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Abstract

The domination number γ(H) of a hypergraph H = (V (H), E(H)) is the minimum
size of a subset D ⊂ V (H) of the vertices such that for every v ∈ V (H) \D there exist
a vertex d ∈ D and an edge H ∈ E(H) with v, d ∈ H. We address the problem of
finding the minimum number n(k, γ) of vertices that a k-uniform hypergraph H can
have if γ(H) ≥ γ and H does not contain isolated vertices. We prove that

n(k, γ) = k + Θ(k1−1/γ)

and also consider the s-wise dominating and the distance-l dominating version of the
problem. In particular, we show that the minimum number ndc(k, γ, l) of vertices that
a connected k-uniform hypergraph with distance-l domination number γ can have is
roughly kγl

2 .

1 Introduction

In this paper we establish basic inequalities involving fundamental hypergraph parameters
such as order, edge size, and domination number.

Many problems in extremal combinatorics are of the following form: what is the small-
est or largest size that a graph, hypergraph, set system can have, provided it satisfies a
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prescribed property? In most cases, size is measured by the number of edges, hyperedges,
sets, respectively, contained in the object, and the number of vertices is usually included in
the prescribed property. However, sometimes it can be interesting and even applicable to
consider problems about the minimum or maximum number of vertices [18, 19, 20].

In the present paper we address the problem of finding the minimum number of vertices
in a k-uniform hypergraph that has large domination number. The domination number
γ(G) of a graph G, a widely studied notion (see [10], [11]), is the smallest size that a subset
D ⊂ V (G) of the vertices can have if every vertex v ∈ V (G) \D has a neighbor in D.

We will be interested in the hypergraph version of this notion, which was investigated
first in [1] and later studied in [2, 3, 4, 14, 16]. Let H = (V (H), E(H)) be a hypergraph.
The neighborhood1 of a vertex v ∈ V (H) is the set Nv := {v} ∪

⋃
E∈E(H) : v∈E E, and the

neighborhood of a set S ⊂ V (H) is defined as N(S) :=
⋃
v∈S Nv. A set D ⊂ V (H) is called

a dominating set of H if D ∩ Nv 6= ∅ for all v ∈ V (H). Equivalently we can say that D is
a dominating set if and only if N(D) = V (H). The minimum size γ(H) of a dominating
set in a hypergraph H is the domination number of H. As all isolated vertices always are
contained in every dominating set, they can be eliminated in an obvious way, therefore we
restrict our attention to hypergraphs without isolates.

Let n(k, γ) be the minimum number of vertices that a k-uniform hypergraph with no
isolated vertices must contain if its domination number is at least γ. Beyond the trivial case
of n(k, 1) = k, the problem of determining n(k, γ) is natural and seems interesting enough to
be addressed on its own right; neverhteless, Gerbner et al. (Problem 17 in [8]) arrived from
a combinatorial search-theoretic framework at the particular problem of deciding whether
n(k, 3) ≥ 2k + 3 holds or not. We answer this problem in the negative, determining the
asymptotic behavior of n(k, γ) as a function of k for every fixed γ, up to the exact growth
order of the second term. To state our result in full strength, we need to introduce two
generalizations of domination. For an integer s > 0 we call D ⊂ V (H) an s-dominating
set of H if |D ∩ Nv| ≥ s for all v ∈ V (H) \D and we call D and s-tuple dominating set if
|D ∩Nv| ≥ s for all v ∈ V (H). Note that dominating sets are exactly the 1-dominating sets
and 1-tuple dominating sets. As introduced in [7] and [9], respectively, the minimum size
γ(H, s) of an s-dominating set in a hypergraph H is the s-domination number of H and
the minimum size γ×(H, s) of an s-tuple dominating set in a hypergraph H is the s-tuple
domination number 2 of H. By definition, we have γ(H, s) ≤ γ×(H, s). For every pair γ, s of
integers with γ ≥ s, let n(k, γ, s) denote the minimum number of vertices that a k-uniform
hypergraph H must have if γ(H, s) ≥ γ holds and there exist no isolated vertices in H and

1In this paper we use the short term “neighborhood”, although this is called “closed neighborhood” in
the main part of the literature. We note that the inclusion of {v} in the definition of Nv may be omitted if
v is not an isolated vertex in H.

2The standard notation for s-tuple domination in the graph theory literature is γ×s(G), but for the
different variants of domination in this paper we try to use notations which are similar to each other in their
form, this is why we put s in another position.
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let n×(k, γ, s) denote the minimum number of vertices that a k-uniform hypergraph H must
have if γ(H, s) ≥ γ holds and there exist no isolated vertices. From the above, we have
n×(k, γ, s) ≤ n(k, γ, s).

Our main theorem about s-domination is the following.

Theorem 1.1. For every γ ≥ 2 and s ≥ 1 with γ > s we have

k + k1−1/(γ−s+1) ≤ n×(k, γ, s) ≤ n(k, γ, s) ≤ k + (4 + o(1))k1−1/(γ−s+1).

