department of Computer Science and
Information Theory
E-mail: fleiner@cs.bme.hu

T. Solymosi
Corvinus University of Budapest, Department of Operations Research and Actuarial Sci-
ences, and MTA-BCE Momentum Research Group on Strategic Interactions
E-mail: tamas.solymosi@uni-corvinus.hu

2 Balázs Sziklai et al.

1 Introduction

We model cost sharing on directed acyclic graphs (DAG) via a cooperative
transferable utility game. We are interested in stable cost divisions. In partic-
ular, we focus on the computability of the core and a special core selection –
the nucleolus.

Formally, we have a graph where nodes represent the residences of the
players. There is a many-to-one correspondence between the players and the
node set. Edges are directed toward a root and carry a non-negative construc-
tion cost. The aim of the players is to construct a cheapest directed subgraph
that connects them to the root. The nodes are considered public, that is, any
player can use any node to connect himself into the network. The possible
ways of cooperation and the underlying bargaining process is captured by a
transferable utility game.

A typical economic situation that can be modeled with DAG-games is the
cost allocation of infrastructural projects. Consider for instance a group of
towns that would like to connect themselves to a water reserve. Clearly, not
every town has to build a direct pipeline to the source. A possible solution is
to connect the nearest towns with each other and then one of the towns with
the reserve. The towns that are already connected to the water system can
force the rest to pay some of their construction cost, otherwise they can close
down the outgoing water flow. On the other hand, no town can be forced to
pay more than the cost of directly connecting itself to the water reserve.

This example can be retold in a minimum cost spanning tree (MCST)
setting as well. However, if the reserve is on a hill or a mountain (which is quite
possible) and the towns that have to be serviced are at different elevations
then the DAG-framework can be more convincing. Especially, if we assume
that pumping the water uphill is too costly for the towns.

There are many variants of this problem depending on the underlying graph
structure (single path (Potters and Sudhölter, 1999), tree (Megiddo, 1978;
Bjørndal et al, 2004; Maschler et al, 2010), complete graph (Bird, 1976; Granot
and Huberman, 1981, 1984), etc.), on whether the nodes carry cost (or a
reward) or not (Granot and Maschler, 1998; van den Nouweland et al, 1993),
and on whether there are one or more sources (Rosenthal, 1987; Granot and
Granot, 1992; Kuipers, 1997). Sziklai et al (2014) offers a detailed literature
overview.

1.1 Significance of DAG-games

Standard tree and minimum cost spanning tree games as well as various other
tree enterprises were proposed to analyze the same economic situation: How
to share the incurring costs among costumers who would like to gain access to
some public service or public facility and who are located in a predetermined
spatial structure. Such situations arise frequently in the real world: Farmers
share the maintenance costs of an irrigation system, workers share the cost of

On the Core and Nucleolus of Directed Acyclic Graph Games 3

carpooling, and basically the cost sharing of any infrastructural projects that
connects the users to a common source (electric power generators, water supply
sources, sewage cleaning facilities, etc.) belongs to this family of problems.

Analyzing cost sharing situations on directed networks, where no cycle is
allowed is seemingly a restriction compared to the undirected case. Surprisingly
it is the other way around. In fact, every monotonic, subadditive cots game can
be written as a DAG-game (Theorem 2). The corresponding mapping, how-
ever, can result in an exponentially large representation. DAG-games include
among others: airport games, standard tree games and monotonic MCST-
games (mMCST). In addition multiple source fixed tree games can also be
converted into DAG instances by contracting the sources into a single node.
Such conversions can have various benefits. In DAG-games the players are hi-
erarchically structured which in some cases allows us to compute the nucleolus
of the game in polynomial time or describe the core efficiently (Theorem 6). In
comparison, finding the nucleolus of a (non-monotonic) MCST game is NP-
hard in general (Faigle et al, 1998)1. We will further discuss the significance
of DAG-games in Section 4.

1.2 Our contribution

The core and special members of the core, such as the nucleolus are among
the most popular solution concepts in cooperative game theory. Unfortunately,
they suffer from high computational complexity. The core is described by ex-
ponentially many inequalities, and hard to test its membership (Faigle et al,
1997). Similarly, both the computation and verification of the nucleolus it is
NP-hard in the number of players (Deng et al, 2009). Consequently, there is
a vast literature concerned with finding appropriate classes of games where
these solutions can be determined efficiently.

DAG-games model several natural settings, thus, proving results for this
game class has wide implications. The following points summarize our findings:

– We introduce a network canonization process which, if successfully carried
out, admits a payoff allocation in the core. The condition related to this
process is seemingly non-restrictive. Certainly, many naturally occurring
networks do fall into this category.

– We identify ’free riders’ i.e. players that do not pay anything in any core
allocation. Players are basically free riders if there leads two paths from
their residence to the root, such that these paths are disjoint (except maybe
for some zero cost edges) and use only the cheapest edges leaving any node.

– We characterize coalitions that have constant zero excess in the core. This
result sheds light on why the residences of the free riders can be contracted
with the root without altering the core of the game.

1 The proof of Faigle et al (1998) uses reduction to the minimum cover problem and
relies heavily on the undirectedness of the edges of the graph. Thus, it does not necessarily
indicate that the same difficulties exists in DAG-games. The difference between monotonic
and ordinary MCST games can also be of importance here.

4 Balázs Sziklai et al.

– We identify a characterization set: a set of coalitions whose excess deter-
mines the core and pinpoints the nucleolus. These so-called dually essential
coalitions have nice graph structure. Any member of this family connects
to the root via a trunk which has exactly one missing branch.

– We provide a simple condition which ensures that the core and the nucle-
olus of a fairly large class of DAG-games can be computed in polynomial
time.

The first three structural results help us understand what happens in the
core, and how to find a core member. The last two have more direct conse-
quences and they can be applied as is in cost sharing problems.

Let us note that DAG-games and mMCST-games share a common diffi-
culty: The computation of the cost of a coalition (i.e. finding the cheapest
subnetwork that connects all players in the coalition to the root) is an NP-
hard problem. In the case of DAG games it amounts to solving the so-called
acyclic directed Steiner tree problem – also known as the Steiner arborescence
problem (Hwang et al, 1992). The computation of the entire cost function
for all coalitions, therefore, could be prohibitive in practice (for alternative
approaches see e.g. (Skorin-Kapov and Skorin-Kapov, 2012)). Unlike for mM-
CST (and standard tree) games, the core of the cost game associated to our
standard DAG-network might be empty, so a stable solution of the cost allo-
cation problem might not exist. In light of these difficulties the positive results
of this paper are even more appealing.

2 Game theoretic framework

A cooperative cost game is an ordered pair (N, c) consisting of the player set
N = {1, 2, . . . , n} and a cost function c : 2N → R+ ∪ {0} with c(∅) = 0. The
value c(S) represents how much cost coalition S must bear if it chooses to act
separately from the rest of the players. We will denote a specific cost game by
Γ . In most cases c is monotonic and subadditive. That is, the more people use
the service the more it costs, however there is also an increase of efficiency.
Formally, a cost game (N, c) is called monotonic if (S, T ⊆ N,S ⊂ T) ⇒
c(S) ≤ c(T), subadditive if, (S, T ⊂ N, S∩T = ∅) ⇒ c(S)+ c(T) ≥ c(S∪T),
and concave if its characteristic function is submodular, i.e. if for all S, T ⊆ N ,
c(S) + c(T) ≥ c(S ∪ T) + c(S ∩ T) holds.

A solution for a cost game is a vector x ∈ RN . For ease of presentation, we
introduce the following notation x(S) =

∑
i∈S xi for any S ⊆ N . A solution

is called efficient if x(N) = c(N) and individually rational if xi ≤ c(i) for
all i ∈ N . The imputation set I(Γ) of game Γ consists of the efficient and
individually rational solutions.

An efficient payoff vector is also called an allocation. Given an allocation
x ∈ RN , we define the excess of a coalition S as

exc(S, x) := c(S)− x(S).

On the Core and Nucleolus of Directed Acyclic Graph Games 5

The excess value exc(S, x) measures the contentment of coalition S under
allocation x. The core C(Γ) of cost game Γ is the set of allocations where all
excesses are non-negative. Formally,

C(Γ) = {x ∈ RN | x(N) = c(N), x(S) ≤ c(S) for all S ⊂ N}.

A game is called balanced if its core in non-empty.
We say that a vector x ∈ Rm lexicographically precedes y ∈ Rm (denoted

by x � y) if either x = y or there exists a number 1 ≤ j ≤ m such that xi = yi
if i < j and xj < yj . Let Γ = (N, c) be a cost game and let θ(x) ∈ R2n−2 be
the excess vector that contains all the excess values (except for the excesses of
the grand coalition and the empty set) in a non-decreasing order.

Definition 1 The nucleolus of a cooperative game Γ is the subset of the
payoff vectors x ∈ I(Γ) that lexicographically maximize θ(x). Formally,

N(Γ) = {x ∈ I(Γ) | θ(y) � θ(x) ∀y ∈ I(Γ)}.

Schmeidler (1969) proved that N(Γ) consists of a single point, and that
it is a continuous function of the characteristic function. Although formally a
set, we will consider N(Γ) as an allocation vector. It is straightforward that
N(Γ) ∈ C(Γ) whenever C(Γ) is non-empty.

Maschler et al (1979) provided a general scheme for computing the nu-
cleolus in a form of a sequential linear program. Although all the LPs in
the sequence consist of exponentially many inequalities they can be solved
efficiently if one knows which constraints are redundant. Huberman (1980);
Granot et al (1998); Reijnierse and Potters (1998) and recently Solymosi and
Sziklai (2016) provided methods to identify coalitions that correspond to non-
redundant constraints. Here we focus on the following type of coalitions.

