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Abstract: The thermal decomposition of the by-products of the biodiesel process was studied by 

thermoanalytical methods. De-oiled algae cake and jatropha seed de-oiled cake were pyrolyzed 

and the catalytic effects of silica supported iron catalysts (Fe/FSM-16 and Fe/SBA-15) and 

magnetite (Fe3O4) were tested. The evolution profiles of the decomposition products as well as 

the thermal stability of the samples were determined by thermogravimetry/mass spectrometry 

(TG/MS). The formation of the volatile products was monitored by pyrolysis-gas 

chromatography/mass spectrometry (Py-GC/MS). The composition and the amounts of the 
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gaseous products changed significantly in the presence of the silica supported iron catalysts: the 

yield of hydrogen and carbon monoxide considerably increased above the decomposition 

temperature of 400 °C. Both silica supported iron catalysts had important effects on the yield of 

the products originating from carbohydrates and lignins. The formation of anhydrosugars and 

phenolic compounds was hindered, while the evolution of aromatic and aliphatic hydrocarbons 

was enhanced. Fe/FSM-16 proved to be more efficient than Fe/SBA-15 and Fe3O4 catalysts. The 

thermal decomposition of the protein content of the samples resulted in the formation of 

2,5-diketopiperazines and smaller molecules (e.g., ammonia). The silica supported iron catalysts 

had a special effect: their presence promoted the reaction of fatty acid esters and ammonia 

resulting in the formation of alkyl nitriles during the thermal decomposition. 

 

Keywords: Algae, jatropha seed, pyrolysis-gas chromatography/mass spectrometry, 

thermogravimetry/mass spectrometry, magnetite, Fe/FSM-16, Fe/SBA-15 

 

1 INTRODUCTION 

The applied mineral oil and natural gas can be partially substituted by renewable energy carriers 

hereby decreasing the consumption of fossil fuels. Biodiesel becomes more and more popular as 

a substitute for fossil transport fuels. Therefore, it is important to find novel renewable raw 

materials for the biodiesel production.  

Algae are aquatic plants, which synthesize organic compounds from simple substances present in 

the surrounding water using light energy. Microalgae can be utilized in several ways, producing 

four types of renewable energy carriers: biodiesel,
1,2

 bioethanol, hydrogen
3
 and biogas;

4
 

moreover it is used in the nutrition, and cosmetic industry.
5
 The algal oil can be extracted and 
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converted into biodiesel using different catalysts in a fixed bed reactor as reported by Krohn et 

al.
6
 Biodiesel can be produced by various methods as demonstrated in the literature.

2,7,8
 The 

bioenergy content of algae can be utilized by transformation into bioethanol, as well.
3
 Green 

algae are able to generate hydrogen from water during the photosynthesis.
9
 It means that 

hydrogen fuel could be produced essentially from water and sunlight if the appropriate 

technology were developed.
9-11

 At the end of their life cycle microalgae should be utilized for 

other purposes. Microalgae have lower lignin and hemicellulose content
12

 comparing to the 

terrestrial plants, but they contain protein, which has to be taken into consideration during the 

biomass utilization process.  

Jatropha is a genus of flowering plants belonging to the family of Euphorbiaceae. This bushy tree 

is indigenous to America and India. Jatropha is one of the best candidates for the biodiesel 

production in India because about 40% of the seed mass is oil.
13

 This opportunity is widely 

studied mainly in the habitat of this plant species, e.g., in India,
14

 Tanzania
15

 and Malaysia.
16

 

Jatropha seeds contain carcinogen phorbol molecules
17-19 

and highly poisonous toxalbumins, 
17

 

hence the by-products of the oil production are not suitable for animal nutrition.  

The thermal conversion of the solid residues of the oil extraction process from jatropha seeds and 

microalgae may be a promising way to generate advanced biofuels from biomass by-products. 

The decomposition processes can be more efficient by applying suitable catalysts because the 

composition of the pyrolysis products can be more advantageous or the pyrolysis temperature can 

be decreased resulting in energy saving. 

The pyrolysis oil originating from plant biomass has numerous oxygen-containing organic 

compounds, which reduce the quality of the product. Various types of catalysts have been tested 

in order to lower the oxygen content of the oil, including zeolites and metal oxides.
20

 HZSM-5 
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zeolite was found as a promising catalyst to convert microalgae into aromatic hydrocarbons and 

ammonia by catalytic pyrolysis.
20

 

SBA-15 mesoporous silica nanoparticles were prepared for the first time by Zhao and co-workers 

in 1998.
21,22

 SBA-15 has a highly ordered hexagonal structure with the pore size of 5-30 nm 

prepared in the presence of triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene 

oxide) copolymer (PEO-PPO-PEO) as a template.
21,22

 SBA-15 has a large specific surface area 

and high thermal stability hence it can be applied as an acidic catalyst support. Iron substituted 

SBA-15 catalyst is mostly applied to ozonation of different chemicals
23

 and reformation of 

ethanol to a hydrogen rich gas mixture.
24

 

A highly ordered mesoporous catalyst support (FSM-16) can be synthesized from kanemite 

mineral.
25,26

 The hexagonal FSM-16 support has a large specific surface area with the pore size of 

2-10 nm.
27

 The iron substituted FSM-16 was successfully applied, e.g., in waste plastics 

pyrolysis,
28

 Friedel-Crafts alkylation reaction
29

 and in photocatalytic reaction for hydrogen 

production.
30

 Silica, alumina and silica-alumina supported iron catalysts were used during 

recycling of waste lubricant oil. The catalysts promoted the cracking of the higher hydrocarbons 

into fuel oil.
31

 Magnetite is commonly used as a catalyst in several reaction types, e.g., organic 

reactions,
32

 ammonia synthesis and degradation of organic contaminants.
33

  

In this study we report the catalytic effects of mesoporous silica (SBA-15 and FSM-16) 

supported iron catalysts with the goal of upgrading the thermal decomposition products of de-

oiled algae and jatropha seed cakes. Magnetite (Fe3O4) catalyst was used for comparison with the 

silica supported iron catalysts because Fe3O4 iron phase had been formed in the supported 

catalysts after calcination. The efficiency of the catalysts was tested by thermogravimetry/mass 

spectrometry (TG/MS) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) 

techniques.  
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2 EXPERIMENTAL SECTION 

2.1. Preparation of de-oiled algal cake (DAC). Algae were collected from natural water bodies in 

Telangana, India and they were cultivated in a wastewater pond. The algal biomass sample 

consists of different alga species: Scenedesmus dimorphus, Scenedesmus quadricauda, 

Scenedesmus obliquus, Chlorella vulgaris, Chlorella minutissima and Chlorella protothecoide. 

The dried wastewater algal biomass was subjected to sonication in order to disrupt the algal cell 

wall. The oil extraction was performed using n-hexane in a Soxhlet extraction apparatus. After 

several cycles of run the concentrated oil solution was transferred into a flask and the solvent was 

evaporated using a rotary evaporator. The de-oiled algae powder was washed by hot water at 60 

°C for 2 hours in order to eliminate the main part of the water soluble organic and inorganic 

compounds of the sample. 

2.2 Preparation of jatropha seed de-oiled cake (JSDC). Jatropha seeds originate from a local 

jatropha plantation in Uttarakhand, India. Jatropha seeds were mechanically crushed and pressed 

in order to separate the liquid fraction from the solid residue. The solid phase fraction was dried 

and milled to <100 m particle size.  

