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We consider the fate of a helical edge state of a spin Hall insulator and its topological transition in presence
of a circularly polarized light when coupled to various forms of environments. A Lindblad-type equation is
developed to determine the fermion occupation of the Floquet bands. We find by using analytical and numerical
methods that nonsecular terms, corresponding to two-photon transitions, lead to a mixing of the band occupations,
hence the light-induced photocurrent is in general not perfectly quantized in the presence of finite coupling to
the environment, although deviations are small in the adiabatic limit. Sharp crossovers are identified at driving
frequencies near the Rabi frequency � (which is the strength of light-matter coupling) and at 1

2 � with the former
resembling a phase transition.
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I. INTRODUCTION

Topological insulators (TI) are at the focus of attention,
representing peculiar states of matter with robust, topologi-
cally protected conducting edge or surface states [1,2]. Due
to the strongly entangled spin and charge degrees of freedom,
possible applications in spintronics or quantum computation
have been proposed. In particular, the two-dimensional TI,
i.e., the quantum spin-Hall (QSH) state has been predicted and
experimentally observed for a number of systems, including
graphene [3], HgTe/CdTe [4,5] and InAs/GaSb [6] quantum
wells, lattice models [7–9], and multicomponent ultracold
fermions in optical lattices [10–12].

While engineering topologically nontrivial band structures
is far from being trivial, several methods have been proposed
to induce TIs. Among these, time periodic driven quantum
systems [13] have been investigated by using Floquet theory
[14–16], the temporal analog of Bloch states. The resulting
driven topological insulators are referred to as Floquet topo-
logical insulators. It has been proposed that novel topological
edge states can be induced by irradiating electromagnetic
waves on topologically trivial material such as a noninverted
HgTe/CdTe quantum well [17] or simply graphene [13] that
has no topologically protected edge states in the absence of
radiation. Of further interest is the proposal by Dóra et al. for
a quantized photocurrent in a quantum spin Hall (QSH) and
a topological phase transition to a nonquantized photocurrent,
when the frequency of the radiation field matches twice
the energy of the Zeeman coupling, altering the topological
properties [18]. Besides the theoretical appeal of Floquet TIs,
the Floquet shadow bands on the surface of a three-dimensional
TI Bi2Se3 have been observed [19] experimentally. In addition,
photonic waveguides have been used to simulate graphene
interacting with circularly polarized light, and the existence of
edge states was revealed [20].

The steady state of Floquet topological insulators is de-
scribed by the Floquet theory. Although the resulting Floquet
spectrum often possesses a topology different from that of their

static parents, the actual occupation of the various Floquet
bands is, however, essential to evaluate physical observables.
For example, a topologically nontrivial but only partially
filled band cannot profit from topological protection. The
occupation of the Floquet bands is, in principle, determined
by the sources of relaxation, e.g., coupling to heat baths
and phonons, momentum scattering from static disorder, or
interparticle interaction. In their absence, one can borrow from
the Floquet literature [16] and assume fermion occupations,
which minimize the time averaged Hamiltonian, as was done,
e.g., in Refs. [18,21].

In the present work, we extend the model for a driven
QSH system [18] to include various types of environments.
In particular, we study a QSH insulator coupled to a bosonic
heat bath, and irradiated by a circularly polarized light [see
Eq. (1)]. The electromagnetic field acts as a periodic driving
as it couples the QSH edge states. The system is schematically
sketched in Fig. 1. We consider the case when the radiation
acts on the whole edges of the sample, and we assume that
the inelastic electron scattering processes are the main source
of dissipation, similar to Ref. [22]. For the sake of simplicity,
we consider a model with the simplest possible form of a
bosonic dissipation, where dissipation does not couple states
of different momenta, but drives spin flip transitions. In locally
driven systems realized, e.g., by a small spot of laser light, the
inelastic processes are negligible, and the conductivity can be
calculated within a generalized Landauer-formalism [23]. In
this paper, we only study global driving, where the dissipative
approach is more appropriate.