Definition 2 (Dually essential coalitions) Coalition S is called dually
inessential in cost game Γ = (N, c) if its complement can be partitioned
as N \S = (N \ T1)

.∪∪ (N \ Tk) with k ≥ 2 such that c(S) ≥ c(T1) + . . .+
c(Tk)− (k − 1)c(N). A coalition that is not dually inessential is called dually
essential. The set of dually essential coalition in Γ is denoted by DE(Γ).

Dually essential coalitions form a characterization set for the nucleolus in
balanced games (for details see (Solymosi and Sziklai, 2016)). The charac-
teristic function values of these coalitions determine both the core and the
nucleolus in any balanced game. Thus, if the number of dually essential coali-
tions is polynomially bounded in the number of players, then we can obtain a
polynomial size description of the core and the nucleolus of the game can be
computed in strongly polynomial time.

3 Definition and basic properties of DAG games

A directed acyclic graph network D or shortly a DAG-network is given by the
following:

6 Balázs Sziklai et al.

– G(V,A) is a directed acyclic graph, with a special node - the so-called root
of G, denoted by r - such that from every other node of G there leads at
least one directed path to the root. G is assumed to be a simple graph, i.e.
it has no loops or parallel arcs.

– There is a cost function δ : A→ R+ ∪ {0} that assigns a non-negative real
number to each arc. This value is regarded as the construction cost of the
arc.

For a subgraph T , V (T) denotes the node set of T . Similarly A(T) denotes
its arc set, while Ap is used for the set of arcs that leave node p. We call
nodes that have one leaving arc passages, while nodes that have more than
one leaving arcs are called junctions. Zero cost arcs are abbreviated as zero
arcs.

Let N be a set of players and let R : N → V be the residency function
that maps N to the node set of G. If player i is assigned to node p we say that
player i resides at p. A node is occupied if at least one player resides in it.
Note that unoccupied leaves (i.e. nodes with no incoming arcs) are redundant
and can be omitted from the network. The residency function is not assumed
to be injective and/or surjective, but it is a proper function. It means that any
one player resides at exactly one node, but there can be unoccupied nodes or
nodes having more than one resident. The set of residents of a subgraph T is
denoted by N(T), formally, N(T) = R−1(V (T)). A network D together with
a residency mapping R defined on D is called a player network and denoted
by (D,R).

For a subgraph T , we define its construction cost C(T) as the total cost of
the arcs in T , i.e. C(T) =

∑
a∈A(T) δ(a). A path whose end point is the root

is called a rooted path. A connected subgraph of G that is a union of rooted
paths is called a trunk. For each coalition S, let TS denote the set of trunks
that have maximum number of arcs among the cheapest trunks that connect
all players in S to the root. The maximality requirement may seem odd at
first, but it is needed to ensure the uniqueness of TN (cf. Section 5).

We say that a trunk T corresponds to a node set B if V (T) = B. Similarly
we say that a coalition S corresponds to the trunk T if T ∈ TS . Note that
more than one coalition can correspond to the same trunk.

The characteristic function of the cost game that is associated with the
player network (D,R) is defined as follows.

c(D,R)(S)
def
= C(T) T ∈ TS .

The pair (N, c(D,R)) is called a DAG-game. The definition of c(D,R) is
motivated by the fact that by leaving the grand coalition the players in S need
not pay more than c(D,R)(S) to get connected to the root. As any trunk in
TS has the same construction cost, c(D,R)(S) is well-defined. Note that finding
these trunks may be computationally demanding. It is possible, however, to
derive solutions for the game using the network structure, without generating
the characteristic function.

On the Core and Nucleolus of Directed Acyclic Graph Games 7

It is straightforward to see that the characteristic function of any DAG-
game is non-negative, monotone and subadditive (even strongly subadditive,
i.e. c(S) + c(T) ≥ c(S ∪ T) holds for any not necessarily disjoint coalitions
S and T). On the other hand, Figure 1A shows an example when a stronger
property, submodularity is not satisfied.

Let S1 = {1, 3} and S2 = {2, 3}, then

3 + 2 = c(S1) + c(S2) < c(S1 ∪ S2) + c(S1 ∩ S2) = 4 + 2,

thus we conclude that DAG-games need not be concave.
The following example demonstrates that DAG-games need not even be

balanced. Consider the player network (D,R) depicted in Figure 1B. The cost
of connecting any two-player coalition is 3, however c(D,R)(N) = 5 which
leaves the core empty.

r r

c{3}

b{2}a{1}

Example A Example B

0

3

1

1

1 1

1 1 1 1

1 1 1

g{1}

e{2} f{3}

a b c

Fig. 1 The first example shows that the characteristic function need not be submodular.
Example B displays a DAG-network that induces a cost game with an empty core. The
residents of the nodes are given in braces in both cases.

The next theorem specifies the types of networks we are interested in.

Theorem 1 The following condition

(*) there must be a resident at each passage where the leaving arc
is a zero arc and at each node with more than one entering arc
and with leaving arc(s) all of positive cost

is sufficient for a DAG-game to have a non-empty core.

The proof is immediate from Observation 1 and Lemma 2, that we discuss
later. Although this property seems unrestrictive it is crucial in the applicabil-
ity of our results. Let us stress, that dually essential coalitions only characterize
the nucleolus in balanced games. Notice that property (*) can be checked effi-
ciently. In the following we will assume that (*) holds for any (D,R) network.

4 More on the class of DAG-games

As we stated in the introduction, DAG-games include many important game
classes, most notably the mMCST family. Some mMCST games can be con-
verted into DAGs by choosing directions for the links appropriately. Figure

8 Balázs Sziklai et al.

2 depicts a mMCST and a DAG-network that induce the same characteristic
cost function. However – as the next example shows – not every mMCST-game
can be converted into a DAG in such a straightforward fashion.

mMCST DAG

r

a{1} b{2}

c{3} d{4}

4

1

5 53 1

4 6

2

2

r

a{1} b{2}

c{3} d{4}

4

1

5 53 1

4 6

2

2

Fig. 2 A mMCST and a DAG-network that describe the same cooperative game.

Example 1 Consider the 3-player mMCST-game depicted in Figure 3. Notice
that coalition {2, 3} uses the b− c edge in different direction than the grand
coalition.

r

a{1} b{2} c{3}

5 10 9

5 5

r

a{1} b{2} c{3}

5 10 9

5 5

r

a{1} b{2} c{3}

5 10 9

5 5

Fig. 3 A mMCST network and the cheapest subnetworks for coalitions {2, 3} and {1, 2, 3}.

Now we provide a construction that works for any monotonic, subadditive
game. Let N be a player set and ĉ : 2N → R be a monotonic, subadditive
cost function. We assign a node pS for each coalition S ⊆ N and introduce
a new node r, which will be the root of the graph. Each coalition has an arc
aS that leaves pS and enters the root, such that δ(aS) = ĉ(S). Furthermore,
for each i ∈ N , there is a zero-arc, denoted by aiS that leaves p{i} and enters
pS∪{i} for all ∅ 6= S ⊆ N \ {i}. Only the singleton coalitions are occupied,
i.e. R(i) = p{i}. We call the obtained player-network (D,R) the characteristic
DAG-representation of ĉ.

Theorem 2 Let N be a player set and ĉ : 2N → R a monotonic, subadditive
cost function. There exists a DAG-network D = (G(V,A), δ) and a residency
mapping R : N → V such that

c(D,R)(S) = ĉ(S) ∀S ⊆ N.

The technical details of the proof can be found in the appendix. Figure 4
shows an example of a characteristic DAG-representation.

On the Core and Nucleolus of Directed Acyclic Graph Games 9

r

p{1} p{2} p{3} p{1,2} p{1,3} p{2,3} p{1,2,3}

5 10 9 10 14 14 15

0
00

Fig. 4 The characteristic DAG-representation of the mMCST-game of Example 1. In order
to retain transparency the leaving zero-arcs of p{2} and p{3} were shortened.

The characteristic DAG-representation has mostly theoretical value. In
such networks there are many unoccupied passages with more than one enter-
ing arc, hence the (*) property is not satisfied. The other drawback is that
it can inflate a game with n players, which has a nice DAG-representation of
O(n) nodes and arcs (e.g. the representation of an airport or standard tree
game), into a monster network of O(2n) nodes and arcs.

As mMCST games are monotonic and subadditive, there indeed exists
a DAG-representation for any of them. It can happen that the only DAG-
representation of an mMCST-game is the characteristic representation where
the (*) property is not satisfied. This does not contradict the fact that every
mMCST game is balanced, since (*) is not a necessary condition for the non-
emptyness of the core.

5 The canonization process and its consequences

In this section we will introduce a network canonization process which has two
main advantages. Firstly it makes the structure more transparent, allows us
to define concepts like ’principal ancestor’ (cf. Definition 3) in a simpler way.
Secondly it makes the trunk of the grand coalition (TN) unique. Again this
will tremendously help to understand and work with DAG-networks.

We say that a player network (D,R) is in canonical form if the following
properties are fulfilled:

P1 Each junction has a leaving zero arc: p ∈ V, |Ap| > 1⇒ ∃a ∈ Ap such that
δ(a) = 0.

P2 For each passage the cost of the leaving arc is positive: p ∈ V, Ap =
{a} ⇒ δ(a) > 0.

P3 There resides a player in each passage: p ∈ V, Ap = {a} ⇒
∃i ∈ N such that R(i) = p.

To transform a DAG-game into a form where property P1 is fulfilled we
have to perform the following procedure for each node p ∈ V such that |Ap| ≥
2 and mina∈Ap δ(a) = αp > 0.