2.3 Catalysts. Mesoporous silica SBA-15 and FSM-16 supported iron catalysts were used to 

upgrade the thermal decomposition products of DAC and JSDC. The silica supported catalysts 

were prepared by wet impregnation method with iron loading of 5 wt%. As a catalyst, magnetite 

(Fe3O4) powder was tested as well. The catalysts were mixed with the biomass samples in the 

ratio of 1:1 in order to ensure the contact between the catalyst and the evolving gas phase 

decomposition products. 

2.4. Thermogravimetry/mass-spectrometry (TG/MS). The TG/MS system consists of a 

modified Perkin-Elmer TGS-2 thermobalance and a Hiden HAL quadrupole mass spectrometer. 
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About 4 mg de-oiled algae and jatropha seed samples were measured in argon atmosphere at a 

flow rate of 140 ml min
-1

. Approximately 6-7 mg samples were applied in case of the algae and 

jatropha seed mixed with the catalysts in the ratio of 1:1. The samples were heated at a rate of 20 

°C min
-1

 from 25 to 900 °C in a platinum sample pan. The evolved products were introduced 

through a glass lined metal capillary heated at 300 °C into the ion source of the mass 

spectrometer which was operated at 70 eV electron energy. 

2.5. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Approximately 3 mg de-

oiled algae cake and 1.5 mg jatropha seed de-oiled powders were pyrolyzed at 550 °C for 20 s in 

helium atmosphere using a Pyroprobe 2000 pyrolyzer interfaced to an Agilent 6890A/5973 

GC/MS. The sample sizes were doubled in case of the biomass and catalyst mixtures. We applied 

relatively large sample sizes in order to ensure a better contact between the decomposition 

products of biomass samples and the catalysts. The interface and the GC injector were heated to 

280 °C. The pyrolysis products were separated on a DB-1701 capillary column (30 m × 0.25 mm, 

0.25 m film thickness). The GC oven was programmed to hold at 40 °C for 4 min then increase 

the temperature at a rate of 6 °C min
-1

 to 280 °C (hold for 7 min). The mass range of m/z 14-500 

was scanned at a rate of 3 scans s
-1

 by the mass spectrometer in electron impact mode at 70 eV 

electron energy. Two or three replicates were carried out with each sample. 

2.6. Inductively coupled plasma-optical emission spectrometry (ICP-OES). About 2 g samples 

were ashed at 550 °C in a furnace according to an EU standard method CEN/TS 14775:2004. 

Ashes were fused at 920 °C with a fusion blend (Li2B4O7:LiBO2, 2:1) and digested by 25 mL 

33% nitric acid. The inorganic ion contents of the samples were determined by a Spectro Genesis 

ICP-OES equipment (Spectro Analytical Instruments) with axial plasma observation using the 
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scanning range of 175-770 nm. The amounts of the ashes have been determined using the 

CEN/TS 14775 EU standard method. 

2.7. Protein and carbohydrate contents. The crude protein contents of the DAC and JSDC 

powders were measured by the Dumas method.
34

 The samples were combusted in an oxygen-rich 

environment at about 1000 °C and the evolving nitrogen gas was measured with a thermal 

conductivity detector (Leco protein analyzer FP528). The carbohydrate contents were determined 

according to the method of Sluiter et al.
35

 applying slight modifications: the de-oiled algae and 

jatropha powders were treated in a two-step acidic hydrolysis with 72% H2SO4 for 2 hours at 

room temperature, and then with 4% H2SO4 for 1 hour at 121 °C. The suspensions obtained were 

filtered and washed with distilled water through G4 glass filter crucibles. The sugar 

concentrations of the filtered supernatants were analyzed with high performance liquid 

chromatography (HPLC) using an Agilent 1260 instrument (Agilent Technologies, USA). An 

Aminex HPX-87H column (Bio-Rad, Hercules, CA, USA) at 65 °C and a refractive index 

detector were applied. An eluent of 5 mM H2SO4 was used at a flow rate of 0.5 ml min
-1

. The 

solid residues obtained after washing were dried at 105 °C until constant weight. The dried 

residue consisted of acid-insoluble organics (e.g., lignin) and acid-insoluble ash. The total ash 

and acid-insoluble ash contents were measured after ashing the samples at 550 °C (4 hours) to 

avoid the decomposition of calcium carbonate. 

3 RESULTS AND DISCUSSION 

3.1 Chemical composition of the biomass residues. Table 1 shows the composition of the 

samples including the organic and inorganic contents. The cellulose and hemicellulose contents 

of the biomass samples were determined using HPLC analysis after acidic hydrolysis. The de-

oiled algal cake powder contains 4.1% cellulose, while the cellulose content of the de-oiled 
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jatropha seed is much higher (15.7%). About 7.3% of DAC and 24.2% of JSDC is insoluble in 

72% H2SO4 solution. These data characterize the acid insoluble lignin content of the samples. 

According to the Dumas method, DAC and JSDC samples have relatively high protein 

concentrations, 21 and 29%, respectively. The DAC sample has 52.8% ash, while the ash content 

of JSDC is only 10.5%. Considering the high ash content of DAC it can be established that 

protein represents about 43% of the organic materials of DAC, while the carbohydrate and lignin 

contents of DAC are significantly lower than that of JSDC. This difference can be observed 

generally in the composition of aquatic and terrestrial plants. Furthermore, DAC contains 

significantly higher amounts of extractables and/or acid soluble lignin than JSDC, which can be 

explained probably by the higher residual oil content of the de-oiled algae sample.   

Table 1. Composition of the De-oiled Samples Studied.   

 

Components 
De-oiled algal 

cake (DAC) 

Jatropha seed de-oiled 

cake (JSDC) 

Organic components, m-%, db
a
 

Cellulose  4.1 15.7 

Hemicellulose  2.3 11.4 

Acid insoluble lignin  7.3 24.2 

Protein  20.5 28.8 

Other (e.g., extractables, 

acid soluble lignin)  
13.0 9.4 

Ash at 550°C (m-%), db
a
 52.8 10.5 

Inorganic components, ppm
b
 

K
+
  6005 15971 

Na
+
  3373 219 

Mg
2+

  16475 9180 

Ca
2+

  112187 10009 

P  6557 11598 

S  2070 2192 
a
Dry basis 

b
Calculated for the dry, total biomass sample 
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It is well-known that the thermal decomposition mechanisms as well as the product distribution 

of the biomass samples are considerably affected by the alkali ion concentration.
36

 Therefore the 

composition of the ash was determined by ICP-OES measurements and the concentrations of the 

inorganic ions and elements were recalculated for the basis of dry biomass samples. As Table 1 

shows, the potassium ion concentration of DAC is about 6000 ppm, while JSDC has almost 3 

times higher K
+
 content. The Na

2+
 content of JSDC is negligible. DAC has relatively high 

sodium, magnesium and calcium ion contents comparing to the jatropha seed cake. It is in 

agreement with literature data on the composition of various algae
37

 and terrestrial plants.
38

 The 

high concentration of these ions can be explained by the fact that algae are aquatic organisms and 

the sample was grown in a wastewater. The DAC sample contains high amount of Ca
2+

 mostly in 

the form of carbonate (as discussed below). The higher inorganic concentration of DAC 

comparing to JSDC explains the higher ash content, as well.  