Another generalization of domination is distance-l domination, which was introduced by
Meir and Moon in [17]. This notion has been studied only for graphs so far. A good survey
of the results until 1997 is [12]. For more recent upper and lower bounds on the distance-l
domination number of graphs see [13] and [6].

In distance-l domination a vertex v dominates all vertices that are at distance at most
l from v. As the definition of distance in graphs involves paths, and paths in hypergraphs
can be defined in several ways, distance-l domination could be addressed with each of those
definitions. But as we will remark in Section 4, only so-called ‘Berge paths’ offer new
problems in our context. A Berge path of length l is a sequence v0, H1, v1, H2, v2, . . . , Hl, vl
with vi ∈ V (H) for i = 0, 1, ..., l and vi−1, vi ∈ Hi ∈ E(H) for i = 1, 2, ..., l. The distance
dH(u, v) of two vertices u, v ∈ V (H) is the length of a shortest Berge path from u to v. The
ball centered at u and of radius l consists of those vertices of H which are at distance at most
l from u; it will be denoted by Bl(u). We call D ⊂ V (H) a distance-l dominating set of H
if
⋃
u∈D Bl(u) = V (H). Equivalently we can say that D ⊂ V (H) is a distance-l dominating

set if and only if D ∩ Bl(v) 6= ∅ for all v ∈ V (H). Note that distance-1 dominating sets are
the usual dominating sets.

The minimum size of a distance-l dominating set in a hypergraph H is the distance-l
domination number γd(H, l). Let further nd(k, γ, l) denote the minimum number of vertices
that a k-uniform hypergraph H with no isolated vertices can contain if γd(H, l) ≥ γ holds.
The next proposition shows that nd(k, γ, l) does not depend on l once l ≥ 2 is supposed.

Proposition 1.2. For any k, l ≥ 2 and γ ≥ 1 we have nd(k, γ, l) = kγ, and the unique
extremal hypergraph consists of γ pairwise disjoint edges.

Proof. It is clear that the k-uniform hypergraph with just γ disjoint edges yields the upper
bound nd(k, γ, l) ≤ kγ.

We prove the lower bound by induction on γ. The case γ = 1 is trivial. So assume that
γ ≥ 2, and let H = (V (H), E(H)) be a k-uniform hypergraph with γd(H, l) ≥ γ. Consider
an arbitrary v ∈ V (H). Any vertex in N(Bl−1(v)) is distance-l dominated by v, therefore
the k-uniform hypergraph H′ induced by the edge set {H ∈ E(H) : H ∩ Bl−1(v) = ∅}
covers all vertices of H not distance-l dominated by v. The assumption γd(H, l) ≥ γ implies
γd(H′, l) ≥ γ − 1 and thus using that |Bl−1(v)| ≥ k for l ≥ 2 and by induction we obtain

|V (H)| = |Bl−1(v)|+ |V (H′)| ≥ k + (γ − 1)k = γk.
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Strict inequality holds whenever v has degree at least two.

The problem becomes more interesting when disconnected hypergraphs get excluded.
Hence, for k ≥ 2 and l, γ ≥ 1 let ndc(k, γ, l) denote the minimum number of vertices that a
k-uniform connected hypergraph H must contain if it has γd(H, l) ≥ γ.

To state our main result concerning ndc(k, γ, l) we need to define the following function:

f(k, γ, l) :=

{
l
2
kγ + max{k, γ} if l is even,
l+1
2
kγ if l is odd.

Theorem 1.3. (a) For any k, l ≥ 2 we have

(2l + 1)k

2
≤ ndc(k, 2, l) ≤ min

{⌈
(2l + 1)(k + 1)

2

⌉
, (l + 1)k

}
.

(b) For any k ≥ 2, l ≥ 4 and γ ≥ 3 we have

k

⌈(
l − 1

2
− 1

)
γ

⌉
< ndc(k, γ, l) ≤ f(k, γ, l).

(c) For any k ≥ 2 and γ ≥ 3 we have

kγ ≤ ndc(k, γ, 2) ≤ kγ + max{k, γ}.

(d) For any k ≥ 2 and γ ≥ 3 we have

kγ ≤ ndc(k, γ, 3) ≤ 2kγ.

The remainder of the paper is organized as follows: we prove Theorem 1.1 in Section 2,
and Theorem 1.3 in Section 3. Section 4 contains some final remarks, also including a general
upper bound on γdc(H, l) as a function of l, the number of vertices, and the edge size.

2 Proof of Theorem 1.1

In this section we prove our bounds on n×(k, γ, s) and n(k, γ, s). First we verify the bound
k + k1−1/(γ−s+1) ≤ n×(k, γ, s). Observe that it is enough to prove the statement for s = 1,
since for any hypergraph H we have γ×(H, s) − (s − 1) ≥ γ×(H, 1) as for any s-tuple
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dominating set D of H and a s′-subset D′ of D the set D \D′ (s − s′)-tuple dominates H.
Consequently

n×(k, γ, s) ≥ n×(k, γ − (s− 1), 1),

which implies the statement.
To see n(k, γ, 1) ≥ k + k1−1/γ let H be a k-uniform hypergraph with γ(H) ≥ γ ≥ 2. Let