Following the lines of Ref. [24], we apply a generalized
Lindblad type formulation (the Bloch-Redfield equations) to
describe how the environment affects the dynamics of the
edge states. In particular, we keep nonsecular terms, which
are not captured in the Lindblad equation, but are found to
affect the dynamics considerably. This requires, in general,
a numerical solution, though near critical points we find that
there is a single dominant nonsecular term that allows a rotation
into a time independent frame. We find that the occupation
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FIG. 1. The cartoon of the system, consisting of a QSH edge state
with spin filtered conducting channels, interacting with circularly
polarized electromagnetic field and coupled to an environment, is
visualized.

of the bands deviates from the one found using the average
energy assumption [18,21], which leads to a weak violation
of current quantization in the Floquet topological phase. Our
main result concerning the induced photocurrent along the
edge is summarized in Fig. 2.

Other Floquet systems have also been studied in the
presence of disorder or dissipation [23,25–32]. Most of the
former studies were related to driven graphene, showing that
dissipation effects generally inhibit the naive generalization
of the static results on topological band structures to the
Floquet case, due to the nonthermal occupation of these
bands. The effect of nonsecular terms in graphene shined
by circularly polarized light was studied numerically after a
quantum quench of the driving field in Ref. [32], our method
of analytical treatment of the dominant resonances generalize
to that case too, albeit we do not consider quenches here.
Floquet topological phases in graphene were also pointed
out in Refs. [33,34]. Topological edge current subject to
environment has also been studied for nondriven systems [35].

After introducing the model and the Floquet solution in
the absence of heat bath in Sec. II, we develop the Lindblad
formulation in Sec. III and apply this formulation to the edge
states of a driven QSH system in Sec. IV. We show numerical
and approximate solutions to the fermion occupation, then
discuss the stationary edge current in Sec. V.

FIG. 2. Comparison of the edge current [in units of e�/2π ] when
the states are occupied based on their average energy [18], and when
they are coupled to a zero temperature bath. The curves correspond to
the secular approximation, which describes the infinitesimal system-
bath coupling. The s = 0 curve is understood as the limiting behavior
as s → 0.

II. DISSIPATIVE CHIRAL EDGE STATES WITH A
PERIODIC DRIVE

We consider a one-dimensional chiral edge state of a QSH
insulator in a circularly polarized radiation field, shown in
Fig. 1 described by the noninteracting Hamiltonian H̃S =∑

p ψ
†
p H̃S(p) ψp, with

H̃S(p) = 1
2pσz − 1

2�(σ+e−iωt + H.c.). (1)

Here, ψ
†
p,σ creates a SQH edge excitation of momentum p

and spin σ , with 1
2p is the energy of the right moving spin

up fermions, and − 1
2p that of the left moving spin down

fermions (Fermi velocity vF is set to 1/2). The term with
� comes from the Zeeman coupling between the magnetic
component of the ω frequency electromagnetic field and the
electron’s spin, and � is identified as the Rabi frequency.
The laser frequency is assumed to be smaller than the bulk
gap of the QSH insulator. In Eq. (1), we neglected the effect
of the electric field of the laser, whose contribution is small
compared to the Zeeman coupling for small intensity or large
frequencies satisfying vF eE0/ω � �ω, with E0 being the
amplitude of the electric field oscillations. For more details
about the orbital effect see Ref. [18] and its supplementary
material.

For the sake of simplicity, we shall assume in the following
that excitations of the environment have a very long wave-
length compared to that of edge excitations, and will also
neglect the coupling it generates between different momenta.
Under these conditions, we can restrict our considerations to
a single momentum mode p, which we then couple to the
environment through

H̃SE = − 1
2bxσxX − 1

2byσyY − 1
2bzσzZ . (2)

Here, X, Y , and Z denote Gaussian bosonic fields, coupled
to the Pauli matrices, and bμ (μ ∈ {x,y,z}) denote the
corresponding couplings. Their dynamics is encoded in the
environment Hamiltonian, H̃E = H̃E(X,Y,Z), whose explicit
form is not needed here as it only determines the spectral
functions of the noise. We refer to this coupling scheme as
the XYZ coupling. Below we consider also other forms of
H̃SE , which are given by identifying Y with X (the XXZ
scheme), and both Y and Z with X (referred to as XXX
coupling).