1. Introduce an unoccupied new node p′ with the same set of leaving arcs as
p has, but reduce the cost of the arcs by αp.

10 Balázs Sziklai et al.

2. Erase all the arcs that leave p.
3. Finally, introduce a new arc from p to p′ with cost αp.

Property P2 can be achieved by contracting each passage that has a leaving
zero arc with the endnode of that arc, by uniting the resident sets of the
contracted nodes, and by eliminating that zero arc. Obtaining both P1 and
P2 require equivalent transformations in the sense that the construction cost
of the trunks in TS is unchanged for any coalition S.

Finally, if p is an unoccupied passage and p has only one entering arc then
it can be omitted from the network. The entering and leaving arc of p can be
replaced by a single arc with the aggregated construction cost. Needless to say
that this procedure does not change the costs of the TS trunks either. Note
that if a passage has more than one entering arc then by property (*) it is
occupied.

r

a{1}

b c{2}

d{3} e{4}

f{5}

g{6}

h{7}

i{8}

r

a{1}

c{2}

e{4}

d{3}

f{5}

g′

g{6, 7}

i{8}

4 6

3 2 4

2 2 0

0 0

7
4 6

5 2 0

2 4

0 0

3

D Dc

Fig. 5 A DAG-network with player set N = {1, 2, 3, 4, 5, 6} before and after canonization.
Notice that after canonization g′ has a shortcut to the root.

Example 2 Let us demonstrate the canonization process on an example. Con-
sider the player-network depicted in Figure 5. There are two junctions g and
i. The former does not have a leaving zero cost arc. Hence we introduce a new
node g′, connect g′ with the neighbours of g, delete the leaving arcs of g and
finally connect g and g′. The new arcs are given appropriate weights. As h
is a passage with a zero cost arc, we contract it with node g. The player sets
of the two nodes are united. Node b is an unoccupied passage, thus we delete
this node. We connect d with a directly. The new arc has the aggregated cost
of the deleted entering and leaving arcs of b. This concludes the three steps
of canonization.

Our first observation summarizes the above findings.

Observation 1

– All networks that satisfy (*) can be canonized.
– The characteristic function is unaffected by the canonization process.

On the Core and Nucleolus of Directed Acyclic Graph Games 11

Although canonization ensures that TN contains only a single element,
this cannot be said in general about the trunks of other coalitions. In the
following we will assume that TS contains only a single trunk for any coalition
S. This can always be achieved by perturbing the positive arc costs. The most
important solution concepts, such as the core, the nucleolus and the Shapley-
value are all continuous functions of the characteristic function, which in turn
is a continuous function of the arc costs. Thus, such perturbation does not
affect the outcome of the game. Henceforward we will refer to TS as this
unique trunk that has maximum number of arcs among the cheapest trunks
that connect all members of S to the root.

From now on we will drop the residency function R from the notation
and simply write cD. We will denote by ΓD the cost game induced by cD,
i.e. ΓD = (N, cD). For sake of simplicity, we will also call a DAG-game on
a canonized player network as a canonized DAG-game. Let us now see some
consequences of canonization. We also need to introduce further notions and
notation.

For each node p, the cheapest arcs in Ap are called TN -arcs. The name
comes from the fact that an arc is a TN -arc if and only if it is an element
of A(TN). If a, a′ ∈ Ap, a is a TN -arc and δ(a′) > δ(a), then a′ is called
a shortcut. Thus every arc that is not a TN -arc is a shortcut. If two nodes
p and q are connected with a shortcut then either it is the cheapest route
between these two nodes (hence the name) or it is so costly that no coalition
uses it at all. In this latter case the arc can be omitted from the network. If
a, a′ ∈ Ap are TN -arcs then the construction cost of both a and a′ is zero (this
is a consequence of P1).

The subgraph associated to the grand coalition (TN) holds special impor-
tance. First this is the graph that will be constructed in the end. All the other
arcs are only good for improving the bargaining positions of certain players2.
Note that TN is not necessarily a tree as it may contain some additional zero
arcs. Unlike other trunks, TN can be constructed efficiently in linear time by
building the cheapest arc(s) leaving each node. The connection cost of any oc-
cupied node is at least as much as the cost of the cheapest arc that leaves that
node. Furthermore, every unoccupied node has a leaving zero arc, therefore
connecting an unoccupied node does not impose extra cost. Thus, including
the cheapest arcs from each node connects all nodes to the root. It follows that
V (TN) = V and E(TN) contains every arc that is not a shortcut.

Another feature of TN is that it induces a partial order ≺ on the nodes.
We say that p is a ancestor of q 6= p if p can be reached from q via a path in
TN , we denote this by p ≺ q. In such cases we also say that q is an descendant
of p. Node p is a direct ancestor or parent of q if p is an ancestor of q and
they are connected with a TN -arc. This relation is denoted by π(q) whenever

2 Since we analyze the game from a cooperative perspective, we do not formalize the bar-
gaining process that takes place between the players. However, such processes are certainly
present. Consider the case of Example 2. Without the shortcut of g′ player 6 may be forced
to pay as much as 10 in the core, while with the shortcut present his core payoff is bounded
from above by 7.

12 Balázs Sziklai et al.

the direct ancestor is unique. If p is a parent of q then q is referred as a
direct descendant or child of p. The node set that contains p together with its
descendants is called a full branch and denoted by Bp.

Sometimes we are interested only in some of the descendants of p, therefore
we cut off some segments of Bp. Removing a node from Bp other nodes can
become unreachable too. A specific branch, denoted by BQp is a subset of Bp

that collects nodes that still can reach p using only TN -arcs after removing
the node set Q from Bp. Formally

BQp
def
=
{
q ∈ Bp | ∃ Pq−p such that V (Pq−p) ⊂ Bp \Q

}
,

where Pq−p denotes a path in TN that leads from q to p. In other words
a branch is the node set of a union of paths in TN which have a common
origin. To emphasize this a BQp branch is also called a p-branch. Note that if

BQp = BQ
′

p then BQ∩Q
′

p define the same node set as well. We say that the BQp
branch is in standard form if the cardinality of Q is minimal, in other words
if there exists no Q′ such that BQ

′

p = BQp and |Q′| < |Q|.
We say that the node set B is proper if deleting B from G along with all

of its entering and leaving arcs the root can still be reached on a directed path
from any of the remaining nodes (i.e. the remaining graph is a trunk).

Let us illustrate the above introduced notions with some examples. Con-
sider again the canonized DAG-network Dc depicted in Figure 5. The only
shortcut in Dc is the one that connects node g′ with the root. All the other
arcs are TN -arcs. Nodes a and d form a branch in Dc, but this branch is not
proper as without a, node c gets disconnected. On the other hand node f
composes a proper branch in itself. Finally, the node set that corresponds to

the trunk T{3,6,8} is V \ (Bi
c ∪Bg′

f) = {a,d,g′,g, i} and cDc({3, 6, 8}) = 16.

This last example raises a question. Can we obtain every trunk by removing
some branches from the graph? By Lemma 1 the answer is positive.

Lemma 1 The node set of every trunk that corresponds to a coalition S ⊂ N
can be obtained by deleting some branches from V . The removed branches can
be chosen in such way that each of them originates from a passage. Formally
for any S ⊂ N there exists Q1, . . . , Qk ⊂ V and p1, . . . ,pk ∈ V such that

V (TS) = V \ ∪kj=1B
Qj
pj ,

where pj is a passage for all j ∈ {1, 2, . . . , k}.

A proof is provided in the appendix. The obtained V \∪kj=1B
Qj
pj expression

is called a standard representation of V (TS), if the redundant nodes have been

removed from the Qj sets, i.e. each B
Qj
pj branch is in standard form. A trunk

can have more than one standard representation. Also notice that the B
Qj
pj

branches may not be disjoint. For instance in Example 2 the trunk of coalition
{1, 2, 3, 5} corresponds to V \ (Be ∪Bg).

On the Core and Nucleolus of Directed Acyclic Graph Games 13

6 Structure of the core

The main results of the paper are divided into two sections. In the first section
we present the structural results. We show that canonized DAG-games are
balanced. We identify nodes that behave like the source. Their residents do
not invest in the construction of the network. Moreover if a set of players
reaches such a secondary source – which we will call a free node – they do
not participate in the construction anymore. That is, the residents of a branch
that originates from a free node need not pay more in the core than the
construction cost of the branch itself. Uncovering the free nodes has many
advantages. One of them is – as we will see in the next section – that the free
nodes can be contracted with the root. Although this transformation changes
the characteristic function of the game, it does not affect the core or the
nucleolus.

The following extension of the cost function will be needed. We define
τ(Q,S) as the cost of the arcs in TS that go out from node set Q, i.e.

τ(Q,S)
def
=

∑
a∈(∪q∈QAq)∩A(TS)

δ(a).

We define the standard allocation x̂ of ΓD as follows. For each player i ∈ N
let x̂(i) =

δ(ap)
|N(p)| where i ∈ N(p) and ap is one of the leaving TN -arcs of p. For

instance in the canonized network of Example 2 x̂(6) = x̂(7) = 2 and x̂(8) = 0.
In our first lemma we show that the standard allocation is a core selector.

Lemma 2 C(ΓD) 6= ∅ for any DAG-network D in canonical form.