G = (V (H), E) be the graph with (u, v) ∈ E if and only if no H ∈ E(H) contains both u
and v. The γ ≥ 2 condition means that for any vertex v ∈ V (H) there exists a u such that
no edge H ∈ E(H) contains both u and v, thus G does not contain any isolated vertices.
Let us write n = |V (H)| = |V (G)| = k + x and let t be the number of edges in a largest
matching M = (V (M), E(M)) of G. Note that two distinct vertices u′, v′ outside V (M)
cannot be adjacent to two distinct endpoints u, v of an edge e ∈ E(M) as the matching
(M \{e})∪{(u, u′), (v, v′)} would contradict the maximality of M . Then either just one of u
and v has neighbors outside M , or none of them have any, or they share their unique neighbor
outside M . We denote by e(v) the (or an) endpoint of e whose ‘outside’ neighborhood in
this sense contains the ‘outside’ neighborhood of the other endpoint, and let de(v) denote the
size of Ne(v) \ V (M).

By the definition of γ = γ×(H, 1) = γ(H, 1) and G we have that for any set Γ of γ − 1
vertices in V (G) there is a vertex v ∈ V (G) which is connected by edges in E(G) to all
the vertices of Γ. If Γ is a subset of V (G) \ V (M), then the vertex which is adjacent to all
vertices of Γ must be in V (M), since M is maximal. By this we obtain∑

e∈E(M)

(
de(v)
γ − 1

)
≥
(
|V (G) \ V (M)|

γ − 1

)
.

Writing d := maxe∈E(M) de(v) the above inequality yields

tdγ−1 ≥ (k + x− 2t)γ−1,

and rearranging gives

d ≥ k + x− 2t

t
1

γ−1

.

Let e ∈ E(M) be an edge with de(v) = d, and let H be any hyperedge H ∈ E(H) containing
e(v). Just as any hyperedge, H must avoid an endpoint of each edge in M , and H is disjoint
from Ne(v) \V (M). Therefore, we obtain k+x = n ≥ d+ t+ k and thus x ≥ d+ t. Plugging
the previous inequality into this and rearranging yields:

t
1

γ−1 (x− t+ 2t
γ−2
γ−1 ) ≥ k + x.

Now using that x ≥ t and t ≥ t
γ−2
γ−1 , we obtain that the left-hand side of the previous

inequality is at most x
γ
γ−1 + x and therefore we have

x
γ
γ−1 + x ≥ k + x,
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which proves the required lower bound.
To prove the bound n(k, γ, s) ≤ k + (4 + o(1))k1−1/(γ−s+1) we need a construction. This

involves projective geometries or linear vector spaces over finite fields. We will use the
Gaussian or q-binomial coefficient

[
n
k

]
q

that denotes the number of k-dimensional subspaces

of a vector space of dimension n over Fq, i.e.[
n

k

]
q

:=

∏k
i=1(q

n−i+1 − 1)∏k
i=1(q

i − 1)

and we will omit q from the subscript when it is clear from the context. Let q be a
prime power, t be any positive integer and U be a γ-dimensional vector space over Fq. Let
E1, E2, . . . , Em be the 1-dimensional subspaces of U and U1, U2, . . . , Um the γ-dimensional
subspaces of U , where m =

[
γ
1

]
q

=
[
γ
γ−1

]
q

= qγ−1 + qγ−2 + · · ·+ 1. Let A1, A2, . . . , Am, B be

pairwise disjoint sets with B = {b1, b2, . . . , bm} and |Ai| = t for all 1 ≤ i ≤ m. Let us define
Hq,γ,t = {H1, H2, . . . , Hm} by

Hi := {bi} ∪
⋃

j:Ei 6≤Uj

Aj.

We claim that γ(Hq,γ−s+1,t, s) ≥ γ. Suppose not and let D = DB ∪ DA be a minimal s-
dominating set of H = Hq,γ−s+1,t with DB = D ∩ B, DA = D \DB and |D| < γ. As every
vertex d ∈ DB is contained in exactly one hyperedge Hd of H, each such d can be replaced
by a vertex d′ ∈ V (H) \ (D ∪ B) to obtain an s-dominating set D′ with D′ ⊆ V (H) \ B
and |D′| = |D| < γ. Let D′ = {d1, d2, . . . , dp} and D′′ = {d1, d2, . . . , dγ−s}. Then for
Z =

⋂
j:∃v∈D′′∩Aj Uj we obtain

dim(Z) ≥ 1.

If E is a 1-subspace of Z, then the corresponding vertex b ∈ V (H) is not dominated by any
vertex d ∈ D′′ and thus at most (s− 1)-dominated by D′, which is a contradiction.