The actual form of the system bath coupling depends on
the physical realization, but as we will show, in the limit of
weak coupling, they give similar results. The environment
is characterized by the bath spectral functions Jμ=x,y,z(ω) =
αω1−s

c ωse−ω/ωc , which determine the correlation functions
γμ(ω) = eβω

eβω−1
Jμ(ω) at arbitrary temperature 1/β. The di-

mensionless quantity α is the spectral strength and ωc is
a high frequency cutoff. An Ohmic bath corresponds to
s = 1, while s ≶ 1 describes the sub- and super-Ohmic baths,
respectively.

We reemphasize that, in our simplified model, each p

mode in Eq. (1) is coupled to a different environmental
variable, and similarly to Ref. [25], the environment induced
scattering between different momentum states is neglected, an
assumption that simplifies the description of the resulting state
considerably.
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Let us start by reviewing the Floquet solution of the
uncoupled topological insulator and its basic properties
[18]. The time-dependent Schrödinger equation, i∂t�p(t) =
H̃S(p)�p(t), is solved using the Floquet ansatz [14,16] for the
steady-state solution,

�p(t) = exp[−iE±(p)t]�±(p,t). (3)

Here, E±(p) denotes the Floquet quasienergy, and �±(p,t) =
�±(p,t + T ) with T = 2π/ω,

E±(p) = ω ± �′

2
, (4)

�±(p,t) = 1√
2�′

( √
�′ ∓ δω

± exp(iωt)
√

�′ ± δω

)
, (5)

where �′ = √
δω2 + �2 is the renormalized Rabi frequency

and δω = ω − p denotes the detuning. The Floquet quasiener-
gies (4) are only well defined modulo ω and cannot be used
to determine the filling of Floquet states. A phenomenological
way of determining filled Floquet states [21] relies on the
average energy [16], defined as

Ē±(p) = 1

T

∫ T

0
dt �+

p (t)H�p(t) = ±
2

(
�′ − ωδω

�′

)
,

(6)

which is always single valued as opposed to the ladder of
quasienergies in Eq. (4). In the present work, we go beyond
this phenomenological reasoning and determine the filling of
the Floquet eigenstates from first principles.

III. THE NONSECULAR LINDBLAD EQUATION

In this section, we follow the lines of Refs. [24,36] to outline
a theoretical framework to describe the time dependent re-
duced density matrix by a generalized Lindblad-type equation,
up to second order in the coupling with an environment. As a
first step, one switches to the interaction picture with respect to
the noninteracting Hamiltonians, H(t) = H̃S(t) + H̃E , where
the time evolution of the interacting system’s density matrix
ρ(t) is governed simply by the Hamiltonian HSE(t), which we
factorize as

HSE(t) =
∑

μ

Aμ(t) ⊗ Bμ(t). (7)

Here the operators Aμ(t) and Bμ(t) act on the system and the
environment, and their time evolution is governed by H̃S (t) and
H̃E , respectively. To keep the notation simple, we suppress
the index μ in what follows, and restore it only in the final
results.

Within second-order perturbation theory, the density matrix
factorizes as ρ(t) = ρS(t) ⊗ ρE , from the von Neumann
equation one derives the integral equation [37]

ρ̇S(t) ≈
∫ t

0
ds�(s)[A(t − s)ρS(t − s)A(t) −

−A(t)A(t − s)ρS(t − s)] + H.c., (8)

with �(t) ≡ 〈B(t)B(0)〉E the correlation function of the
operator B(t).

To proceed, one usually assumes that �(s) is short ranged,
and then makes a Markovian approximation, ρS(t − s) →
ρS(t). (Keeping non-Markovian terms is discussed in Ap-
pendix A.) Then, decomposing A(t) into its eigenmodes of
frequencies ν−j = −νj (and A

†
j = A−j )

A(t) =
∑

j=−J,...,J

Aj e−iνj t = A†(t), (9)

and taking the long-time limit one obtains

ρ̇S =
∑
j,k

�̃(νj )ei(νk−νj )t [AjρSA
†
k − A

†
kAjρS] + H.c. (10)

with the couplings �(νj ) defined as

�̃(ω) =
∫ ∞

0
ds�(s)eiωs = 1

2
γ (ω) + i Im�̃(ω) . (11)

The generalized Lindblad’s equation (10) is the cornerstone
of our analysis, which we examine beyond the secular
approximation.