Proof We will use the standard allocation. The residents of a junction do not
have to pay according to the standard allocation, while the residents of a
passage pay for the construction cost of the TN -arc that leaves the passage.
Since unoccupied nodes can only be junctions, it follows that for any B ⊆ V ,

x̂(N(B)) = τ(B,N). (1)

That is, the players of B pay for all the arcs that leave B in TN . This means, in
particular, that x̂(N) = τ(V,N) = cD(N). On the other hand, for any S ⊆ N

x̂(S) =
∑

p∈R(S)

|S ∩N(p)| · δ(ap)

|N(p)| ≤
∑

p∈R(S)

δ(ap) ≤

≤
∑

p∈V (TS)

δ(ap) ≤ C(TS) = cD(S),

whereR(S) = {R(i) : i ∈ S}. The last inequality holds, because
∑

p∈V (TS) δ(ap)

collects the cost of the cheapest arcs of each node in TS , but A(TS) may contain
shortcuts as well.

14 Balázs Sziklai et al.

The standard allocation is just a weighted version of the Bird-rule which
was proposed for MCST games (Bird, 1976). There is an extensive literature
devoted to the various solution concepts of MCST games. Without attempting
to be comprehensive we refer the reader to (Bergantiños and Vidal-Puga, 2007;
Bogomolnaia and Moulin, 2010; Trudeau, 2012).

Notice that by monotonicity of the characteristic function, core vectors are
non-negative. Indeed, xi = x(N)− x(N \ i) ≥ cD(N)− cD(N \ i) ≥ 0 for any
i ∈ N and x ∈ C(ΓD).

The following definitions will be useful. We say that node q is a key ancestor
of node p, if there are two paths in TN from p to q such that these paths are
arc-disjoint except maybe for some zero arcs (semi-arc-disjoint from now on).
The degenerate cases when these two paths partially or (completely) coincide
are also included in this definition. Thus if there exists a zero cost path from
p to q then q is a key ancestor of p. Clearly, each junction has at least one
key ancestor. On the other hand, by property P2, a passage could not have a
key ancestor, so we define the only key ancestor of a passage to be itself. For
similar reasons we define the root to be the key ancestor of itself.

Definition 3 The principal ancestor of node p is a unique node q ∈ V ,
denoted by Π(p) that is a key ancestor of p and q ≺ q′ for every other key
ancestor q′ of p (i.e. the key ancestor closest to the root).

Notice that a junction cannot be a principal ancestor of any of its de-
scendants. The only principal ancestor that is not a passage is the root. Note
also, that principle ancestors can be identified easily (an efficient algorithm is
provided in (Sziklai et al, 2014)).

Definition 4 We say that an occupied node p is free if x(N(p)) = 0 for any
core element x, i.e. the residents of p do not have to pay to get connected to
the root. An unoccupied node p is called free if Π(p) = r. The set of free
nodes is denoted by F .

Note that if p is a passage then the standard allocation would assign pos-
itive value to N(p). In other words – with the exception of the root – every
free node is a junction.

Example 3 Consider the DAG-network depicted in Figure 6. The nodes a,b,d,
e, f and h are passages. Thus the key and principal ancestors of these nodes
are themselves. Node c has two (semi-)arc-disjoint paths in TN that enter the
root, hence the principal ancestor of c is the root. Although there exists two
paths from g to a, the latter node is not a key ancestor of g, since one of
the paths does not belong to TN . The key ancestors of g are g and e. Among
these two nodes e is closer to the root, hence e is the principal ancestor of g.
Finally, the principal ancestor of i is d. Note, that if d was a junction, the
principal ancestor of i would be the root.

In our next theorem we will characterize the set of free nodes. Before we
proceed let us state a simple lemma that will play a crucial role in the proof.

On the Core and Nucleolus of Directed Acyclic Graph Games 15

r

a{1}

b{2}

c{3}d{4}

e{5}

f{6}

g{7}

h{8}

i{9}

100

200

0

0

2

2

0

2

0

0

4

3

Fig. 6 A canonized network with nine players. Note that aside for the root node c is free
as well.

Lemma 3 Let BQp be any branch originating from node p. If, for every core

allocation y, exc(N(V \ Bp), y) = 0, then y(N(BQp)) ≤ τ(BQp , N). In other

words the residents of BQp do not pay more than the costs of their TN -arcs.

Proof We proceed by contradiction. Suppose for some y ∈ C(Γ), y(N(BQp)) >

τ(BQp , N), then

cD(N((V \Bp) ∪BQp))) = cD(N(V \Bp)) + τ(BQp , N)

exc(N((V \Bp) ∪BQp))), y) = 0 + τ(BQp , N)− y(N(BQp)) < 0

would contradict the non-negativity of excesses.

In other words, since the residents of V \ Bp always pay for their own
construction cost, and connecting BQp to V \ Bp incurs at most τ(BQp , N)

extra cost, the residents of BQp are not willing to pay more than that in any
core allocation.

The residents of the root or players that can reach the root via a zero cost
path do not pay anything in the core. It is natural to assume that any other
player must contribute to the construction costs, or at least there exists a core
allocation when the payoff of such player is positive. Surprisingly this assertion
is wrong. In Example 3 players 1 and 2 must bear huge costs, since connecting
nodes a and b is an expensive task. However, neither of them can force player
3 to pay some of their construction costs, at least not in the core. As it will
follow from our next theorem, node c is free, hence the payoff of player 3 is
zero in any core allocation.

Theorem 3 Node p belongs to F if and only if Π(p) = r.

Proof If p is unoccupied we have nothing to prove, therefore we may assume
that |N(p)| > 0.

First we prove the only if part. Suppose p is a free node but its principal
ancestor q is a passage. We modify the standard allocation in the following
way. Let ip be a resident of p and iq be a resident of q and let

y(ip) = ε,

y(iq) = x̂(iq)− ε,
y(j) = x̂(j) for any other player j ∈ N,

16 Balázs Sziklai et al.

where ε > 0 is a sufficiently small real number (e.g. ε = mina∈A δ(a)
2|N |+1). Note that

x̂(iq) > 0 due to P2. We prove that y ∈ C(ΓD). If S is such that ip, iq ∈ S
then y(S) = x̂(S). If ip 6∈ S 3 iq then y(S) < x̂(S). The only interesting case
is when ip ∈ S 63 iq. If aq ∈ A(TS) then

y(S) = y(S\ip)+ε ≤ x̂(S\ip)+x̂(iq) ≤ x̂(S∪N(q)) ≤ cD(S∪N(q)) = cD(S),

where we used that ε < x̂(iq). The last equality comes from the fact that N(q)
can join S for free as S builds aq anyway. If aq 6∈ A(TS) then there is at least
one shortcut in TS . Let this shortcut be a′. Then

y(S) = y(S \ ip) + ε = x̂(S \ ip) + ε ≤ τ(R(S), N) + δ(a′) ≤ cD(S),

where we used that x̂(S \ ip) ≤ τ(R(S), N) by (1). The last inequality is
obviously true since apart from the cheapest arcs that leaveR(S), the members
of S need to build at least one shortcut, namely a′. We cannot overestimate
the costs as the cheapest arc that leave the origin of a′ – the cost of which is
included in τ(R(S), N) – is a zero arc due to P1.

To justify the other direction we prove that if Π(p) = r then p is free and
exc(N(V \Bp), x) = 0 for any x ∈ C(ΓD). This is a slightly stronger statement
from which the if part of the proof clearly follows.

Let d(q) denote the length of the shortest path in TN leading from q to
r. We proceed by induction on d(p). If d(p) = 0 then p is the root for which
exc(N(V \ Br), x) = exc({∅}, x) = 0 is satisfied. Let us assume that d(p) = l
and the lemma is true for any node p′ with d(p′) < l where l > 0 integer. Two
cases are possible. The first is when p has a free parent f . Let y be an arbitrary
core element. Applying the induction step we obtain exc(N(V \ Bf), y) = 0.
Both p and f are junctions therefore cD(N(V \ Bf)) = cD(N((V \ Bf) ∪
{p})). Hence y(N(p)) > 0 would imply exc(N((V \ Bf) ∪ {p}), y) < 0 – a
contradiction.

The second case is when p does not have a free parent. As the principal
ancestor of p is the root, there exists paths from p to r in TN which are
semi-arc-disjoint. There may be some intermediary nodes that coincide on
these paths. Let the first such node denoted by f . Note that the principal
ancestor of f is the root (f may be the root itself) therefore we can apply the
induction step. That means that f is free and exc(N(V \ Bf), y) = 0 for any
core allocation y. This also implies that τ(Bf , N) = y(N(Bf)).

There exists two arc-disjoint path from p to f in TN . Let q1 and q2 be
the direct ancestors of p that lie on these paths. We can separate the node
set Bf \ Bp into two f -branch B1 and B2 such that q1 ∈ B1, q2 ∈ B2 and
B1 ∩B2 = {f}. For instance such a partition can be obtained by coloring the
path from q1 to f red and the path from q2 to f blue (as f is contained in
both paths we can pick either one of the colors, say red). Then we color each
node one-by-one in Bf \Bp in the following way. Take a direct descendant of
a colored node. If it has a red parent we paint it red, if it has a blue one we

On the Core and Nucleolus of Directed Acyclic Graph Games 17

paint it blue. If it has both a red and a blue parent paint it arbitrarily with
one color. Let B1 contain the red nodes, while B2 the blue ones in addition
with f . Indeed the node sets defined in this way are f -branches which satisfy
B1 ∪B2 = Bf \Bp and B1 ∩B2 = {f}. This leads us to

y(N(Bf)) = τ(Bf , N) = τ(B1 ∪Bp, N) + τ(B2, N)

[τ(B1 ∪Bp, N)− y(N(B1 ∪Bp))] + [τ(B2, N)− y(N(B2)))] = 0.