Let us consider the other parameters of the above hypergraph: n = |V (Hq,γ−s+1,t)| =
m(t + 1) and Hq,γ−s+1,t is kq,γ−s+1,t-uniform with kq,γ−s+1,t = 1 + qγ−st, therefore if t = q,
then we obtain n = qγ−s+1 + 2(qγ−s + qγ−s−1 + · · ·+ q) + 1 and kγ = kq,γ−s+1,q = 1 + qγ−s+1,

thus we have n ≤ kγ−s+1 + 4k
1−1/(γ−s+1)
γ−s+1 . This finishes the proof of the upper bound if k is

one larger than the (γ − s+ 1)st power of a prime.
Finally, let us consider the general case when k′ = 1+qγ−s+1+e with e < q′γ−s+1−qγ−s+1

where q′ is the smallest prime larger than q. It is well-known that q′ = q + o(q) and
thus e = o(qγ−s+1). Let C1, C2, . . . , Cq+1 be pairwise disjoint sets all of size d e

q−γ+s+2
e, all

being disjoint from V (Hq,γ−s+1,q). We renumber the subspaces U1, U2, . . . , Um in such a way
that U1, U2, . . . , Uq+1 correspond to the dual of a (q + 1)-arc in PG(γ − s, q), i.e. every 1-
subspace E of V is contained in at most γ − s − 1 subspaces among U1, U2, . . . , Uq+1. (For
a general introduction to finite geometries, see [15].) Therefore, for any 1 ≤ i ≤ m, the sets
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Ii := {j : Ei 6≤ Uj, 1 ≤ j ≤ q + 1} satisfy |Ii| ≥ q − γ + s + 2 and thus there exists a set
Ti ⊂

⋃
j∈Ii Cj of size e. Let us define

H ′i := {bi} ∪
⋃

j:Ei 6≤Uj

Aj ∪ Ti.

By definition we have |H ′i| = k′ for all i = 1, 2, . . . ,m. The s-domination number of the
new hypergraph is the same as that of the old one, as for any v ∈ Ci and u ∈ Ai we have
Nu ⊂ Nv. Moreover the number n′ of vertices in the new hypergraph is

n+ d e

q − γ + s+ 1
e(q + 1) ≤ k + 4k1−1/(γ−s+1) + e+Oγ(e/q) ≤ k′ + (4 + o(1))k′1−1/(γ−s+1),

as Oγ(e/q) = o(qγ−s) holds by e = o(qγ−s+1).

3 Distance domination

In this section we prove Theorem 1.3, the lower and upper bounds on ndc(k, γ, l).

3.1 The j-radius of trees

We start with some definitions and an auxiliary statement that we will use in the proof.

Definition. For positive integers a1, a2, ..., ah the spider graph, denoted by

S(a1, a2, . . . , ah),

is the tree on 1 +
∑h

i=1 ai vertices which is obtained from h paths of lengths a1, a2, . . . , ah,
respectively, by identifying the first vertices of those paths to a single vertex v of degree h.
Hence, S(a1, a2, . . . , ah) \ {v} has h connected components, say C1, C2, . . . , Ch, where each
Ci is a path Pai on ai vertices (for i = 1, 2, ..., h).

In a connected graph G = (V (G), E(G)), the excentricity of a vertex v ∈ V (G) is defined
as

excG(v) := max{dG(u, v) : u ∈ V (G)}

and let the radius of G is

r(G) := min{excG(v) : v ∈ V (G)}.

More generally, for any ∅ 6= W ⊂ V (G) let us write

excG(W ) := max{min{dG(u,w) : w ∈ W} : u ∈ V (G)}
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and for an integer j ≥ 1 let the j-radius of G be

rj(G) := min{excG(W ) : W ⊂ V (G), |W | ≤ j}.

Certainly we have r(G) = r1(G). Finally, let

rj(n) := max{rj(T ) : |V (T )| = n, T is a tree}.

The numerical bounds themselves in the next lemma concerning the radius of a tree are
folklore; for later use, however, we need a more detailed assertion which describes some
structural properties, too. Some bounds on the function rj(n) can be derived also from
results of Meir and Moon [17], but the following is a little sharper.

Lemma 3.1. Let n ≥ j be positive integers. Then we have⌊
n

j + 1

⌋
≤ rj(n) ≤

⌈
n

j + 1

⌉
.

Moreover, r1(n) =
⌈
n−1
2

⌉
and

(i) if n is even, then the only tree with r1(T ) = dn−1
2
e is the path Pn on n vertices.

(ii) If n is odd and r1(T ) = dn−1
2
e holds, then T is a path Pn−1 with a pendant edge.

Furthermore, T contains two copies of Pn−1 if and only if T is either a path Pn or a fork
Fn. Otherwise T contains just one copy of Pn−1.

Proof. Let us first prove the statements about r1(n). Let T be an arbitrary tree on n vertices
and let v be a middle vertex of a longest path P in T . If P contains l vertices, then any
vertex is at distance at most d l−1

2
e from v. This implies all assertions of the lemma if n is

even. If n is odd, this implies that T must contain a path on n− 1 vertices and thus T is a
path Pn−1 and a pendant edge.

Let us now prove the general lower bound. We claim that⌊
n

j + 1

⌋
= rj

(
S

(⌊
n− 1

j + 1

⌋
,

⌊
n

j + 1

⌋
, . . . ,

⌊
n+ j − 1

j + 1

⌋))
holds, which proves the lower bound by the definition of rj(n). To see that the claim is true,
observe that any set U ⊂ V (S(bn−1

j+1
c, b n

j+1
c, . . . , bn+j−1

j+1
c)) of size j is disjoint from at least

one component C of S(bn−1
j+1
c, b n

j+1
c, . . . , bn+j−1

γ+1
c) \ {v}.