Usually [36,38–41] one makes an additional assumption
of keeping only the secular terms with νj = νk , sometimes
referred to as “modified rotating wave approximation” [42]. In
this limit, the terms proportional to Im�̃(νj ) just renormalize
the subsystem’s Hamiltonian (produce a Lamb shift) and
can thus be dropped [36], and a usual Lindblad equation is
recovered,

ρ̇sec
S =

∑
j

γ (νj )

{
Ajρ

sec
S A

†
j − 1

2
A

†
jAjρ

sec
S − 1

2
ρsec

S A
†
jAj

}
.

(12)

To appreciate the role of the nonsecular terms, assume
that an equilibrium solution ρeq is found for the secular
equation (12), and that deviations from equilibrium decay
to it exponentially, δρ(t) ∼ δρ(0) exp(−�t). Treating then the
nonsecular terms of Eq. (10) iteratively, one can immediately
see that they generate corrections ∝1/(i(νk − νj ) + �), clearly
demonstrating critical regions with |νk − νj | � �. In these
regions, the nonsecular terms become important, and the
secular approximation fails.

Recovering the indices μ in Eq. (10), the time evolution of
the density matrix is given by

ρ̇S =
∑
μ,j,k

�̃μ(νj )ei(νk−νj )t

× [Aμ,jρSA
†
μ,k − A

†
μ,kAμ,jρS] + H.c., (13)

where μ runs over statistically independent noise components,
see Table I.

IV. APPLYING THE LINDBLAD EQUATION TO THE
EDGE STATE

Let us now combine the results of the previous sections to
investigate the fate of the driven spin Hall system coupled to an
environment. We start by deriving the time evolution operator
for H̃S(p). We note first that H̃S(p) becomes static in the
rotating frame, i.e., using the transformation e

1
2 iωtσz that yields

the Hamiltonian 1
2 (p − ω)σz − 1

2�σx . Next, we rotate into
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VAJNA, HOROVITZ, DÓRA, AND ZARÁND PHYSICAL REVIEW B 94, 115145 (2016)

TABLE I. The operators appearing in Eq. (9) in the XYZ coupling
defined in Eq. (2), σ± = (σx ± iσy)/2. In case of XXZ coupling the
operators Ax,j are given by the sum of Ax,j and Ay,j of the XYZ case,
and similarly by

∑
μ=x,y,zAμ,j in the XXX coupling.

Frequency 4/bx · Ax,j 4/by · Ay,j 2/bz · Az,j

ν0 = 0 0 0 − cos θσz

ν1 = �′ 0 0 sin θσ−
ν2 = �′ + ω −(1 + cos θ )σ− −i(1 + cos θ )σ− 0
ν3 = �′ − ω (1 − cos θ )σ− −i(1 − cos θ )σ− 0
ν4 = ω sin θσz −i sin θσz 0

the z axis by e
1
2 iθσy where sin θ = −�/�′, cos θ = −δω/�′,

leading to the Hamiltonian H1
S(p) = 1

2�′σz. Finally, the time

evolution with respect to H1
S(p) is e− 1

2 i�′tσz , hence the total
evolution operator is

US(t) = e− 1
2 iωtσze− 1

2 iθσy e− 1
2 i�′tσz . (14)

We note that the conventional evolution operator is US(t)e
1
2 iθσy

(which is the identity at t = 0). For either forms, the interaction
picture has HS(p) = 0, we find the form (14) to be more
convenient.

Then we express H̃SE in this rotated interaction picture as

HSE =
∑

j=±1,0

Az,j e−iνj tZ(t)

+
∑

j=±2,±3,±4

[Ax,j e−iνj tX(t) + Ay,j e−iνj tY (t)] (15)

with the operators and the corresponding frequencies indicated
in Table I. Having all operators Aμ,j at hand, we can now
proceed and construct the nonsecular and secular Lindbald
equations, Eqs. (10) and (12).