3.2 TG/MS results. Figure 1 presents the thermogravimetric (TG) and derivative 

thermogravimetric (DTG) curves of DAC and JSDC as well as the same samples mixed with 

Fe/FSM-16, Fe/SBA-15 and Fe3O4 catalysts. The oil content of the algae and jatropha seeds was 

removed during the processing, which explains the lower organic content and the high ash 

content (Table 1.) and therefore the relatively high carbonaceous residue contents (char) of the 

samples (Figure 1a and 1c).  

TG (Figure 1a and 1c) and DTG (Figure 1b and 1d) curves show that the thermal decomposition 

of the de-oiled algae powders occurs in three main stages, while the jatropha seed de-oiled cake 

decomposes in two main steps. The first peak on the DTG curves between 50 and 180 °C can be 

attributed to the evaporation of the adsorbed water. The thermal decomposition of the organic 

compounds (e.g., carbohydrates, proteins, and residual oil) starts at 200 °C and ends at about 560 

°C. The main DTG peak has one or two shoulders indicating the different thermal stability of the 
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various organic components. The DAC sample generates a third intensive DTG peak at around 

700 °C, which can be attributed to the decomposition of calcium carbonate (Figure 1b). Studying 

the effect of the applied iron catalysts on the decomposition rate of organic compounds in DAC 

and JSDC samples (Figure 1b and 1d), it can be seen that the decomposition rate is significantly 

lower up to 400 °C in the presence of both applied silica supported catalyst. Using Fe3O4 this 

effect is less characteristic in case of DAC and the decomposition rate of the organic materials of 

JSDC is not affected by Fe3O4. 

 
Figure 1. (a, c) TG and (b, d) DTG curves of the de-oiled algae cake (DAC) and the jatropha 

seed de-oiled cake (JSDC) with and without the catalysts. 

 

Figure 2 presents the evolution profiles of the main gaseous products of DAC with and without 

catalysts. The effect of the catalysts on the evolution profile of the same ions of JSDC is very 
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similar; therefore these results have been placed into the Supporting Information as Figure S1. 

Between 400 and 560 °C a characteristic shoulder can be seen on the DTG curve, which is 

slightly more intensive using the silica supported iron catalysts. The ion intensity curve at m/z 29 

shows two maxima in each case. The first peak on the evolution profile of m/z 29 ion (at around 

310 °C) can be attributed to the CHO
+
 fragment of the aldehyde compounds. The second peak of 

m/z 29 ion (at about 450 °C) overlaps with the characteristic shoulder of the DTG curve.  

 

Figure 2. Evolution profiles of the main gaseous decomposition products (m/z 2, hydrogen; m/z 

17, ammonia; m/z 28, carbon monoxide; m/z 29, formyl and ethyl groups; m/z 44, carbon dioxide) 

derived from the de-oiled algae cake (DAC) (a) without catalysts, in the presence of (b) Fe/FSM-

16, (c) Fe/SBA-15, and (d) Fe3O4 catalysts. 
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The weight loss in this temperature range can be attributed most probably to the decomposition of 

the remaining oil fraction of algae. The m/z 29 ion curve at around 450 °C (Figure 2) mostly 

represents ethyl group, which is a mass spectrometric fragment ion of the hydrocarbons. The 

presence of alkane and 1-alkene decomposition products in the pyrolyzate (see later) also 

supports this assumption. The evolution profiles of the mass spectrometric curve at m/z 17 

represent the formation of ammonia during the TG/MS measurements. It should be noted that 

water also has a fragment ion at m/z 17; however, its intensity was subtracted from the total 

intensity of m/z 17. The main source of the evolving ammonia is the protein content of the 

samples (Table 1), which is about 20% in case of DAC. The catalysts hinder the ammonia 

production to some extent. 

The final decomposition step of the DAC sample takes place between 600 and 800 °C. The 

inorganic carbonate content (mostly calcium carbonate) decomposes into metal oxide and carbon 

dioxide as the evolution curve of CO2 (m/z 44) implies in Figure 2. Further charring reactions of 

the solid residue also take place indicated by the release of hydrogen and carbon-monoxide. 

When using Fe3O4 catalyst, there is another carbon dioxide peak at about 820 °C, which 

coincides with a high carbon monoxide peak (Figure 2d). This can be explained by the oxidation 

of the carbonaceous residue with Fe3O4 leading to the formation of CO and CO2. This reaction 

can also be seen on the DTG curve of JSDC (Figure 1d). As a result of the char oxidation, the 

total weight loss of DAC and JSDC is the highest in the presence of magnetite. This reaction is 

much less significant when Fe/FSM-16 and Fe/SBA-15 were applied, which indicates that the 

iron bonded to the silica support material is not capable to oxidize the char at about 800 °C.  

The evolution of hydrogen and carbon monoxide from DAC sample is substantially more 

intensive using Fe/FSM-16 or Fe/SBA-15 catalysts, as shown in Figure 2b and 2c, while they are 

slightly increased in the presence of magnetite (Figure 2d). Similar catalytic effect was observed 
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in case of de-oiled jatropha seed sample. This observation can be related to the fact that the main 

devolatilization step between 200 and 400 °C is significantly hindered applying the silica 

supported iron catalysts. Apparently more hydrogen and oxygen remained in these samples, 

which are released in the form of H2 and CO above 600 °C during the charring process.   

3.3 Pyrolysis results. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) 

measurements have been performed to reveal the effect of iron catalysts on the pyrolysis product 

distribution of DAC and JSDC samples. On the basis of the TG curves (Figure 1), 550 °C 

pyrolysis temperature was selected representing the temperature of the complete decomposition 

of the organic materials. Above 550 °C only the decomposition of inorganic carbonates and 

charring reactions occur (between 600 and 900 °C).  

Figure 3 and Figure 4 illustrate the pyrograms of DAC and JSDC (a) and the samples mixed with 

Fe/FSM-16 (b), Fe/SBA-15 (c) and magnetite (d) catalysts. Since the pyrolysis experiments were 

performed with small sample sizes, the catalysts were mixed with the samples in the ratio of 1:1 

in order to make sure the contact between the decomposition products and the catalysts. The 

identification as well as the relative peak areas (%) of the pyrolysis products are listed in Table 2.  

In order to understand the changes in the chemical composition of the pyrolysis oil, the main 

decomposition products were organized into groups and the relative peak areas of these 

compounds were summed. These results are presented in Table 3 and in the pie charts found in 

the Supporting Information (Figure S2). The quantitative determination of the gaseous products is 

quite uncertain by Py-GC/MS due to the poor resolution, so the GC peaks eluting between 2.2 

and 2.5 min retention times were omitted from the relative peak area % calculation. The 

identification of the molecules is based on their NIST mass spectral library and literature data.
39-

42
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The unresolved peaks at lower retention times (G in Figure 3 and 4) represent the evolution of 

gaseous and vapor products of low molecular weight, e.g., carbon dioxide, water and methane, 

which may be formed by the scission of various functional groups of several components.  