Thus if v /∈ U , then the leaf of S(bn−1
j+1
c, b n

j+1
c, . . . , bn+j−1

j+1
c) belonging to C has distance

at least

1 +

⌊
n− 1

j + 1

⌋
≥
⌊

n

j + 1

⌋
8



from any vertex of U .
If v ∈ U holds, then U is disjoint from at least two components C1, C2 of

S(bn−1
j+1
c, b n

j+1
c, . . . , bn+j−1

j+1
c) \ {v}, and the leaf of S(bn−1

j+1
c, b n

j+1
c, . . . , bn+j−1

j+1
c) belonging to

the larger path has distance at least b n
j+1
c from v and thus from U . This completes the proof

of the general lower bound.

To see the general upper bound, let T be any tree on n vertices. We will use the following
claim repeatedly.

Claim 3.2. Let m < n be two positive integers. Then in any tree T on n vertices there
exists a vertex v such that if C1, C2, . . . , Cs denote those components of T \ {v} whose all
vertices are at distance at most m from v, then

∑s
i=1 |Ci| ≥ m holds.

Proof of Claim 3.2. Let P be a longest path of T . If P contains at most m vertices, then
any vertex can play the role of v. If P contains at least m + 1 vertices, then let v be the
(m+ 1)st vertex from one end of P .

For t = 1, 2, . . . , j − 1 let mt = bn+t−1
j+1
c and let T1 = T . We apply Claim 3.2 to Tt and

mt for t = 1, 2, . . . , j − 1 to obtain vt; and then set

Tt+1 := Tj \ ∪kti=1Ci,t,

where the Ci,t (i = 1, 2, ..., kt) are the components of Tt \ {vt} whose vertices are at distance

at most mt from vt. By the claim we also have
∑kt

i=1 |Ci,t| ≥ mt.
In this way we obtain a tree Tj of at most d2 n

j+1
e vertices. Let vj be a vertex of Tj

within distance d |V (Tj)|−1
2
e from all vertices of Tj. Such a vertex exists by the result on

r1(n). Clearly, U = {v1, v2, . . . , vj} is a set of vertices with excT (U) ≤ d n
j+1
e, which proves

rj(T ) ≤ d n
j+1
e.

3.2 Putting things together: the proof of Theorem 1.3

Let us first prove the upper bounds of Theorem 1.3. To do so we introduce two types of
hypergraphs with distance-l domination number γ. The second construction will prove the
upper bounds of (b), (c), and (d). If γ = 2, then the construction giving the smaller
number of vertices depends on the values of k and l. This is why we have the minimum of
two expressions in the upper bound of (a).

Construction 1:

For i = 1, . . . , 2l(γ − 1) + 1 let Ui be pairwise disjoint sets, and let vi and w be distinct

vertices which are not elements of
⋃2l(γ−1)+1
i=1 Ui. During Construction 1 all the indices will

be taken modulo 2l(γ − 1) + 1, e.g. we then have 2l(γ − 1) + 2 = 1.
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If k is odd, let |Ui| = k−1
2

for all i. We define a hypergraph H = (V (H), E(H)) in the
following way. Let

V (H) :=

2l(γ−1)+1⋃
i=1

(Ui ∪ {vi}),

and let the hyperedges of H be

Hi := Ui ∪ Ui+1 ∪ {vi}

for i = 1, . . . , 2l(γ − 1) + 1. Then the size of V (H) is

(2l(γ − 1) + 1)(k + 1)

2
.

If k is even, let |U2i| = k
2

for i = 1, . . . , l(γ− 1) and |U2i+1| = k
2
− 1 for i = 0, . . . , l(γ− 1).

We define H with the vertex set

V (H) := {w} ∪
2l(γ−1)+1⋃

i=1

(Ui ∪ {vi}),

and with the edge set E(H) := {Hi | 1 ≤ i ≤ 2l(γ − 1) + 1}, where

Hi := Ui ∪ Ui+1 ∪ {vi}

if i = 1, . . . , 2l(γ − 1), and
Hi := Ui ∪ Ui+1 ∪ {vi, w}

if i = 2l(γ − 1) + 1. Then,

|V (H)| = (2l(γ − 1) + 1)(k + 1)

2
+

1

2
=

⌈
(2l(γ − 1) + 1)(k + 1)

2

⌉
.

To see that γd(H, l) ≥ γ holds in both cases, observe the following facts:

• vertex vi distance-l dominates a vertex vj exactly for

j ∈ {i− l + 1, ..., i+ l − 1},

• vertex w distance-l dominates a vj exactly for

j ∈ {2l(γ − 1)− l + 2, ..., 2l(γ − 1) + l},

• a vertex u ∈ Ui distance-l dominates a vj exactly for

j ∈ {i− l, ..., i+ l − 1}.

10



So, every vertex in V (H) distance-l dominates at most 2l vertices vi. This yields γd(H, l) ≥ γ.