A. Secular Lindblad equation

We can apply the secular approximation in the limit,
where all νj are sufficiently different relative to linewidths.
Moreover, for infinitesimal system-bath coupling, the secular
approximation becomes exact. This can be seen, e.g., by
noticing that rescaling time by α in Eq. (13) upscales the
frequencies of the nonsecular oscillations. It is useful to expand
the density matrix ρS(t) in Pauli matrices as

ρS(t) = 1

2
+

∑
μ

ρμ(t) σμ. (16)

In this basis, the secular Lindblad equations read

dρx

dt
= −

(
�∗

ϕ + 1

2
�↓ + 1

2
�↑

)
ρx ≡ − 1

T2
ρx,

dρy

dt
= − 1

T2
ρy, (17)

dρz

dt
= −(�↓ + �↑)

(
ρz − ρ0

z

) ≡ − 1

T1

(
ρz − ρ0

z

)
with the equilibrium values 1

2 〈σz〉0 = ρ0
z = 1

2
�↑−�↓
�↑+�↓

, ρ0
x =

ρ0
y = 0, and the emerging relaxation rates defined

FIG. 3. The nonvanishing element of the density matrix in the
stationary state at zero temperature (ω = 1.1�, α → 0 limit). The
three curves correspond to different bath spectral functions J (ν).
The excitations in the steady state are with stronger weight in the
sub-Ohmic (s = 0) case compared to Ohmic (s = 1) or super-Ohmic
environments (s = 2).

as

�↑/↓ = b2
z

4
sin2 θγz(∓�′) +

∑
μ∈(x,y)

b2
μ

16
[c2

−γμ(∓�′ ± ω)

+ c2
+γμ(∓�′ ∓ ω)],

�∗
ϕ = b2

z

2
cos2 θγz(0) +

∑
μ∈(x,y)

b2
μ

8
sin2 θ [γμ(ω) + γμ(−ω)].

(18)

Equation (17) assume the form of standard Bloch equations in
the interaction picture with equilibrium in the z direction. We
note that �↓,�↑ can also be derived by a simpler Golden rule
calculation [39,40], in agreement with our method. The results
are the same for the XXZ and the XXX coupling, excepting
that in the former we have to take γx = γy , and in the latter
case γx = γy = γz.

The stationary value ρ0
z also gives the steady-state occupa-

tion numbers of the eigenstates of the system Hamiltonian in
the rotated frame H 1

S (p) = 1
2�′σz. Its two eigenstates give also

the nonequivalent Floquet states in the laboratory frame [43].
The occupation of the state with lower energy in the rotated
frame is n−(p) = 1

2 − ρ0
z .

At zero temperature, a sharp difference shows up between
the occupation profiles in the cases of small frequency
(ω < �) and large frequency driving, irrespective of the
actual type of the bosonic heat bath. In the former case
�↑ ≡ 0, hence the steady state is described by filling the
lowest lying states of H 1

S (p). However, if ω > �, there is
a narrow domain in the momentum space (p∗

− < p < p∗
+,

p∗
± = ω ± √

ω2 − �2), where �↑ �= 0, correspondingly the
steady state contains excitations with respect to the rotating
frame Hamiltonian. Depending on the spectral functions of
the baths, inverse population is achieved in this region, see
Fig. 3.

B. Beyond the secular approximation

The Bloch equations are rewritten as

dρ(t)

dt
= B(t)ρ(t) + b(t), (19)
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FIG. 4. Average stationary value of ρz for various ω/� ratios in the XXX case (s = 1, α = 0.05). (a) ω > �, correspondingly ρz deviates
from the secular solution at critical momenta p∗

± (�′ − ω ≈ 0) and p∗∗
± (�′ − 2ω ≈ 0). This is attributed to two-photon transitions, where the

Floquet bands touch each other (bottom). (b) At lower frequency (� > ω > 1
2 �) only one dangerous nonsecular term survives, giving rise to

peaks at p∗∗
± . (c) When ω � 1

2 �, the secular approximation still gets corrections because the dangerous frequency �′ − 2ω is small at p ≈ ω.
The actual values of ω/� are 1.1 in (a), 0.75 in (b), and 0.48 in (c).