We implicitly used that f is a junction, therefore its cheapest arc is a
zero arc. Furthermore, y(N(f)) = 0 since f is free. Therefore it implies no
additional cost that both B1 and B2 contain f . The node set B1 ∪Bp is an f -
branch and so is B2, therefore the sums in the square brackets are non-negative
by Lemma 3. It follows that τ(B2, N) = y(N(B2)). Now let us move the Bp

branch from B1 to B2. With exactly the same argument we can show that
τ(B1, N) = y(N(B1)). The coalitions N(B1) and N(B2) pay only for their
own branch’s construction cost i.e. the cost of the cheapest arcs that leave
the B1 and B2 branch. From N(Bp) = N(Bf) \ N(B1 ∪ B2) it follows that
exc(N(V \ Bp), y) = 0. By Lemma 3 the BQp branch pays at most τ(BQp , N)
for any Q ⊂ Bp. In particular y(N(p)) = 0 for any core element y, that is, p
is free. This concludes the proof of Theorem 3.

A coalition S is said to be saturated if c(S) = c(S ∪ {i}) implies i ∈ S. In
other words if S is a saturated coalition then every new member will impose
extra cost on the coalition. Let S∗(Γ) denote the set of all saturated coalitions
and let

S(Γ) = S∗(Γ) ∪ {N \ i | i ∈ N} ∪ {N}.
Granot, Granot and Zhu proved that the collection S(Γ) characterizes the

nucleolus of any monotone cost game (Granot et al, 1998). Moreover the effi-
ciency equation x(N) = c(N) and the x(S) ≤ c(S) inequalities corresponding
to the saturated coalitions determine the core of such games as well. In light
of these results we may restrict our attention to saturated coalitions. In case
of DAG-games this property comes with a nice structure. A saturated coali-
tion incorporates every player of the trunk on which it resides, formally S is
saturated if and only if S = N(V (TS)).

There are many coalitions whose excess is zero in any core allocation. For
instance it is easy to prove that if p is a passage that is a direct descendant
of the root, then N(Bp) is such a coalition. In the following we characterize
the set of saturated coalitions that bear this property. Let S0 denote the set
of saturated coalitions whose excess is zero for any core allocation, formally

S0(Γ)
def
= {S ⊆ N | S saturated and c(S) = x(S) for any x ∈ C(Γ)}.

In our next lemma we identify certain branches that pay only for their own
construction cost i.e. the cost of the cheapest arcs that leave the branch. A
BQp branch is called a building block if it has the following properties:

18 Balázs Sziklai et al.

– p is a passage whose parent is free,
– all the nodes in Q are free,
– BQp does not contain a free node.

The proofs of the following two lemmata can be found in the appendix.

Lemma 4 If BQp is a building block, then x(N(BQp)) = τ(BQp , N) for any core
allocation x.

For instance in Example 3 the branch Bd composes a building block. The
next lemma tells us how to decompose certain branches into building blocks
and free nodes.

Lemma 5 Let ∪kj=1B
Fj
pj be a union of branches such that pj is a passage,

π(pj) ∈ F and Fj ⊂ F for j = 1, . . . , k. Then ∪kj=1B
Fj
pj can be decomposed

into a disjoint union of building blocks and free nodes.

In Example 3 the branch Ba can be decomposed, since a is a passage and
its parent is free. The decomposition involves two building blocks Bc

a, Bd and
a free node c.

These seemingly technical results will prove to be quite useful. First with
the help of these two lemmata we can characterize S0(Γ). Secondly we will
see that the residents of Bc

a = {a} cannot expect any help from those players
who reside in a descendant of a (at least not in the core). Thus these building
blocks can be ’separated’ from the rest of the graph without altering the core
or the nucleolus of the game. We will come back to this question in the next
section.

Theorem 4 S ∈ S0 if and only if S is saturated and V (TS) can be written as

V (TS) = V \ ∪kj=1B
Fj
pj

where pj is a passage π(pj) ∈ F and Fj ⊂ F for all j ∈ {1, 2, . . . , k}.

Proof In light of Lemma 4 and Lemma 5 the if part can be verified easily. If

the trunk of coalition S can be represented as V (TS) = V \ ∪kj=1B
Fj
pj , then

V (TS) is the complement of a disjoint union of building blocks and free nodes.
As the residents of building blocks and the free nodes pay only for their own
construction cost, the rest of the players have to pay for their own part of TN .
Thus from the cD(N) = x(N) equality it follows that cD(S) = x(S) for any
core allocation x. Note that we implicitly used that every resident of V (TS) is
involved in building TS , that is S is saturated.

Now we prove the other direction i.e. S ∈ S0 ⇒ V (TS) = V \ ∪kj=1B
Fj
pj .

From Lemma 1 we know that we can choose a representation of V (TS) where

pj – the origin of the removedB
Fj
pj branch – is a passage for all j ∈ {1, 2, . . . , k}.

Furthermore, π(pj) ∈ V (TS) and Fj ⊂ V (TS) for all j ∈ {1, 2, . . . , k}.
If TS has a shortcut then the standard allocation induces a non-zero excess

for S. It follows that TS is a connected subgraph of TN . First let us consider

On the Core and Nucleolus of Directed Acyclic Graph Games 19

a simple graph structure when only one branch is missing, that is V (TS) =
V \BQp . If π(p) is not free then there exist a core allocation y where y(N(p)) >
τ(p, N). The argument is similar to the reasoning used in the first part of
Theorem 3. As π(p) is not free, Π(π(p)) is a passage. A coalition that contains
a player from N(p) has to use this passage or go around with a shortcut. In
either case the standard allocation can be modified: a little amount can be
transferred from N(Π(π(p))) to N(p) without leaving the core. Thus if the
excess of N(V \BQp) was zero under the standard allocation it is not zero under

y. Now let V (TS) = V \∪kj=1B
Fj
pj and let us use the standard representation of

V (TS). Take an arbitrary π(pj). Basically the same argument works as above,
we only need to show that Π(π(pj)) is in V (TS). Suppose on the contrary
that Π(π(pj)) 6∈ V (TS). We know that every path from π(pj) to the root
that lies in TN crosses Π(π(pj)). Since TS is a subgraph of TN it follows that
π(pj) 6∈ V (TS). However, in the standard representation pj was chosen such
way that π(pj) ∈ V (TS) – a contradiction.

Finally, we need to prove that if Fj 6⊂ F then S 6∈ S0. Let f be an arbitrary
non-free element of a given Fj . There exists a path in TN from f to π(pj)

through B
Fj
pj . There exists another path in TS , arc-disjoint from the previous

one to the root. By our previous observation if this path contains a shortcut,
then S 6∈ S0. Thus this path lies entirely in TN . Since π(pj) is free there exists
two semi-arc-disjoint paths from π(pj) to the root. It is impossible that the
path from f to the root intersects both of these paths at a passage, since then
they would not be semi-arc-disjoint. Thus there exist two semi-arc-disjoint
paths from f to the root i.e. f is free.

Notice that this direction did not require for coalition S to be saturated.
Non-saturated coalitions can have zero excess in the core, in particular when
there are occupied free nodes in the trunk of S.

The interpretation of Theorem 4 becomes simpler when we consider the
free nodes as some kind of secondary roots. The residents of a free node do not
have to pay (Theorem 3), and the residents of a full branch that originates from
a free node pay only for their own branch’s construction cost (a consequence of
Theorem 3 and Lemma 3). These results already suggest that contracting the
free nodes with the root does not alter the structure of the core. In the next
section we will introduce graph transformations that simplify the network. In
addition we offer an approach to efficiently describe the core of a large family
of DAG-games.

We conclude this section with a lemma that gives an upper bound on how
much certain branches are willing to pay in the core. Let as be an arc that
originates from a non-free node p. We say that as is critical if replacing as
with a zero arc would set p free.

Lemma 6 Let p be an arbitrary node with a critical arc as ∈ Ap and let BQp
be a p-branch. If as is not a shortcut then x(N(BQp)) ≤ τ(BQp , N) for any core

allocation x. If as is a shortcut then x(N(BQp)) ≤ τ(BQp , N) + δ(as) for any
core allocation x.

20 Balázs Sziklai et al.

This lemma is basically a corollary of Lemma 3. For a detailed proof, see
(Sziklai et al, 2014).

7 Finding the core of a DAG-game

In this section we uncover the graph structure of dually essential coalitions.
As it will turn out it is simple and easy to deal with. With the help of the
dually essential coalitions we prove that contracting the free nodes with the
root or rerouting critical shortcuts to the root does not alter the core or the
nucleolus of the game. The main result is that whenever the size of the set of
dually essential coalitions is polynomially bounded in the number of players
and we can efficiently enumerate them, then the core and the nucleolus can
be computed in polynomial time.

First we show that dual essentiality is a stricter property than saturated-
ness.

Lemma 7 If Γ = (N, c) is a monotonic cost game, then DE(Γ) ⊆ S(Γ). That
is, each dually essential coalition is either saturated or consist of n−1 players.

Proof Let S be a non-saturated coalition with at most n− 2 players. We will
show that S is dually inessential. As S is not saturated there exists i ∈ N \ S
such that cD(S) = cD(S ∪ {i}). Let S1 := S ∪ {i} and S2 := N \ {i}. Then
S1 ∪ S2 = N and S1 ∩ S2 = S therefore we can use Definition 2 since

cD(N) ≥ cD(N \ {i}),
cD(S) ≥ cD(S) + cD(N \ {i})− cD(N),

cD(S) ≥ cD(S1) + cD(S2)− cD(N).

In other words S appears in an overlapping decomposition of S1 and S2, there-
fore it cannot be dually essential.

The following theorem characterizes dually essential coalitions.

Theorem 5 The dually essential coalitions of the cost game ΓD are the coali-
tions with n − 1 players and saturated coalitions whose trunks correspond to
node sets of the form V \BUq where BUq is a proper branch and q is a passage.