 

Figure 3. Pyrograms of (a) DAC, (b) DAC + Fe/FSM-16, (c) DAC + Fe/SBA-15 and (d) DAC + 

magnetite catalysts at 550 °C. Peak identities are given in Table 2. 
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Figure 4. Pyrograms of (a) JSDC, (b) JSDC + Fe/FSM-16, (c) JSDC + Fe/SBA-15, and (d) JSDC 

+ magnetite catalysts at 550°C. Peak identities are given in Table 2. 
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Table 2. The Main Decomposition Products Released in the Py-GC/MS Experiment at 550 °C of 

DAC and JSDC Samples with and without Catalysts. Peak Numbers refer to the Peaks in Figs. 3 

and 4. 

No. 
RT 

(min) 
Compounds 

Most abundant 

ions, molecular ion 

(m/z) 

Possible 
origina 

Area 

%b 

DAC 

Area %b 

DAC 

Fe/FSM16 

Area %b 

DAC 

Fe/SBA15 

Area 

%b 
DAC 

Fe3O4 

Area 

%b 

JSDC 

Area %b 

JSDC 

Fe/FSM16 

Area %b 

JSDC 

Fe/SBA15 

Area 

%b 
JSDC 

Fe3O4 

1 2.57 1-Pentene 42, 55, 70 E 2.52 3.22 2.74 2.48 2.74 1.73 2.17 1.51 

2 2.83 Acetone 43, 58 CH 0.59 0.76 0.64 0.63 0.46 0.70 0.64 0.24 

3 2.90 Hexane + 1-Hexene 41, 56, 86, 84  E 0.85 0.73 0.81 0.93 0.55 0.86 0.89 0.27 

4 3.01 Acetonitrile 41, 40, 39 CH, P 1.38 2.66 1.21 1.46 0.94 2.07 0.63 0.65 

5 3.81 Benzene 78, 52, 50 L, P 
 

   0.45 1.18 0.62 0.49 

6 5.12 Acetic acid 43, 45, 60 H, L 1.13 0.26 0.71 0.72 1.41 1.10 1.90 0.55 

7 5.51 Octane + 1-Octene 41, 55, 114, 112 E 0.57 1.05 0.61 0.43 0.45 0.93 0.61 0.23 

8 5.90 Toluene 91, 92 L, P 6.90 8.13 5.23 5.44 3.57 5.46 3.24 2.24 

9 6.90 3-Methylbutanenitrile 43, 41, 68, (83) P 0.54 0.83 0.52 0.58     

10 8.06 2-Methylpyridine 93, 66, 78 P 0.38 0.74 0.36 0.24 0.25 0.57 0.18 0.16 

11 8.21 Nonane + 1-Nonene 56, 41, 128, 126 E 0.89 1.22 0.86 0.81 0.42 0.94 0.73 0.19 

12 8.46 Ethylbenzene 91, 106, 65 L, P 0.86 0.99 0.54 0.63 0.51 0.73 0.44 0.31 

13 8.64 Pyrrole 67, 39, 41 P 1.29 1.79 1.21 1.39 0.91 1.38 0.81 0.36 

14 8.69 p-Xylene 91, 106, 105 L, P 0.65 0.94 0.67 0.49 0.50 0.71 0.46 0.41 

15 9.52 o,m-Xylene 91, 106, 105 -L, P 0.17 0.55 0.22 0.17 0.14 0.37 0.22 0.12 

16 9.77 Styrene 104, 103, 78 L, P 1.26 2.15 0.90 1.37 0.58 1.11 0.58 0.25 

17 10.11 2-Cyclopentene-1-one 82, 39, 54 CH 0.45 0.51 0.36 0.33 0.19 0.56 0.76 0.07 

18 10.16 Furfural 96, 95, 39 CH 0.38 0.27 0.23 0.36 0.32 0.35 0.37 0.08 

19 10.28 4-Methylpentanenitrile 55, 43, 41, (97) P 0.42 0.80 0.40 0.29     

20 10.98 3-Methyl-1H-pyrrole 80, 81, 53 P 0.78 1.49 0.98 0.90 0.35 0.74 0.31 0.17 

21 11.09 Decane + 1-Decene 70, 57, 142, 140 E 0.85 1.00 0.65 0.65 
 

0.63 0.52 0.11 

22 11.14 2-Methyl-1H-pyrrole 80, 81, 53 P 1.22 2.26 1.11 0.77 0.58 1.18 0.55 0.25 

23 11.72 2-Methyl-2-cyclopenten-1-one 67, 53, 96 CH 0.86 0.83 0.50 0.57 0.30 0.68 0.55 0.15 

24 13.19 2,3-Dimethyl-1H-pyrrole 94, 95, 80 P 0.42 0.63 0.40 0.22     

25 13.28 1,2-Cyclopentanedione 98, 55, 69 CH 0.69 0.53 0.38 0.43 0.74 0.46 0.60 0.35 

26 13.46 2,3-Dimethyl-1H-pyrrole 94, 95, 80 P 0.29 0.60 0.30 0.19     

27 13.53 2,4-Dimethyl-1H-pyrrole 94, 95, 80 P 0.85 1.32 0.75 0.49     

28 13.65 2-Propenyl-benzene 117, 118, 115 L, P 0.45 0.72 0.37 0.29     

29 13.79 Undecane 57, 71, 134 E 0.29 0.61 0.43 0.17     

30 13.82 1-Undecene 55, 70, 132 E 0.51 0.58 0.51 0.42     

31 13.97 
5-Methyl-2-

furancarboxaldehyde 
110, 109, 53 CH 0.34 0.50 0.47 0.24     

32 14.34 3-Methyl-2-cyclopenten-1-one 96, 67, 53 CH 1.07 1.46 0.99 0.74 0.54 0.95 0.74 0.26 

33 14.52 Benzonitrile 103, 76, 50 P 
 

0.36 0.24 0.52 0.19 0.46 0.19 0.30 

34 14.64 Aniline 93, 66, 65 P     1.17 1.34 0.83 0.71 

35 15.84 
2-Hydroxy-3-methyl-2-
cyclopenten-1-one 

112, 55, 69 CH 0.83 
 

0.89 0.65 0.62 0.42 0.60 0.34 

36 16.34 Dodecane 57, 71, 170 E 0.17 0.44 
 

0.10     

37 16.37 1-Dodecene 41, 55, 168 E 0.26 0.49 0.34 0.27     

38 16.80 Phenol 94, 66, 67 L, P 1.82 1.08 0.86 1.90 2.20 2.22 1.24 2.35 

39 17.04 1H-Pyrrole-2,5-dione 97, 54, 69 P 0.52 0.46 0.33 0.50     

40 17.06 Guaiacol 109, 124, 81 L     1.17 0.59 1.52 1.16 

41 17.95 2-Methylphenol 108, 107, 79 L 0.71 0.36 0.31 0.53 0.77 0.66 0.43 0.65 

42 18.70 Tridecane 57, 43, 71, 184 E 0.34 0.57 0.23 0.23     

43 18.74 1-Tridecene 55, 69, 97, 182 E 0.47 0.49 0.41 0.44     

44 18.80 4-Methylphenol 107, 108, 77 L 3.60 1.93 1.82 3.00 1.89 1.58 1.42 1.19 

45 18.83 3-Methylphenol 107, 108, 77 L     0.55 0.59 0.87 0.94 

46 19.35 Benzylnitrile 117, 90, 116 P 0.92 0.92 0.82 1.15 0.73 0.72 0.57 0.31 

47 19.52 Anhydrosugar 44, 57 CH     0.57   0.63 

48 19.53 3-Methylguaiacol 138, 123 L     0.46 
 

0.58 0.45 

49 19.87 2,4-Dimethylphenol 122, 107, 121 L 0.76 
 

0.37 0.50 0.67 0.52 0.34 0.57 

50 20.81 4-Ethylphenol 107, 122, 77 L 0.90 0.40 0.27 0.47 0.49 0.31 0.16 0.68 

51 20.93 Tetradecane 57, 43, 194 E 0.41 0.47 0.34 0.29     
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52 20.97 1-Tetradecene 55, 69, 196 E 0.41 0.76 0.60 0.41     