Construction 2:

This construction relies on the spider graph S = S(a1, a2, . . . , aγ) with all of the ai being
equal to bl/2c. Let v be the only vertex of S with degree γ. Let u1, u2, . . . , uγ be the
neighbors of v in S, and let u′1, u

′
2, . . . , u

′
γ be the vertices of S that are at distamce bl/2c

from v.
Let W be a set of size max{k, γ}. Take a partition (W1,W2, . . . ,Wγ) of W such that

|Wi| = b |W |+i−1
γ
c. Finally, for every u ∈ V (S) \ {v}, let Uu := Uu,1 ∪̇ Uu,2 be a set of size k

such that

• u ∈ Uu,1 holds for all u ∈ V (S) \ {v},

• Uu ∩ Uu′ = ∅ holds for all u 6= u′ ∈ V (S) \ {v},

• Uu ∩W = ∅ holds for all u ∈ V (S) \ {v},

• |Uu,1| = |Wi| for all those u ∈ V (S) \ {v} which lie in the same component of S \ {v}
as ui.

With the help of the previously defined sets we construct a k-uniform hypergraph H in the
following way, depending on the parity of l:

Case I: l is even

Let the vertex set of H be V (H) = W ∪
⋃
u∈V (S)\{v} Uu. Thus we have

|V (H)| = klγ

2
+ max{k, γ}.

The edge set E(H) contains the following four types of hyperedges:

1. all k-subsets of W , i.e.
(
W
k

)
⊂ E(H),

2. for all u ∈ V (S) \ {v}, we have Uu ∈ E(H),

3. for all i = 1, 2, . . . , γ let Wi ∪ Uui,2 ∈ E(H),

4. for every edge (u, u′) = e ∈ E(S) with u, u′ 6= v if dS(u, v) < dS(u′, v) holds, then let
Uu,1 ∪ Uu′,2 ∈ E(H).

Clearly, H is connected due to
(
W
k

)
⊂ E(H). We claim that γd(H, l) ≥ γ holds. Indeed,

if D ⊂ V (H) has size at most γ − 1, then there exists an i ≤ γ such that

D ∩ (Wi ∪
⋃
u∈Ci

Uu) = ∅

11



Figure 1: Construction 2 in case of even l

holds where Ci is the component of S \ {v} containing ui. Then u′i is at distance at least
1 + 2 l

2
= l + 1 from any vertex of D and thus u′i is not distance l-dominated by D.

Case II: l is odd

In addition to the sets defined above, let Z1, Z2, . . . , Zγ be pairwise disjont sets of size
k − |Wi|, each of which is disjoint from all previously defined sets. Let the vertex set of H
be

V (H) = W ∪
⋃

u∈V (S)\{v}

Uu ∪
γ⋃
i=1

Zi.

Thus we have

|V (H)| ≤ d l
2
ekγ.

As for the edge set of H, there is a fifth type of hyperedge:

5. for all 1 ≤ i ≤ γ let Uu′i,1 ∪ Zi ∈ E(H).

The fact that γd(H, l) ≥ γ follows similarly as in the previous case, because for any (γ−1)-set
D ⊂ V (H) there exists an i such that any vertex z ∈ Zi is at distance at least l+ 1 from D.

Let us now turn our attention to the lower bounds. We prove first that of (a). Consider
a connected k-uniform hypergraph H with γd(H, l) ≥ 2. Let M be a maximal matching in

12



H obtained in the following way. Let

M1 := {H1}, I1 := {H ∈ E(H) \ {H1} : H ∩H1 6= ∅} and R0 := E(H) \ (M1 ∪ I1).

Then for s ≥ 2 we define a sequence Ms, Is,Rs of partitions of E(H) such that:

1. Ms is a matching,
2. every hyperedge in Is meets at least one hyperedge in Ms, and
3. all hyperedges in Rs are disjoint from all hyperedges in Ms.

If Ms, Is,Rs are defined with Rs 6= ∅, then let Hs+1 ∈ Rs be a hyperedge such that
Hs+1∩ Is 6= ∅ for some Is ∈ Is. The existence of such Hs+1 follows from the assumption that
H is connected. Set

Ms+1 :=Ms ∪ {Hs+1}, Is+1 := Is ∪ {R ∈ Rs \ {Hs+1} : R ∩Hs+1 6= ∅}

and
Rs+1 := E(H) \ (Ms+1 ∪ Is+1).

For the smallest positive t with Rt = ∅, we let M :=Mt. Thus the size of M is t.
Now let us consider the auxiliary graph GM with vertex set M and e = {Hi, Hj} ∈

E(GM) if and only if there exists H ∈ H with H∩Hi 6= ∅ and H∩Hj 6= ∅. By the definition
ofM, the graph GM is connected. For a vertex v ∈

⋃
H∈MH let Hv denote the only element

of M containing v.
Suppose that for a pair H,H ′ ∈ M we have dGM(H,H ′) = r. Then for any pair of

vertices u ∈ H, v ∈ H ′ we have dH(u, v) ≤ 1 + 2r. To see this, consider the sequence
H,He1 , Hi1 , He2 , Hi2 , . . . , Her , H

′, where es is the sth edge in a shortest path from H to H ′

and His is the sth vertex (i.e. a hyperedge in H) in the same path. By the maximality of
M, for every vertex w of H there exists an edge Hw containing w and an edge H ∈M with
Hw ∩H 6= ∅, therefore by the observation above we have

dH(u,w) ≤ 2 + 2rGM(u)

for every u ∈
⋃
H∈MH and w ∈ V (H).