Proof We have already seen in Lemma 7 that only saturated and (n−1)-player
coalitions are dually essential. By Lemma 1 we know that trunks of (saturated)
coalitions can be generated by removing branches from G. The one thing we
have to prove is that coalitions that correspond to trunks that have more
missing branches are dually inessential. Let S be a saturated coalition for which

V (TS) = V \ ∪kj=1B
Qj
pj where k ≥ 2. As D is in canonical form there resides

at least one player in each of the branches. These branches may intersect with
each other in general, however – by choosing the Qj sets appropriately – we
can always arrange them in such way that they are mutually disjoint. Among

On the Core and Nucleolus of Directed Acyclic Graph Games 21

such representations we choose one where Qk is either empty or a subset of
V (TS).

For convenience’s sake let us introduce the following notationB1 = ∪k−1j=1B
Qj
pj

and B2 = BQk
pk

. Then let S1 = N \ N(B1) and S2 = N \ N(B2). In this way

N \S = (N \S1)
.∪ (N \S2). To prove that cD(S) ≥ cD(S1) + cD(S2)− cD(N)

holds as well it is enough to show that the following two inequalities are true.

cD(S1) ≤ cD(S) + τ(B2, N)− τ(Qk, S) (2)

cD(S2) ≤ cD(N)− τ(B2, N) + τ(Qk, S) (3)

Note that it takes at most τ(B2, N) to connect the players residing at
B2 to TS . As BQk

pk
is a proper branch it follows that the nodes in Qk are

junctions. Since the nodes in Qk are direct ancestors of some nodes in B2 they
are connected with zero arcs. Therefore we can save at least τ(Qk, S) amount
of cost by connecting Qk through the branch B2 and not through the arcs in
(∪q∈Qk

Aq) ∩ A(TS). It is possible that aside from Qk there are other nodes
that can reach the root in a cheaper way using the arcs of B2, but no nodes
of V (TS) is forced to take a more expensive path. Summarizing the above
findings we gather that

cD(S1) ≤ cD(S) + τ(B2, N)− τ(Qk, S)

We can estimate cD(S2) by keeping track how the cost changes as we
swift from TN to TS2

. As N(B2) are not in S2 we can delete B2 and sub-
tract τ(B2, N) amount of cost from cD(N). Deleting B2 from TN only the
direct descendants of B2 can get disconnected. Therefore the only nodes that
may not be connected to the root are Qk and their descendants. By building
(∪q∈Qk

Aq) ∩ A(TS) – the exact same arcs that we deleted in case of S1 – we
can ensure that every node in V \ B2 \ {r} has a leaving arc. None of these
arcs enter to B2, thus we obtained a trunk. Therefore the cost of reconnecting
Qk is at most τ(Qk, S). Altogether we can estimate the cost of S2 by

cD(S2) ≤ cD(N)− τ(B2, N) + τ(Qk, S).

Now adding (2) and (3) together, then subtracting cD(N) from both sides
yield us the desired result.

If S1 and S2 are dually essential coalitions then we are done. However, it
can happen that one or both of them are dually inessential. Thus to prove dual
inessentiality of S we may have to refine cD(S) ≥ cD(S1) + cD(S2)− cD(N). If
k ≥ 3 then TS1 has more missing subbranches. Also S1 and S2 may not even
be saturated. However, by repeatedly using the reasoning in Lemma 7 and the
above argument we can obtain a weakly minorizing overlapping decomposition
of S. Since each refinement uses larger coalitions we cannot run into a cycle3.
This concludes the proof of the Theorem.

3 For a detailed example of the decomposition process see (Sziklai, 2015).

22 Balázs Sziklai et al.

Theorem 5 is surprisingly analogous to the one derived by Maschler et al
(2010) for standard tree games (see Lemma 2.3 in the cited paper). Although
they do not speak of characterization sets the relationship between the two
results is unquestionable.

The graph characterization of dually essential coalitions is one of the main
results of this paper. It will allow us to describe the core and to compute the
nucleolus for a large family of DAG-games. The next few lemmata introduces
further simplifications in the network.

Lemma 8 Let S ∈ DE(ΓD) and V (TS) = V \BUp its standard representation.

Then q ∈ BUp ⇒ Π(q) ∈ BUp .

Proof Suppose Π(q) 6∈ BUp . There exists two semi-arc disjoint paths in TN
from q to Π(q). Only one of these paths may use p. Thus there is zero arc
that leaves BUp , which contradicts that TS has maximum number of arcs among
the cheapest trunks that connect all the players in S to the root.

A network can be simplified if it has critical shortcuts. Lemma 6 suggests
that it does not matter where a critical shortcut enters. Thus critical shortcuts
can be treated as if they were pointing to the root.

Lemma 9 Let D be a DAG-network and Γ = (N, cD) be the corresponding
game. Let s be a junction with a critical shortcut as. Finally, let D′ be a net-
work that is obtained from D by rerouting as to the root and let Γ ′ = (N, cD′).
The core and the nucleolus is unchanged by this transformation, formally
C(Γ) = C(Γ ′) and N (Γ) = N (Γ ′).

Proof It is enough to prove that DE(Γ) = DE(Γ ′) and for any S ∈ DE(Γ),
cD(S) = cD′(S). We will use the graph representation of dually essential coali-
tions that we uncovered in Theorem 5. It is easy to check that the (n − 1)-
player coalitions have the same characteristic function value in both games.
Let S = N \ i and let t denote the node where as enters. If player i resides in a
junction then TS = TN , that is the trunk of S does not contain any shortcuts,
hence it is unimportant where as points to. If player i resides in a passage v
and TS does not contain v, then the descendants of v must use an alternative
path to reach the root. If a direct descendant of v is a passage then v ∈ TS ,
hence all its children must be junctions. Due to the canonization every such
junction must have an arc that points either to an ancestor of v or to a node
that is unrelated to v. That means that if as ∈ A(TS) then t ∈ TS both in D
and in D′. Thus it does not matter if as points to t or to the root, the cost of
TS does not change.

Now let |S| < n− 1. Due to Theorem 5 we may assume V (TS) = V \BUp .
We need to prove that for any such S ∈ DE(Γ) it is true that cD(S) = cD′(S).
Let q1, . . . ,qk be the direct ancestors of s, and let t be the node where as
enters. If s ∈ BUp then TS is the same in both games. If qi 6∈ BUp for some
i = 1, . . . , k then s can be connected to the root without using as in both
games. Hence it is indifferent whether the shortcut of s enters to t or to r. If

On the Core and Nucleolus of Directed Acyclic Graph Games 23

all the q1, . . . ,qk nodes are in the removed BUp branch and s connects to the
root via t, then the construction cost of S does not change by rerouting as
from t to r.

Now we prove that q1, . . . ,qk, t ∈ BUp is impossible. By contradiction sup-
pose that all the direct ancestors of s and the end node of the critical shortcut
belongs to the missing branch. By definition if δ(as) is set to zero s becomes
free. That is there leads two semi-arc disjoint paths from s to the root. The
paths in TN between s and r use a node from q1, . . . ,qk, t, hence all the paths
go through BUp . If there are two semi-arc disjoint pathes that go through BUp ,

then only one of them may use p. Thus there is zero arc that leaves BUp , which
contradicts that TS has maximum number of arcs among the cheapest trunks
that connect all the players in S to the root.

The next lemma states that free nodes can be contracted with the root.

Lemma 10 Let D be a DAG-network and Γ = (N, cD) be the corresponding
game. Let p be any free node. Finally, let D′ be a network that is obtained
from D by contracting p with the root and let Γ ′ = (N, cD′). The leaving
arcs of p are deleted, while the entering arcs now point to r. The core and
the nucleolus is unchanged by this transformation, formally C(Γ) = C(Γ ′) and
N (Γ) = N (Γ ′).

Proof Again we could proceed by checking whether DE(Γ) = DE(Γ ′) and
whether for any S ∈ DE(Γ), cD(S) = cD′(S). However, by using Lemma 9 we
can give a much simpler proof.

If f is a free node and there is a zero-arc that leaves f and enters the
root, then f can be contracted with the root. Similarly we can contract every
node from where the root can be reached on a zero cost path. Obviously the
characteristic function is unaffected by this transformation. Now take a free
node p and transform the network in the following way. We assign additional
ε > 0 costs to the zero arcs of p one after another until one of them becomes
a critical arc. Note that if all the zero arcs are replaced in this way, we may
have to canonize the graph again. This however does not affect the game as
P1 leaves the characteristic function untouched and p will still have a critical
arc. The core inequalities are continuous in the arc costs. Since each coalition
uses at most one non-zero arc that leaves p, each core inequality is shifted by
at most ε. By Lemma 9 we can reroute the critical arc to the root. By taking
ε→ 0 we obtain a new network with the same core, but where p has a zero-arc
that enters the root. Thus p can be contracted with the root.

Note that rerouting the critical shortcuts and contracting the free nodes
with the root do change the characteristic function of the game. Thus they are
not equivalent transformations, as opposed to the canonization which leaves
the characteristic function untouched.

24 Balázs Sziklai et al.

r, c{3}

a{1}

b{2}

d{4}

e{5}

f{6}

g{7}

h{8}

i{9}

100

200

2

2

0

2

0

0

4

3

Fig. 7 Simplified network of Example 3. Node c is contracted with the root, while the
shortcut of g is rerouted from a to r.

8 Applicability of our results

Let us examine Example 3 one last time. In light of Lemmata 9 and 10 the
network can be simplified (see Figure 7). Although the DAG-games induced
by the player-networks of Figure 6 and 7 generate different characteristic func-
tions, they are equivalent from the point of view of the core or the nucleolus4.