53 21.48 2,5-Pyrrolidinedione 28, 99, 56 P 2.44 1.31 1.68 1.96 3.21 1.25 3.53 3.39 

54 22.00 Benzene-propanenitrile 91, 131, 65 P 0.13 1.65 1.17 0.89     

55 22.20 
1,4:3,6-dianhydro--D-

glucopyranose 
69, 57, 98, 144 C 0.72   0.65 0.63 

 
0.34 0.65 

56 22.67 1H-Pyrrole-2-carbonitrile 92, 65, 41 P  0.39 0.51 0.92     

57 22.67 4-Vinylguaiacol 137, 152 L     0.67 0.65 0.73 0.97 

58 22.75 4-Vinylphenol 120, 91, 65 L 1.09 0.28 0.41 0.81 0.82 0.38 0.51 0.67 

59 23.02 Pentadecane 57, 71, 212 E 0.49 0.87 0.51 0.35  0.69 0.34  

60 23.07 1-Pentadecene 55, 69, 210 E 0.59 0.75 0.74 0.65  0.58 0.36  

61 23.84 Syringol 154, 139, 111 L     0.94 0.45 1.22 2.11 

62 23.90 Indole 117, 90, 89 P 2.30 2.60 2.11 2.20 1.44 1.63 1.12 1.35 

63 24.44 Eugenol 164, 149, 103 L     0.83   0.63 

64 24.64 Propiram 98, 42, 56, (275) P 1.26   0.61 1.22 0.44 0.75 0.98 

65 25.43 3-Methyl-1H-indole 130, 129, 77 P 1.86 1.08 1.71 1.58 1.20 0.72 1.43 1.35 

66 25.51 
1,5-Anhydro--D-

xylofuranose 
57, 73, 86 (132) H     0.97 

 
0.57 1.13 

67 25.89 2-Methyl-1H-indole 130, 129, 77 P  0.77 0.44 0.52     

68 26.13 Hydroquinone 110, 81, 55 L     2.76 0.77 1.61 2.62 

69 26.87 Heptadecene 43, 57, 240 E 0.86 0.58 0.70 0.73     

70 27.17 Anhydrosugar 45, 57, 73 CH     1.35   1.22 

71 27.40 Glycine-glycine DKPc 114, 86, 71 P 1.66  0.92 1.19 2.48 2.57 1.60 3.80 

72 27.48 Acetoguaiacone 151, 166 L     0.74 0.57 0.61 1.98 

73 27.59 2,3-Dimethyl-1H-indole 144, 145, 130 P 0.72 1.25 0.93 0.35     

74 27.76 3-Ethylguaiacol 152, 137 L 1.57 1.83 1.40 1.54 1.72 1.86 1.26  

75 28.30 4-Vinylsyringol 180, 165 L     0.68 0.54 0.37 1.39 

76 28.47 Conyferyl alcohol 137, 180 L     0.86 0.57 0.50 1.40 

77 29.50 Morpholin derivative 100 P 1.88 0.75 1.24 1.69 2.93 2.62 3.95 3.65 

78 30.06 Anhydrosugar 73, 69, 85 (162) CH     2.10    

79 30.28 
1,6-Anhydro--D-

glucopyranose (levoglucosan) 
60, 57, 73 (162) C 5.85 1.97 4.94 7.07 9.32 3.76 6.37 6.66 

80 30.69 4-Propenylsyringol 194, 179 L     0.77 1.21 0.62 1.60 

81 30.78 Pyrocoll 186, 93, 130 P 0.85 1.30 1.04 0.78 0.91 1.79 2.01 1.69 

82 31.30 Morpholin derivative 100 P 3.86 1.38 3.19 3.86 5.00 5.47 6.74 6.24 

83 32.36 Isoeugenol 164, 149 L     1.70 2.05 1.52  

84 32.40 Acetosyringone 181, 196 L     0.68 0.85 0.58 3.89 

85 32.98 Hexadecanitrile 97, 110 (237) E, P 1.23 7.67 5.54 0.92 
 

2.75 1.38  

86 33.41 Proline-alanine DKPc 70, 168, 125, 97 P 1.63 0.70 1.39 2.02 2.20 2.00 2.41 1.86 

87 34.17 n-Hexadecanoic acid 73, 129, 256 E 1.96   2.87 1.54 1.60 1.48 1.14 

88 34.27 Proline-alanine DKPc 70, 168, 125, 97 P 2.10 0.92 1.30 2.48 1.63 1.59 1.73 1.86 

89 34.57 Proline-valine DKPc 70, 72, 125 (196) P 1.42 0.60 1.16 1.49 2.12 1.55 1.85 1.82 

90 34.86 Proline-glycine DKPc 83, 70, 98 111, 154 P 2.55 2.99 4.37 3.90 2.20 2.42 2.34 2.32 

91 35.17 2-(2-Hydroxyethyl)-piperidine 84, 41, 56 (129) P 2.02 2.47 3.65 2.17     

92 35.31 Tiophene compound 114, 113, 85 P 1.61 1.73 2.04 1.46 1.11 1.28 0.74 1.85 

93 35.48 Proline-arginine DKPc 154, 70, 125 (235) P 1.58 
 

1.61 2.41 1.55 2.16 2.60 2.58 

94 35.98 Proline-isoleucine DKPc 154, 70, 125 (210) P 1.31 2.12 2.62 1.60 1.94 2.13 2.64 1.94 

95 36.09 Octadecanitrile 57, 97, 110 (265) E, P 
 

2.17 1.78   3.22 2.01 0.56 

96 36.40 Proline-isoleucine DKPc 
154, 86, 70, 125 

(210) 
P 1.98 0.80 1.87 2.59 2.04 2.66 2.85 1.97 

97 36.43 Proline-proline DKPc 70, 194, 96, 138 P 1.84 1.04 1.76 1.84 1.42 1.69 2.02 2.03 

98 36.93 Proline-leucine DKPc 70, 86, 154 (210) P 1.75 1.67 2.21 1.86 2.23 2.54 3.26 3.30 

99 37.02 Proline-leucine DKPc 70, 86, 154 (210) P 1.62 1.36 2.32 1.73 2.77 2.86 3.42 4.35 

100 37.51 
1-Methyl-9H-pyrido(3,4-b)-
indole (harmane) 