If t ≥ l + 1 holds, then |V (H)| ≥ kt ≥ k(l + 1), proving the desired lower bound.

Now suppose that t ≤ l − 2 or t = l − 1 with t being odd. As we have noted, GM is
connected and thus by Lemma 3.1 we obtain

r(GM) ≤
⌈
t− 1

2

⌉
.

Therefore, there exists an H∗ ∈ M = V (GM) such that rGM(H∗) ≤ d t−1
2
e holds and so, by

the above, for a vertex v ∈ H∗ we have

dH(v, v′) ≤ 2 + 2

⌈
t− 1

2

⌉
13



for any vertex v′ ∈ V (H). So in this case a vertex v ∈ H∗ distance-l dominates H, contra-
dicting γd(H, l) ≥ 2.

If t = l− 1 and t is even, then let T be a spanning tree of GM. By Lemma 3.1 we obtain
that T is a path on t vertices. So we may assume that

E(GM) ⊃ {(Hi, Hi+1) : i = 1, . . . , t− 1}.

Let e = (Ht/2, Ht/2+1) and consider a vertex v ∈ Ht/2∩He. As for vertices v′ with Hv′∩Hi 6= ∅
for some i > t/2, a shortest path in H between v and v′ need not contain Ht/2. Thus we
obtain that v distance-l dominates H, contradicting γd(H, l) ≥ 2.

Finally, it remains to prove the lower bound of (a) in case of t = l and thus it is enough to
prove that |V (H)\

⋃
H∈MH| ≥ k/2 holds. We may and will assume that the radius of GM is

d l−1
2
e. Let T be a spanning tree of GM. By Lemma 3.1 we know that T is a path if l is even,

and T contains a path on l− 1 vertices if l is odd. We claim that even if l is odd, T must be
a path on t vertices. Indeed, otherwise any vertex v ∈ He distance-l dominates H where e
is the middle edge of a path on l − 1 vertices that is contained in T . This would contradict
γd(H, l) ≥ 2. By this we may assume that E(GM) ⊃ {(Hi, Hi+1) : i = 1, . . . , l − 1}.

Claim 3.3. We have the following:

(i) For any pair of edges e, e′ in T we have He ∩He′ = ∅.
(ii) There exist w,w′ ∈ V (H) \

⋃
H∈MH and Hw, Hw′ ∈ E(H) with

w ∈ Hw and w′ ∈ Hw′ ,

such that Hw meets only H1 and Hw′ meets only Hl, moreover Hwand Hw′ are disjoint from
all the other H ∈M and also from He for all e ∈ E(T ).

Proof of Claim. We have two cases depending on the parity of l.

Case I: l is even.

Now we prove (i) in this case. Suppose that Hei ∩ Hej 6= ∅ with ei = (Hi, Hi+1), ej =
(Hj, Hj+1). If i < j ≤ l/2, then a vertex v ∈ Hel/2 ∩ Hl/2+1 distance-l dominates H,
contradicting γdist(H, l) ≥ 2.. Similarly, if i < j and j ≥ l/2, then a vertex v ∈ Hel/2 ∩Hl/2

distance-l dominates H, contradicting γdist(H, l) ≥ 2. Also, if i < l/2 < j, then if l/2− i ≤
j−l/2, then a vertex v from Hl/2−1∩Hel/2−1

distance-l dominates H, while if l/2−i ≥ j−l/2,
then a vertex v from Hl/2+2 ∩Hel/2+1

distance-l dominates H, contradicting γdist(H, l) ≥ 2.
We are done with (i) in Case I.

To see (ii) suppose that, for every w ∈ V (H) \
⋃
H∈MH and Hw containing w, the

hyperedge Hw meets He for some e ∈ E(T ) or Hw meets some Hz with z ≥ 2. Then a vertex
in Hen/2 ∩Hn/2+1 distance-l dominates H, contradicting γdist(H, l) ≥ 2. The existence of w′

and Hw′ can be shown analogously. This proves (ii) in Case I.
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Case II: l is odd.

The proof of this case is very similar to the previous one. Let us just show (ii). Suppose
that, for every w ∈ V (H) \

⋃
H∈MH and Hw containing w, the hyperedge Hw meets He for

some e ∈ E(T ) or Hw meets some Hz with z ≥ 2. Then a vertex in Hedn/2e∩Hdn/2e distance-l
dominates H, contradicting γdist(H, l) ≥ 2.

Note that Hw ∩ Hw′ ⊂ V (H) \
⋃
H∈MH and also Hw ∪ Hw′ ∪

⋃
e∈E(T )He ⊂ V (H), and

thus writing I = |Hw ∩Hw′ | we obtain |V (H)| ≥ max{lk+ I, (l+ 1)k− I} ≥ lk+ k/2. This
finishes the proof of the lower bound of (a).