Many technical results (e.g. Theorem 3 and Lemma 6) become apparent
due to these transformations. By looking at Figure 7 it is clear that player 3
will not pay anything in the core. It is also evident that players 1 and 2 cannot
expect help from other players. They have to construct their rather expensive
links alone. Moreover player 7 will not play more that two units in the core
due to its shortcut.

Whether the core can be described efficiently with dually essential coali-
tions, depends on how many distinct proper branches of standard form exist
in the network. Unfortunately as the next example shows there can be expo-
nentially many dually essential coalitions in a DAG-game.

q1{1} qj{j} qn{n}

p{n+1}

r

0 0 0

1

.

ε ε ε

Fig. 8 A DAG-network with exponential many proper branches. Solid lines indicate TN -
arcs, while dotted lines are shortcuts.

4 Note that the simplifications of Lemmata 9 and 10 alter the Shapley-value (and many
other solution concept) of the game. This also sheds a light why the Shapley-value is not a
good solution concept in case of DAG-games. It is easy to generate an example where the
Shapley-value lies outside the core. Alternatively one could argue that the core conditions
are too demanding. It is unrealistic that the residents of free nodes - like player 3 in this
example - do not contribute to the construction costs.

On the Core and Nucleolus of Directed Acyclic Graph Games 25

Example 4 Consider the DAG-network depicted in Figure 8. The root has only
one direct descendant, namely p, while the nodes q1, . . . ,qn are the children
of p. Each of the qj nodes have one additional arc – a shortcut – that enters
the root. The cost of the shortcuts are chosen in such way that their total
cost is less than the cost of the TN -arc of p. For instance let δ(ap) = 1, and
δ(as) = ε = 1

n+1 for each shortcut as ∈ A. Let us assume that one player
resides in each node, the jth player at qj and the (n+1)st player at p. Let N ′

denote the set of the first n players. For an arbitrary S ⊂ N ′, TS correspond to

V \BQS
p , where QS

def
= {qj | j ∈ S}. Thus any subset of N ′ is dually essential.

As there are n player in N ′ there are at least 2n dually essential coalitions in
this game.

The good news is that whenever we can efficiently enumerate all proper
branches of the network we can obtain a description of the core. If BQp is a

proper branch, then V \ BQp corresponds to a trunk T . However, this trunk

might be not the cheapest trunk for coalition S = N(V \BQp). It might happen

that the residents of Q can save some cost by constructing BQp or a part of
it. Checking whether T is the cheapest trunk, involves the NP-hard Steiner
arborescence problem. Luckily we do not need to check whether TS = T or
not. If it is then S is dually essential. If it isn’t, then S is dually inessential
and cD(S) = C(TS) < C(T). The dually inessential coalitions are redundant
in the computation of the core or the nucleolus of the game. By weakening the
cD(S) ≥ x(S) inequality that corresponds to a dually inessential coalition we
cannot cut into the core, i.e. the coalition remains redundant.

Now we provide a large family of DAG-games where there are polynomi-
ally many proper branches. We define the width of a DAG-network as the
maximum number of nodes that can be chosen from the node set, such that
any two chosen nodes are incomparable, i.e. neither of them is an ancestor or
descendant of the other5.

Lemma 11 Let D be a canonized DAG-network of width k and let m denote
the number of nodes in the graph. There are at most O(mk+1) number of
proper branches in D.

Proof We argue that every branch in D can be characterized by choosing at
most k + 1 nodes appropriately. Then the lemma follows from the fact that(
m
k+1

)
≤ mk+1. From Lemma 8 we know that if q ∈ BQp ,q 6= p then every key

ancestor of q lies inside BQp . This implies that each q′ such that p � q′ � q is

contained in BQp . Let q1, . . . ,q` the maximum number of incomparable nodes

that we can choose from BQp such that no descendant of qj is an element of

BQp for 1 ≤ j ≤ `. We claim that the nodes p,q1, . . . ,q` characterize BQp .
We use a coloring argument. First we color the nodes q1, . . . ,q` then we color
all their descendants till we reach p, finally we color p. Notice that a node is
colored if and only if it is an element of BQp . No descendant of the qj nodes

5 If we think about the DAG as a partially ordered set then width is equivalent to the
cardinality of the maximum antichain the poset has.

26 Balázs Sziklai et al.

is an element of BQp and we included all the descendant of the qj nodes.

An uncolored node p′ ∈ BQp would contradict that we choose the maximum
number of incomparable nodes. Since ` ≤ k each branch can be described by
at most k + 1 node.

Our last theorem summarizes our findings.

Theorem 6 There exists a polynomial time algorithm in the number of play-
ers to compute the core and the nucleolus of any DAG-game that is induced
by a fixed width canonized DAG-network.

Theorem 6 is a direct corollary of Lemma 11 and the fact that the cost
of the (n − 1)-player coalitions can be easily calculated for any DAG-game.
Hence, all the dually essential coalitions can be accounted for. Dually essential
coalitions form a characterization set for the nucleolus and describe the core,
thus, we are done.

Note that efficiency in Lemma 11 is measured in the number of nodes while
the time complexity of the algorithm in Theorem 6 is measured in the number
of players. This does not create any inconsistency as we are only interested in
saturated coalitions. Hence there is a one-to-one correspondence between the
BQp branches and the interesting coalitions.

Finally, let us note, that similarly to the painting algorithm which computes
the nucleolus for standard tree games (Maschler et al, 2010), a fast graph based
algorithm can be designed for the nucleolus of some families of canonized DAG-
games. Sziklai (2015) demonstrates how such an algorithm can be implemented
in DAG-networks that have no shortcuts. Furthermore, he conjectures that the
extension of this algorithm works for DAG-networks where every shortcut is
critical. It is unclear how hard the general case is. However, due to Theorem
2, it is unlikely that a polynomial time algorithm exists for networks where
property (*) does not hold.

Acknowledgements

The authors would like to thank Prof. Tamás Király of ELTE Operations Re-
search Department and the anonymous referees for their valuable comments.
Research was funded by OTKA grants K101224 and K108383 and by the Hun-
garian Academy of Sciences under its Momentum Programme (LD-004/2010).
This research was also partially supported by MTA-ELTE Egerváry Research
Group and by Pallas Athene Domus Scientiae Foundation. The views expressed
are those of the authors’ and do not necessarily reflect the official opinion of
Pallas Athene Domus Scientiae Foundation.

References

Bergantiños G, Vidal-Puga JJ (2007) A fair rule in minimum cost spanning
tree problems. Journal of Economic Theory 137:326–352

On the Core and Nucleolus of Directed Acyclic Graph Games 27

Bird C (1976) On cost allocation for a spanning tree: A game theoretic ap-
proach. Networks 6:335–350

Bjørndal E, Koster M, Tijs S (2004) Weighted allocation rules for standard
fixed tree games. Math Methods of Operations Research 59(2):249–270

Bogomolnaia A, Moulin H (2010) Sharing a minimal cost spanning tree: Be-
yond the folk solution. Games and Economic Behavior 69:238–248

Deng X, Fang Q, Sun X (2009) Finding nucleolus of flow game. Journal of
Combinatorial Optimization 18(1):64–86

Faigle U, Kern W, Hochstättler W, Fekete S (1997) On the Complexity of
Testing Membership in the Core of Min-Cost Spanning Tree Games. Inter-
national Journal of Game Theory 26(3):361–366

Faigle U, Kern W, Kuipers J (1998) Computing the nucleolus of min-cost
spanning tree games is np-hard. Int Journal of Game Theory 27:443–450

Granot D, Granot F (1992) Computational complexity of a cost allocation ap-
proach to a fixed cost spanning forest problem. Mathematics of Operations
Research 17(4):765–780

Granot D, Huberman G (1981) Minimum cost spanning tree games. Mathe-
matical Programming 21:1–18

Granot D, Huberman G (1984) On the core and nucleolus of minimum cost
spanning tree games. Mathematical Programming 29(3):323–347

Granot D, Maschler M (1998) Spanning network games. International Journal
of Game Theory 27:467–500

Granot D, Granot F, Zhu WR (1998) Characterization sets for the nucleolus.
International Journal of Game Theory 27(3):359–374

Huberman G (1980) The nucleolus and essential coalitions. In: Bensoussan A,
Lions JL (eds) Analysis and Optimization of Systems, Elsevier B.V., Lecture
Notes in Control and Information Sciences, vol 28, pp 416–422

Hwang FK, Richards DS, Winter P (1992) The Steiner Tree Problem, Annals
of Discrete Mathematics, vol 53. North-Holland

Kuipers J (1997) Minimum cost forest games. International Journal of Game
Theory 26:367–377

Maschler M, Peleg B, Shapley L (1979) Geometric properties of the kernel,
nucleolus and related solution concepts. Math Oper Res 4:303–338

Maschler M, Potters J, Reijnierse H (2010) The nucleolus of a standard tree
game revisited: a study of its monotonicity and computational properties.
International Journal of Game Theory 39(1-2):89–104

Megiddo N (1978) Computational Complexity of the Game Theory Approach
to Cost Allocation for a Tree. Math of Operations Research 3(3):189–196

van den Nouweland A, Tijs S, Maschler M (1993) Monotonic Games Are Span-
ning Network Games. International Journal of Game Theory 21(4):419–27

Potters JAM, Sudhölter P (1999) Airport problems and consistent allocation
rules. Mathematical Social Sciences 38:83–102

Reijnierse H, Potters JAM (1998) The B-nucleolus of tu-games. Games and
Economic Behavior 24:77–96

Rosenthal EC (1987) The minimum cost spanning forest game. Economics
Letters 23:355–357

28 Balázs Sziklai et al.

Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM
Journal on Applied Mathematics 17:1163–1170

Skorin-Kapov D, Skorin-Kapov J (2012) A note on steiner tree games. Net-
works 59(2):215–225

Solymosi T, Sziklai B (2016) Characterization sets for the nucleolus in balanced
games. Operations Research Letters 44:520–524

Sziklai B (2015) On the computation of the nucleolus of cooperative transfer-
able utility games. Phd thesis, Eötös Loránd University, Budapest

Sziklai B, Fleiner T, Solymosi T (2014) On the core of directed acyclic graph
games. IEHAS Discussion Papers MT-DP 2014/18

Trudeau C (2012) A new stable and more responsive cost sharing solution for
minimum cost spanning tree problems. Games and Econ Beh 75:402–412

Appendix A

Theorem 2 Let N be a player set and ĉ : 2N → R a monotonic, subadditive
cost function. There exists a DAG-network D = (G(V,A), δ) and a residency
mapping R : N → V such that

c(D,R)(S) = ĉ(S) ∀S ⊆ N.