182, 181, 154 E 0.85 1.76 2.10 1.21     

101 37.89 
9H-Pyrido(3,4-b)-indole  

(-carboline) 
168, 140, 114 E 1.99 3.15 3.82 2.15 1.45 1.65 1.53 1.59 

102 38.37 Hexadecanamide 59, 72, 128 (255) E, P 2.44 1.20 2.95 3.14 1.46 1.69 1.83 1.76 
 

a Possible origin of the identified compounds: C, cellulose; H, hemicellulose; L, lignin; CH, carbohydrate; E, extractive; P, protein. 

b Total ion current (TIC) area % of the GC/MS peaks. 

c DKP, 2,5-diketopiperazine. 
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Table 3. Relative Intensities (Summed TIC Area % Values) of the Major Groups of the 

Pyrolysis Products of Algae and Jatropha Samples with and without the Catalysts 

Compounds’ groups 
Area % 

DAC 

Area % 

DAC 

Fe/FSM-16 

Area % 

DAC 

Fe/SBA-15 

Area % 

DAC 

Fe3O4 

Area % 

JSDC 

Area % 

JSDC 

Fe/FSM-16 

Area % 

JSDC 

Fe/SBA-15 

Area % 

JSDC 

Fe3O4 

Alkane, alkene 10.5 13.8 10.5 9.4 4.2 6.4 5.6 2.3 

N-containing aromatics 12.7 16.0 12.5 12.0 7.7 6.9 7.8 6.9 

Phenol-based aromatics 8.9 4.1 4.0 7.2 10.2 7.0 6.6 9.7 

Aromatics with methoxy 

groups  
1.6 1.7 1.4 1.5 11.2 9.4 9.5 15.6 

Aromatic hydrocarbons 10.3 13.5 7.9 8.4 5.7 9.6 5.6 3.8 

Anhydrosugars 6.6 2.0 4.9 7.7 14.9 3.8 7.3 10.3 

Nitriles 4.6 17.1 11.7 5.8 1.9 9.2 4.8 1.8 

2,5-Diketopiperazines
a
 20.2 13.5 22.6 23.9 23.5 25.8 28.6 29.5 

Others 24.6 18.3 24.5 24.1 20.7 21.9 24.2 20.1 

a Including pyrocoll (peak #81) 

 

Comparing the overall pyrograms of DAC and JSDC, the composition of their pyrolysis oil 

seems to be similar. The main difference between them is the amount of the anhydrosugars and 

the aromatic lignin decomposition products. The DAC and JSDC samples contain 7.3 % and 

24.2% of acid insoluble lignin, respectively (Table 1). Significantly more lignin monomeric 

compounds (peaks #38, 40, 41, 44, 45, 48-50, 57, 58, 61, 63, 68, 72, 74-76, 83 and 84) were 

identified in the chromatograms of JSDC samples (Figure 4), which can be explained by the 

higher lignin content of this sample. Syringol monomers were not detected, only guaiacol and 

phenolic products were found in the pyrograms of the de-oiled algae cake, while de-oiled 

jatropha seed cake releases all the three types of lignin monomers. It is in agreement with the 

theory of lignin biosynthesis concluding that syringol lignin only exists in angiosperms.
43

 

The aromatic pyrolysis products originating from lignin and protein were categorized into the 

following groups: phenolics (without methoxy groups), methoxy-containing aromatics, and 

aromatic hydrocarbons. As Table 3 and Figure S2 show, the methoxy-containing aromatic 
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compounds (guaiacol and syringol derivatives) were released in similar yield with and without 

the catalysts. However, the yields of the phenolic compounds were significantly reduced in the 

presence of both silica supported iron catalysts. The formation of aromatic hydrocarbons was 

promoted by Fe/FSM-16 catalyst. The decrease of phenolic compounds is very important from 

the point of view of the possible utilization of the pyrolysis oil because phenols have acidic 

character and they are prone to polymerization, hence they reduce the stability of the pyrolysis 

oil.  

The main decomposition product of cellulose pyrolysis is levoglucosan (peak #79). Other smaller 

anhydrosugar molecules (peaks #47, 55, 66 and 78) are also formed during the pyrolysis of 

cellulose and hemicellulose under inert atmosphere. The intensities of the carbohydrate 

decomposition products are higher during the pyrolysis of JSDC than that of DAC sample in 

agreement with the considerably higher cellulose and hemicellulose content of the raw material 

(see Table 1). The yields of levoglucosan and other anhydrosugar molecules reduced significantly 

in the presence of silica supported iron catalysts (Fe/FSM-16 and Fe/SBA-15) (Table 3 and 

Figure S2). The glucopyranose and glucofuranose derivatives probably decomposed into more 

stable smaller molecules (e.g., acetone) on the surface of the catalysts. Fe/FSM-16 is much more 

effective catalyst for carbohydrates than Fe/SBA-15. The presence of Fe3O4 did not modify the 

decomposition routes of carbohydrates notably.  
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Figure 5. Possible pathways of the nitrile formation from triglycerides using catalysts. 

The de-oiled biomass samples still contain small amounts of triglycerides, which decompose into 

fatty acids and glycerin during the pyrolysis as illustrated in Figure 5.  These fatty acids are 

mostly palmitic acid (peak #87) and probably stearic acid. Alkanes (peaks #29, 36, 42, 51 and 

59), alkenes (peaks #1, 7, 11, 21, 30, 37, 43, 52, 60 and 69), carbon dioxide (Figure 2 and S1) and 

acetic acid (peak #6) can be formed by further decomposition reaction of the fatty acid molecules 

as presented in Figure 5. In the presence of Fe/FSM-16 and Fe/SBA-15 catalysts, nitrile 

molecules (acetonitrile, peak #4), hexadecanitrile (peak #85) and octadecanitrile (peak #95) were 

released during the reaction of fatty acids and ammonia originated from protein (Table 2). 

Without catalysts or in the presence of Fe3O4, smaller amounts of acetonitrile, hexadecanitrile 

and at most only traces of octadecanitrile were measured in the pyrolysate (Figure 3a, 3d, 4a, 4d 

and Table 2). The formation of nitrile molecules was the most pronounced when Fe/FSM-16 
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catalyst was used. Hexadecane amide (peak #102), a possible intermediate of the formation of 

hexadecanenitrile was also identified among the decomposition products.  

The main nitrogen-containing decomposition products at higher retention times are 

2,5-diketopiperazines (DKPs) (peaks #86, 88-90, 93, 94 and 96-99). These molecules are the 

thermal decomposition products of proteins.
41

 The protein content of DAC and JSDC are 20.5% 

and 28.8%, respectively (Table 1). Adamiano et al. established that small amounts of iron on 

chrysotile nanofiber decreased the DKP formation from bovine serum albumin during off-line 

pyrolysis.
44

 A similar reduction was observed in the relative intensities of DKPs during the 

pyrolysis of DAC using Fe/FSM-16 catalyst. However, this change was not observed under other 

experimental conditions, as it can be seen in Table 3 and Figure S2. Further experiments are 

needed to clarify, which conditions influence the DKP yield during the catalytic pyrolysis of 

protein-containing biomass.   