Next we prove the lower bound of (b). We will need the following lemma.

Lemma 3.4. For any γ, l ≥ 2, let t∗ denote smallest t with rγ−1(t) ≥ l−1
2

. Then we have

ndc(k, γ, l) ≥ t∗k.

Proof. Let H be a connected k-uniform hypergraph with γd(H, l) ≥ γ. LetM be a maximal
matching in H obtained as in the proof of the lower bound of part (a), and let us consider
the auxiliary graph GM. For a vertex v ∈ ∪H∈MH let Hv denote the only element of M
containing v. Let the size ofM be t. We assume first that t < t∗, what means rγ−1(t) <

l−1
2

.
Suppose that for a pair H,H ′ ∈ M we have dGM(H,H ′) = r. Then for any pair of

vertices u ∈ H, v ∈ H ′ we have dH(u, v) ≤ 1 + 2r. To see this, consider the sequence
H,He1 , Hi1 , He2 , Hi2 , . . . , Her , H

′, where es is the sth edge in a shortest path from H to H ′

and His is the sth vertex (i.e. a hyperedge in H) in the same path. Let U ⊂M be a subset
of size γ − 1 with rGM(U) = rγ−1(GM) ≤ rγ−1(t), and let L ⊂ V (H) be a set containing one
vertex from each U ∈ U .

By the maximality of M, for every vertex w of H there exists an edge Hw containing
w and an edge H ∈ M with Hw ∩H 6= ∅. Therefore by the observation above and by the
definition of U , there exists a U ∈ U and a vertex u ∈ U for which we have

dH(u,w) ≤ 2 + 2rGM(U) ≤ 2 + 2rγ−1(t) < 2 + 2
l − 1

2
= l + 1.

This means that if t < t∗ holds, then the (γ−1)-subset L distance-l dominates H. Therefore
M consists of at least t∗ hyperedges and thus |V (H)| ≥ t∗k holds.

The lower bound of (b) follows by applying Lemma 3.1 with j = γ − 1 together with
Lemma 3.4, noting that d t

γ
e ≥ l−1

2
implies t

γ
> l−1

2
− 1.

Finally, we prove the lower bound of (c) and (d). This will follow from the claim that
any maximal matching in the edge set E(H) of a connected hypergraph H with γd(H, 2) ≥ γ
has size at least γ. To see this suppose that M = {H1, H2, . . . , Hm} is a maximal matching
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in E(H) and for any i = 1, 2, . . . ,m let vi be a vertex of Hi. As any vertex v ∈ V (H) is
contained in a hyperedge Hv which, by maximality of M, intersects some Hi ∈ M, the set
D = {vi : i = 1, 2, . . . ,m} distance-2 dominates H. Therefore m ≥ γ must hold as claimed.

4 Final remarks and open problems

We addressed the problem of finding the minimum number of vertices that a connected k-
uniform hypergraph with high domination number must contain, and we considered two main
variants of the problem. For the original notion of domination and for s-wise domination we
found general lower and upper bounds on n(k, γ, s) in which even the order of magnitude of
the second term matches. The natural open problem occurs: it can be of interest to find the
constant coefficient of this second term.

Theorem 1.3, our main result concerning distance domination determines the asymptotics
of ndc(k, γ, l) if k and γ are fixed and l tends to infinity, or if all three parameters tend to
infinity. Closing the gap of roughly 2kγ between the upper and lower bounds remains an
interesting open problem.

We had a good reason to choose the notion of Berge paths in the definition of distance-l
domination. The most common other definitions of a path in hypergraphs are linear paths,
where two consecutive hyperedges of the path must share exactly one vertex (an even more
restrictive notion is a loose path) and tight paths where the vertices v1, v2, . . . , vk+l−1 of the
path should be chosen in such a way that the ith hyperedge of the path is {vi, vi+1, . . . , vi+k−1}
for all i = 1, 2, . . . , l. This implies that consecutive hyperedges of a tight path share k − 1
vertices. Note that in the construction showing the upper bound of Theorem 1.1 no pair of
hyperedges has intersection size 1 or k−1, therefore the construction does not contain linear
or tight paths of length larger than 1 and thus distance domination would not differ from
ordinary domination, had we used these notions of hypergraph paths to define distance.

There are various results on different domination numbers of a hypergraph in the litera-
ture: on the s-domination number in [2], on the inverse domination number in [16], on the
total domination number in [5], and on the connection of the domination number with the
transversal number in [3], [4]. Let us finish with the following theorem that can be obtained
simply by rearranging the lower bound of Theorem 1.3. In the style of Meir and Moon [17],
it uses only the size of the vertex set, the prescribed distance bound l, and the uniformity
of H.

Theorem 4.1. If H is a connected k-uniform hypegraph with |V (H)| = n, then

γdc(H, l) ≤

{
n
k

if l = 2, 3 or 4,
n
k
· 2
l−3 if l > 4.

It remains an open problem to make these upper bounds tight.
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