Proof We will use the characteristic DAG-representation of ĉ. We have to show
that the cost of the cheapest trunk of any coalition S equals to ĉ(S). This is
trivially true for the singleton coalitions. Each player – as a singleton – will
use its direct connection to the root as any other route could be only more
expensive due to the monotonicity of ĉ. Now let S be an arbitrary non-singleton
coalition. We may suppose that δ(aS) > 0, otherwise both ĉ(S) and c(D,R)(S)
are trivially zero. Let T ′ be the trunk whose arc set consists of aS and the
zero arcs {aiS | i ∈ S} and whose node set consists of the nodes spanning these
arcs. We will prove T ′ ∈ TS . Let T ∈ TS and suppose that {aS1 , . . . , aSk

} are
the non-zero arcs of T . If S = S` for some ` ∈ {1, . . . , k}, then by deleting
the aSj

, j 6= ` arcs and the zero arcs that enter pSj
, j 6= ` we can obtain T ′.

This would imply T ′ ∈ TS as the cost could only decrease by deleting these
arcs. If S ⊂ S` for some ` ∈ {1, . . . , k}, then again we can obtain a weakly
cheaper trunk by connecting the members of S via aS and deleting all the
other aS`

arcs. Thus S` ⊂ S for all ` ∈ {1, . . . , k}. Although a player may be
connected to more than one pS`

node, in real he only needs one of the aS`
arcs

to reach the root. Let us assign the players of S to one of the aS`
arcs. Let us

denote by S` ⊂ S those players of S that were assigned to S`. Note that the
{S` | ` ∈ {1, . . . , k}, S` 6= ∅} coalitions comprise a partition of S. If S` = ∅ for
some ` ∈ {1, . . . , k} then aS`

and the entering zero arcs of pS`
can be deleted.

If ∅ 6= S` ⊂ S` then the players of S` can be reassigned to aS` , that is, we
can delete aS`

and the entering zero arcs of pS`
and construct aS` and the the

entering zero arcs of pS` instead. Due to the monotonicity, the cost can only
decrease this way, while all the players of S are still able to reach the root.

On the Core and Nucleolus of Directed Acyclic Graph Games 29

Let us perform this transformation for all the S` coalitions. We obtain a trunk
T̂ ∈ TS such that

A(T̂) = {aS` | ` ∈ {1, . . . , k}, S` 6= ∅} ∪ {aiS` | ` ∈ {1, . . . , k}, S` 6= ∅, i ∈ S}.

By the subadditivity of ĉ

ĉ(S) ≤
∑

`∈{1,...,k},S` 6=∅

ĉ(S`)

δ(aS) ≤
∑

`∈{1,...,k},S` 6=∅

δ(aS`)

Thus, T ′ is as least as cheap as T̂ , from which T ′ ∈ TS follows.

Lemma 1 The node set of every trunk that corresponds to a coalition S ⊂ N
can be obtained by deleting some branches from V . The removed branches can
be chosen in such way that each of them originates from a passage. Formally
for any S ⊂ N there exists Q1, . . . , Qk ⊂ V and p1, . . . ,pk ∈ V such that

V (TS) = V \ ∪kj=1B
Qj
pj ,

where pj is a passage for all j ∈ {1, 2, . . . , k}.

Proof Any trunk T has a representation where V (T) is obtained by removing
branches from V (any single node is a branch in itself if we trim all its children).
The only thing we need to prove is that these branches can be picked in such
way that each of them originates from a passage. Let {p1, . . . ,pk} ⊂ V \V (TS)
denote those passages that connect to V (TS) from the outside, i.e. for which
π(pj) ∈ V (TS) for all j = 1, . . . , k. Due to the definition of TS there exists
at least one such passage. Note that any entering zero arc is included in the
trunk of S even if no player of S resides there, due to the definition of TS . If we
remove all the Bp1

, . . . , Bpk
branches from V it can happen that we removed

some nodes in V (TS) as well i.e. V \ (∪kj=1Bpj
) ⊂ V (TS). In order to retain

all the nodes of V (TS) we trim the Bpj
branches where they intersect with

V (TS). Let Qj = V (TS) ∩ Bpj then B
Qj
pj is a proper branch for any j and

V (TS) = V \ (∪kj=1B
Qj
pj).

Lemma 4 If BQp is a building block, then x(N(BQp)) = τ(BQp , N) for any core
allocation x.

Proof Since π(p) is free, it is a junction and x(N(π(p))) = 0. We know from
Theorem 3 that exc(N(V \Bπ(p)), x) = 0 for any core allocation x. It follows
that exc(N((V \Bπ(p))∪{π(p)}), x) = 0 is also true. With a similar argument
as in Lemma 3 it can be shown that x(N(BQp)) ≤ τ(BQp , N).

Each node of Q has (at least) two semi-arc-disjoint paths that leads to the
root. As BQp does not contain a free node one of these paths for each node

by-passes BQp . We prove this by contradiction. Let q ∈ Q an arbitrary free
node. Suppose there exists two semi-arc-disjoint paths in TN , P1 and P2 that

30 Balázs Sziklai et al.

leads from q to the root and crosses BQp . Let q1 ∈ BQp ∩ V (P1) be such that

there exist no other q′ ∈ BQp ∩ V (P1) such that q′ ≺ q1. Similarly let q2 be

the node closest to the root that is an element of both BQp and P2. As q1 and
q2 lie on semi-arc-disjoint paths, one of them – say q1 – is not p. Thus the P1

path leaves the BQp node set at q1 on a zero-arc. There leads a path in TN from

q1 to π(p) through BQp that is arc-disjoint of P1. As π(p) is free there leads
two semi-arc-disjoint paths P3 and P4 from π(p) to the root. Without loss of
generality we may assume that P1 intersects with P3 first (or at the same time
as it intersects with P4). Let us denote this node by q∗. Note that if q∗ is a
common node of P3 and P4 it is a junction, otherwise the two paths would
not be semi-arc-disjoint. Let PA be the path that starts from q1, follows P1

till q∗, then reaches the root following P3. Let PB be the path that originates
at q1,reaches π(p) using only TN -arcs and nodes from BQp , and goes to the
root following P4. By construction PA and PB are semi-arc-disjoint, thus q1

is free, which contradicts the assumption that BQp is a building block.
It follows that there exists a path in TN for every q ∈ Q that leads to the

root, that does not pass through any node of BQp . A straightforward conse-

quence is that BQp is a proper branch and every node in V \ BQp can reach

the root by using only TN -arcs. Note that there is no zero-arc that leaves BQp
and enters in V \BQp , otherwise BQp would contain a free node. Thus the node

set V \BQp corresponds to a trunk, namely to TN(V \BQ
p). Finally, for any core

allocation x

cD(N)− x(N) = [cD(N(V \BQp))− x(N(V \BQp))] + [τ(BQp , N)− x(N(BQp))]

0 = [exc(N(V \BQp)), x)] + [τ(BQp , N)− x(N(BQp))]

Both expressions in the square brackets are non-negative, thus x(N(BQp)) =

τ(BQp , N).

Lemma 5 Let ∪kj=1B
Fj
pj be a union of branches such that pj is a passage,

π(pj) ∈ F and Fj ⊂ F for j = 1, . . . , k. Then ∪kj=1B
Fj
pj can be decomposed

into a disjoint union of building blocks and free nodes.

Proof The proof proceeds by induction on the number of nodes. If ∪kj=1B
Fj
pj

consist of a single node, then k = 1 and BF1
p1

must be a building block. Now

suppose the lemma is true for node sets with less than l nodes and let | ∪kj=1

B
Fj
pj | = l. Let BQp1

be a branch where Q = Bp1
∩F and let BQ

′

p1
be the standard

form of this branch. Note that BQ
′

p1
is a building block and it is a subset of

BF1
p1

. Let us delete BQ
′

p1
from BF1

p1
. If Q′ ∩ BF1

p1
is not empty we delete those

nodes too (these are free as all the nodes of Q′ are free). If some descendant
of a node in Q′ is a junction then it is free therefore it can be deleted too.
If we deleted all the free nodes in this way and there are still some nodes in
BF1

p1
then those must be passages. Let us denote these by p′1, . . . ,p

′
K . Note

that π(p′1), . . . , π(p′K) ∈ F . Hence the remaining nodes can be written as

∪Ki=1B
F1

p′
i
∪kj=2 B

Fj
pj . By reindexing p′i we are done as | ∪Ki=1 B

F1

p′
i
∪kj=2 B

Fj
pj | < l.

	Introduction
	Game theoretic framework
	Definition and basic properties of DAG games
	More on the class of DAG-games
	The canonization process and its consequences
	Structure of the core
	Finding the core of a DAG-game
	Applicability of our results