Indole (peak #62) and its derivatives as 3-methyl-1H-indole (peak #65) are likely to be formed by 

the fragmentation of the amino acid, tryptophan and alkaloids. Two plant alkaloids were 

identified in the pyrolyzate:-carboline (peak #101) (9H-pyrido-(3,4-b)-indole) and the blood 

harmane (peak #100) (1-methyl-9H-pyrido-(3,4-b)-indole), which may produce smaller indole 

derivatives. Pyrrole (peak #13) and its derivatives (peaks #20, 22, 24, 26 and 27) are the building 

blocks of biologically important nitrogen-containing compounds, like chlorophylls, vitamins, 

vegetable hormones and amino acids (proline and hydroxyproline). The concentration of pyrrole 

compounds increased significantly in the pyrolyzate using Fe/FSM-16 catalyst, while it did not 

change significantly in the presence of the Fe/SBA-15 catalyst during the pyrolysis of both DAC 

and JSDC samples. Although the applied catalysts had some effects on the yield of nitrogen-



S22 
 

containing products, they are not suitable for reducing the nitrogen-content of the pyrolysis oil 

significantly.   

4 CONCLUSION 

The thermal decomposition of two different by-products of biodiesel production process (de-oiled 

algae cake and jatropha seed de-oiled cake) was studied by TG/MS and Py-GC/MS in order to 

test their suitability for bioenergy generation. The composition of the organic constituents 

(carbohydrate, lignin, and protein content) was determined by acidic hydrolysis followed by 

HPLC analysis and the Dumas method. The inorganic ion content was characterized by ICP-

OES. The effect of two silica supported iron catalysts (Fe/FSM-16 and Fe/SBA-15) and 

magnetite (Fe3O4) was tested on the yield of the decomposition products.  

Magnetite had no systematic effect on the pyrolysis product distribution of the by-products; 

however, mesoporous silica supported iron catalysts affected the yield of several compounds 

considerably. Decreased decomposition rate was observed in the temperature range of the main 

organic components (200-400 °C) in the presence of silica based catalysts, while increased yield 

of hydrocarbons was measured between 400 and 550 °C originating from the residual oil content 

of the samples. Hydrogen and carbon monoxide evolution significantly increased during the 

carbonization process at higher temperatures (550-900 °C).  

Substantial part of the anhydrosugar molecules was cracked by the silica based iron catalysts 

indicated by their reduced yield and enhanced formation of some ketones (e.g., acetone). The 

evolution of acetic acid and phenolic compounds was hindered by the supported catalysts, which 

points to the reduced acidity of the pyrolysis oil. Another advantage of the lower yield of the 

phenolics is that the susceptibility of the oil to polymerization must be decreased. The reduced 
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acidity and the increased stability of the pyrolysis oil are among the main objectives of the 

catalytic pyrolysis of biomass samples.  

The main decomposition products of proteins under inert atmosphere are 2,5-diketopiperazines, 

their yields were not influenced systematically by the studied catalysts. One of the major effects 

of the silica based catalysts is the promotion of nitrile formation. In the presence of Fe/FSM-16 or 

Fe/SBA-15 catalysts, the reaction between fatty acid molecules originating from triglycerides and 

ammonia derived from amino acids were promoted, and long chain nitriles appeared in the 

pyrograms.  

 

Acknowledgement 

This work is dedicated to the memory of Prof. Michael J. Antal Jr. This work was supported by 

NKFIH, Hungary & DST, India through the Bilateral Cooperation between Hungary (project No. 

TÉT_13_DST-1-2014-0003) and DST-India (DST/INT/HUN/P-02/2014) and “Bolyai János” 

research fellowship.  

Supporting Information  

Figure S1 shows the TG/MS curves of Jatropha seeds de-oiled cake with and without the 

catalysts. Figure S2 illustrates the relative intensities of the major groups of the pyrolysis 

products of DAC and JSDC samples with and without the catalysts. 

References 

(1) Bi, Z.; He, B.; McDonald, A. G. Energy Fuels 2015, 29, 5018-5027. 



S24 
 

(2) Wahlen, B. D., Morgan, M. R., Mc Curdy, A. T.; Willis, R. M.; Morgan, M. D., Dye, D. 

J.; Bugbee, B.; Wood, B. D.; Seefeldt, L. C. Energy Fuels 2013, 27, 220-228. 

(3) Oncel, S. S. Renew. Sustain. Energy Rev. 2013, 26, 241-264. 

(4) Zhu, Y.; Piotrowska, P.; van Eyk, P. J.; Boström, D.; Kwong, C. W.; Wang, D.; Cole, A. 

J.; de Nys, R.; Gentili, F. G.; Ashman, P. J. Energy Fuels 2015, 29, 1686-1700. 

(5) Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. J. Biosci. Bioeng. 2006, 101 (2), 

87-96. 

(6) Krohn, B. J.; McNeff, C. V.; Yan, B.; Nowlan, D. Bioresour. Technol. 2011, 102, 94-100. 

(7) Patil, P. D.; Gude, V. G.; Mannarswamy, A.; Deng, S.; Cooke, P.; Munson-McGee, S.; 

Rhodes, I.; Lammers, P.; Nirmalakhandan, N. Bioresour. Technol. 2011, 102, 118-122. 

(8) Sathish, A.; Sims, R. C. Bioresour. Technol. 2012, 118, 643-647. 

(9) Melis, A.; Happe, T. Plant Physiol. 2001, 127, 740-748. 

(10) Neef, H. J. Energy 2009, 34, 327-333. 

(11) Fayaz, H.; Saidur, R.; Razali, N.; Anuar, F. S.; Saleman, A. R.; Islam, M. R. Renew. 

Sustain. Energy Rev. 2012, 16, 5511-5528. 

(12) Ververis, C.; Georghiou, K.; Danielidis, D.; Hatzinikolaou, D. G.; Santas, P.; Santas, R.; 

Corleti, V. Biores. Technol. 2007, 98, 296-301. 

(13) Kaushik, N.; Kumar, K.; Kumar, S.; Kaushik, N.; Roy, S. Biomass Bioenergy 2007, 31 

(7), 497-502. 



S25 
 

(14) Ajayebi, A.; Gnansounou, E.; Raman, J. K.; Biores. Technol. 2013, 150 429-437. 

(15) Eshton, B.; Katima, J. H. Y.; Kituyi, E. Biomass Bioenergy 2013, 58, 95-103. 

(16) Mofijur, M.; Masjuki, H. H.; Kalam, M. A.; Hazrat, M. A.; Liaquat, A. M.; Shahabuddin, 

M.; Varman, M. Renew. Sustain. Energy Rev. 2012, 16, 5007-5020. 

(17) Sabandar, C. W.; Ahmat, N.; Jaafar, F. M.; Sahidin, I. Phytochem. 2013, 85, 7-29. 

(18) Devappa, R. K.; Roach, J. S.; Makkar, H. P. S.; Becker, K. Ecotox. Environ. Saf. 2013, 

94, 172-178. 

(19) Li, C. Y.; Devappa, R.K.; Liu, J. X.; Lu, J. M.; Makkar, H.P.S.; Becker, K. Food Chem. 

Toxic. 2010, 48, 620-625. 

(20) Wang, K. G.; Brown, R.C. Green Chem. 2013, 15 (3), 675-681. 

(21) Zhao, D.; Feng, J.; Hou, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, 

G.D. Science 1998, 279, 548-552. 

(22)  Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G.D. Adv. Mater.1998, 

10 (16), 1380-1385.  

(23) Yan, H.; Chen, W.; Liao G.; Li, X.; Ma, S.; Li, L. Sep. Purif. Technol. 2016, 159, 1-6. 