where

B(t) = 2
∑
μ,j,k

�̃μ(νj )ei(νk−νj )t [aμ,j a+
μ,k − I aμ,j · a∗

μ,k] + H.c.,

(20)

b(t) =
∑
μ,j,k

i�̃μ(νj )ei(νk−νj )t [aμ,j × a∗
μ,k] + H.c. (21)

with Aμ(t) = aμ(t) · σ and aμ(t) = ∑
j aμ,j e−iνj t , and aμ,j

can be identified from Table I. In the secular approximation
only the j = k terms are kept, i.e., only B̃(0) and b̃(0). The
frequencies appearing in the above expansions in the XYZ
and XXZ cases are ±(0, �′, 2ω, �′ ± 2ω) in b(t) and ±(0,
�′, 2�′, 2ω, �′ ± 2ω, 2(�′ ± ω)) in B(t). In the XXX case,
additional frequencies ±(ω,�′ ± ω) to b(t) and ±(ω,�′ ±
ω,2�′ ± ω) to B(t) appear. For the full solution of the problem,
all these terms should be taken into account, which is easy
to implement numerically. Generally, all the above Fourier
components appear in the time evolution of the density matrix,
ρx and ρy oscillate around 0, while ρz oscillates around a finite
stationary value. The secular approximation works well if none
of these frequencies are close to zero. In the case when one of
these frequencies nearly vanish, the stationary values are tuned
away from the secular ones. The possibly dangerous terms
that can vanish at certain momenta, possess frequencies as
ν∗ = �′ − ω and ν∗∗ = �′ − 2ω [44]. When these frequencies
become small, the deviation from the secular approximation
grows, which appears as a peak in the stationary components
of ρ(p).

In the vicinity of these points, analytical solutions are
possible within the dominant frequency approximation (DFA).
When the frequency of some nonsecular terms approaches
zero, it drives the solution away from the secular one. The
single smallest frequency appearing among the nonsecular
terms is the dominant one. Keeping this single frequency,
Eq. (13) can be transformed to a time independent equation,
that is readily solved, as detailed in the appendix.

The full numerical solution of the Eq. (19), together with
various approximate results are shown in Fig. 4, visualizing
the momentum dependence of the average value of ρz in the
Ohmic case. Note that ρz can become smaller than −1/2,
which is a common feature in other nonsecular approaches as
well [24]. The secular approximation clearly breaks down at
certain momenta, and is outperformed by the DFA there [45].

Despite the several Fourier coefficients appearing in ρ(t),
the spins exhibit periodic oscillations in the laboratory frame
with frequency ω and higher harmonics. Indeed, switching
back to the Schrödinger picture (ρ̃(t)) after applying the
Markovian approximation on Eq. (8) results in a differential
equation, which only involves frequencies 0, ω and its higher
harmonics (�′ affects only coefficients via the s integration).
This is favorable for numerical calculations but is also
disadvantageous for analytical treatment compared to the
interaction picture, which gives a natural ground to investigate
the resonances and provides approximate solutions for the time
evolution of the density matrix.

V. PHOTOCURRENT ALONG THE EDGE

Armed with the knowledge of the density matrix, we now
focus on measurable quantities. Due to the electromagnetic
field, a net electric current and magnetization due to the
magnetoelectric effect [1] is induced along the edge. Without
the environment [18], this current was found to be quantized
based in the average energy concept in the adiabatic limit,
giving way to dissipative charge transport through a topolog-
ical transition with increasing frequency ω. The photocurrent
along the edge of a spin-Hall insulator in the laboratory frame
is determined as j = −e

∫ dp

2π
Tr[ρ̃(t) 1

2σz], which is expressed
by the components of ρ in the interaction picture as

j = e

∫ �

−�

dp

2π

δω

�′ ρz − �

�′ (ρx cos �′t − ρy sin �′t), (22)

which inherits the 2π/ω periodicity from ρ̃(t). In the secular
approximation, only the dc component survives, as ρx,y = 0
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FIG. 5. Stationary current induced by a circular driving on a QSH
edge coupled to an Ohmic bath (the vertical units are in jc(ω = �) =
e�

2π
, α = 0.1). (a) Numerical solution. (b) Analytical results for the

symmetric case with bx = by = bz and �x = �y = �z. The secular
approximation corresponds to an infinitesimal system-bath coupling,
where the quantization is exact until the driving frequency reaches the
Rabi frequency. The two-photon processes at finite coupling constants
violate the quantization, which become effective at ω ∼ 1

2 �. This is
well captured in the DFA. (c) The photon-resonances also give rise
to an ac current with frequency nω, n ∈ N.

and ρz is time independent. In the low frequency limit (ω <

�) ρz ≡ − 1
2 , yielding jc = eω

2π
, which we call the quantized

value following Ref. [18]. In the adiabatic ω → 0 limit, this
result corresponds to the Thouless charge pumping [46], which
was also obtained for a QSH insulator in rotating magnetic
field in Ref. [47]. When ω > �, there are regions where ρz

deviates from − 1
2 (Figs. 3 and 4), implying the breakdown of

the quantization. Near the critical point the deviation form the
quantized current is �j = j − jc ∼ (ω − �)s+3/2, with the
exponent depending on the low frequency asymptotics of the
bath spectral function.

The current obtains ∼α corrections to the secular approx-
imation due to the nonsecular terms, and the quantization of
the current ceases to be exact at finite system-bath couplings
[Figs. 5(a) and 5(b)]. The corrections have dual origin. On
the one hand, due to photon absorption resonances near
ω ≈ 1

2�′,�′, ρz deviates from − 1
2 even for ω < �. On the

other hand, the x,y components of the density matrix acquire
oscillations at frequency �′, which also contribute to the DC
current in Eq. (22). The resonances produce a sharp breakdown
in the current at ω ≈ 1

2� due to a dangerous nonsecular term
present in the XXZ and XXX cases. This behavior is captured
in the DFA. Figure 5(b) shows the crossover at ω ∼ 1

2� due
to the �′ − 2ω ≈ 0 resonance, and also the effect of the �′ −
ω ≈ 0 resonance on the dc current. The DFA with frequencies
�′ − ω and �′ − 2ω cannot yield nonzero �′ fluctuations. To

describe the effect of the second term in Eq. (22), one has to
study the DFA with frequency �′ [Fig. 5(b)]. The deviations
of the DFA with different frequencies compared to the
secular approximation are approximately additive, and one can
combine them to achieve a good approximation for the total dc
current.

At finite system-bath coupling, in addition to the dc
component, the stationary current is also characterized by
nonvanishing ac contributions, showing peaks as a function
of ω [Fig. 5(c)]. The ω frequency Fourier component of
the current originates from the ω, �′ ± ω Fourier terms in
ρ(t), which are present only in the XXX coupling. The 2ω

and �′ ± 2ω components of ρ(t) are responsible for the
2ω harmonic ac current, which therefore is present in the
XXZ and XXX couplings. The XYZ coupling does not show
any alternating current. We note that the electric field of
the laser neglected in Eq. (1) may also contribute to the ac
current [18].

In general, finite temperature also breaks down the quan-
tization of the current. However, in the special case of
bx = by = 0, when the occupation is thermal, the current
remains quantized even at finite temperature. It is also worth
mentioning that in this case there are no critical points at
all (see, e.g., ρ0

z together with the definitions of �↑,↓, and also
Table I), and the quantization remains valid for all frequencies.

The integrated expectation value of σz determines both the
current and the z component of the edge magnetization. The
magnetization in the xy plane is calculated similarly, and, as
in Ref. [18], it exhibits a circular motion on average with
frequency ω:

Mω
⊥ =

∫ �

−�

dp

2π

1

2
〈σx cos(ωt) + σy sin(ωt)〉 (23)

= −
∫

dp

2π

�

�′ ρz + δω

�′ (ρx cos �′t − ρy sin �′t). (24)

Similar to the current, only the first term survives in the secular
approximation, and in further analogy to the quantized current,
we define Mc = ∫ dp

2π
�
�′

1
2 = �

2π
ln 2�

�
, which is independent

of ω and logarithmically divergent in the cutoff parameter �.
The crossovers in ρz as a function of ω are also revealed
in transverse magnetization, which can be highlighted by
subtracting the low frequency transverse magnetization Mc

as a reference value (Fig. 6). In the XXX and XXZ cases,
the magnetization acquires a finite 3ω component due to
the �′ ± 2ω components of ρ, and the �′ − ω resonance
in the XXX case gives rise to a finite static magnetiza-
tion in the xy plane together with the second harmonic
[Fig. 6(c)].