(24) Palacio, R.; Gallego, J.; Gabelica, Z.; Batiot-Dupeyrat, C.; Barrault, J.; Valange, S. Appl. 

Catal. A: Gen. 2015, 504, 642-653. 

(25) Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 63, 988-

992. 



S26 
 

(26) O’Brien, S.; Francis, R. J.; Fogg, A.; O’Hare, D.; Okazaki, N.; Kuroda, K. Chem. Mater. 

1999, 11, 1822-1832. 

(27) Tuzoka, Y.; Wongmekiat, A.; Kumira, K.; Moribe, K.; Yamamura, S.; Yamamoto, K. 

Chem. Pharm. Bull. 2005, 53 (8), 974-977. 

(28) Sakata, Y.; Uddin, M. A.; Muto, A. J. Anal. Appl. Pyrol. 1999, 51, 135-155.  

(29) Bachari, K. Guerroudj, R. M.; Lamouchi, M. Kinet. Catal. 2011, 52 (1), 119-127. 

(30) Boudjemaa, A.; Bachari, K.; Trari, M. Mater. Sci. Semicond. Process. 2013, 16, 838-844. 

(31) Bhaskar, T.; Uddin, M. A.; Muto, A.; Sakata, Y.; Omura, Y.; Kimura, K.; Kawakami, Y. 

Fuel 2004, 83, 9-15. 

(32) Munoz, M.; de Pedro, Z. M.; Casas, J. A.; Rodriguez, J. J. Appl. Catal. B: Environmental, 

2015, 176–177, 249-265. 

(33) Mostafa, A.; El-Dissouky, A.; Fawzy, A.; Farghaly, A.; Peu, P.; Dabert, P.; Le Roux, S.; 

Tawfik, A. Biores. Technol. 2016, 216, 520-528. 

(34) Watson, M. E.; Galliher, T. L. Commun. Soil Sci. Plant Anal. 2001, 32, 2007-2019. 

(35) Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. 

2008, National Renewable Energy Laboratory 

(36) Sebestyén, Z.; May, Z.; Réczey, K.; Jakab, E. J. Therm. Anal.Calorim. 2011, 105, 1061-

1069. 

(37) Csikkel-Szolnoki, A.; Báthori, M.; Blunden, G. Microchem.  J. 2000, 67, 39-42. 



S27 
 

(38) Sebestyén, Z.; Jakab, E.; May, Z.; Sipos, B.; Réczey, K. J. Anal. Appl. Pyrol. 2013, 101, 

61-71. 

(39) Faix, O.; Meier, D.; Fortmann, I. Holz Roh Werkst. 1990, 48, 351-354.  

(40) Faix, O.; Fortmann, I.; Bremer, J.; Meier, D. Holz Roh Werkst. 1991, 49, 299-304.  

(41) Fabbri, D.; Adamiano, A.; Falini, G.; De Marco, R.; Mancini, I. J. Anal. Appl. Pyrol. 

2012, 95, 145-155. 

(42) Kurata, S.; Ichikawa, K. Bunseki Kagaku 2008, 57 (7), 563-569. 

(43) Novo-Uzal, E.; Pomar, F.; Ros, L.V.G.; Espineira, J.M.; Barcelo, A.R. Adv. Bot. Res. 

2012, 61, 311-350. 

(44) Adamiano A.; Lesci I.G.; Fabbri, D.; Roveri, N. J. R. Soc. Interface 2015, 12 (107), 

20150186 

  



S28 
 

Supporting information 

Thermoanalytical characterization and catalytic conversion of de-oiled micro algae and 

jatropha seed cake 

Zoltán Sebestyén
1
, Eszter Barta-Rajnai

1
, Zsuzsanna Czégény

1
, Thallada Bhaskar

2
, Bhavya B. 

Krishna
2
, Zoltán May

1
, János Bozi

1
, Zsolt Barta

3
, Rawel Singh

2
, Emma Jakab

1 

1
Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 

Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary 

2
 Bio-Fuel Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Mohkampur, Dehradun-

248005, Uttarakhand, India  

3
Department of Applied Biotechnology and Food Science, Budapest University of Technology 

and Economics, H-1111 Budapest, Szent Gellért tér 4, Hungary 

 

S3 RESULTS AND DISCUSSION 

S3.2 TG/MS results. Figure S1 shows the TG/MS curves of jatropha seed de-oiled cake (JSDC) 

with and without catalysts. Two main differences can be observed in the decomposition pattern 

between JSDC (Figure S1a) and de-oiled algal cake (DAC, Figure 2a in the main paper). The 

DTG curve has a pronounced shoulder and several MS intensity curves of JSDC have peaks at 

about 280 °C, which can be attributed to the thermal decomposition of hemicellulose. The 

hemicellulose content of JSDC is about 5 times higher than that of DAC (Table 1); hence the 

hemicellulose peaks can be clearly distinguished. The other difference between the two samples 

is due to the different amounts of inorganic materials. DAC has a high calcium carbonate content, 

which decomposes at about 700 °C releasing high yield of CO2. This decomposition step is 

missing during the decomposition of JSDC. Thus the carbon dioxide evolution can be better seen 
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at lower temperatures. The first CO2 peak appears at 200-320 °C, which can be derived from 

hemicellulose. The second CO2 peak at about 350 °C can be attributed to the cellulose 

decomposition. 

The effect of silica supported iron catalysts and Fe3O4 is very similar on the JSDC sample than on 

DAC discussed in the main part of the paper. Decreased yield of ammonia (m/z 17) can be 

observed using the catalysts. The silica supported iron catalysts promote the release of aliphatic 

compounds from the residual oil content of the samples, which is indicated by the increased 

intensity of ethyl groups (m/z 29) between 400 and 600 °C (Figure S1b and c). The char 

formation is enhanced by the silica supported iron catalysts, which is reflected by the evolution 

curves of hydrogen and carbon monoxide. The char oxidation occurs in the presence of magnetite 

(Figure S1d) above 600 °C similarly to DAC, which is indicated by the formation of carbon 

dioxide.  
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Figure S1. Evolution profile of the main gaseous decomposition products (m/z 2, hydrogen;m/z 

17, ammonia; m/z 28, carbon monoxide; m/z 29, formyl and ethyl groups; m/z 44, carbon dioxide) 

derived from the jatropha seed de-oiled cake (JSDC) (a) without catalysts, in the presence of (b) 

Fe/FSM-16, (c) Fe/SBA-15, and (d) Fe3O4 catalysts. 

 

S3.3 Pyrolysis results. Figure S2 presents the pie charts of the pyrolysis yields of the main 

compound groups in case of DAC and JSDC with and without the catalysts. The effect of the 

catalysts is discussed in the main paper, where these data are found in Table 3.  
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Figure S2. Pie Charts of the Relative Intensities (Summed TIC Area % Values) of the Major 

Groups of the Pyrolysis Products of Algae and Jatropha Samples with and without the Catalysts; 

The Groups Represented by the Letters are: A, Alkane, Alkene; NA, Nitrogen-containing 

Aromatics; PA, Phenol-based Aromatics; MA, Methoxy group-containing Aromatics; AH, 

Aromatic Hydrocarbons; S, Anhydrosugars; N, Nitriles; DKP, 2,5-Diketopiperazines (Including 

Pyrocoll Peak #81) and O, Others. 

 