VI. CONCLUSION

We have investigated the fate of a spin-Hall edge state, cou-
pled to dissipative environment, in the presence of circularly
polarized electromagnetic field. Without the environment, the
Floquet solution of the problem features an electromagnetic
field induced photocurrent, being quantized in the adiabatic
regime [46] and crossing over to dissipative charge transport
with increasing frequency [18]. These results were obtained
using the average energy concept for the occupation of the
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FIG. 6. Frequency dependence and crossovers in the transverse
magnetization (in units of �

2π
). In contrast to the current, the transverse

magnetization oscillates with frequency ω in the α → 0 limit, with
amplitude Mc for ω < �. (a) Deviation from the limiting value
Mc at finite system-bath coupling, numerical solution (α = 0.1).
(b) DFA with the two dangerous frequencies and with �′ is capable
to reconstruct all the features in the numerical solution. (c) Other
Fourier components of the magnetization.

Floquet steady state. In the presence of dissipation, the filling
of the Floquet states is determined by a Lindblad equation,
which we investigate both analytically and numerically. The
photocurrent is only quantized in the strict adiabatic limit in
the presence of finite bath coupling. Nevertheless, deviations
from perfect quantization in the adiabatic regime are tiny,
as shown in Fig. 2, and perfect quantization is recovered
in the limit of vanishing coupling to the environment. With
increasing frequency, deviations grow and the photocurrent
becomes dissipative in nature. Our results show that couplings
to environments are essential for treating Floquet systems and
that these can be identified by measuring dc as well as ac
observables of the system.
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APPENDIX A: NON-MARKOVIAN EQUATION

If we drop the Markovian assumption, have to solve the
following integrodifferential equation:

d

dt
ρ̂(t) =

∑
μ∈{x,y,z}

∫ t

0
ds �μ(s)[Âμ(t − s)ρ̂(t − s)Âμ(t)

− Âμ(t)Âμ(t − s)ρ̂(t − s)] + H.c. (A1)

or after expanding ρ̂(t) = 1
2 + ρ(t) · σ and Âμ(t) = aμ(t) · σ ,

dρ(t)

dt
=

∫ t

0
ds B(t,s)ρ(s) + b(t), (A2)

where

B(t,s) = 4�
{∑

μ

�μ(s)
[
aμ(t−s) · aT

μ(t)−I aμ(t−s) · aμ(t)
]}

,

(A3)

b(t) = 2�
{∑

μ

∫ t

0
ds �μ(s)i[aμ(t − s) × aμ(t)]

}
. (A4)

To test the Markovian approximation, we solved numerically
the above integro-differential equation with Heun’s method
(a two-stage predictor-corrector method), and compared the
solution with the Markovian approximation (Fig. 7). There is
a very small quantitative difference in the stationary states, but
the qualitative picture does not change.

APPENDIX B: DOMINANT FREQUENCY
APPROXIMATION (DFA)

We observe that the operators Aμ,j in Table I are either
proportional to σ± or to σz, thus they obtain only a phase factor
under a rotation around the z axis. The secular terms always
consist of an operator Aμ,j and its hermitian conjugate, hence
they do not transform under the rotation U = e

1
2 iνtσz . On the

other hand, the nonsecular terms acquire a phase factor, which

FIG. 7. Comparison of the Markovian and non-Markovian time evolution in an Ohmic environment for short (a) and long (b) times.
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TABLE II. Matrix structure of the various Fourier components (ν ∈ {�′ − ω,�′ − 2ω,�′, 1
2 �′ − ω}) appearing in Eq. (20). All the matrix

elements are ∼α, ε = − 1
2 (�↑ − �↓), ξ = �↑ + �↓, and η = 1

2 (�↑ + �↓) + �∗
φ . The Lamb shift η2 together with the other matrix elements are

listed in Appendix C.

B̃(0) b̃(0) B̃(ν) b̃(ν) B̃(2ν) b̃(2ν)⎛
⎝ η η2 0

−η2 η 0
0 0 ξ

⎞
⎠

⎛
⎝0

0
ε

⎞
⎠

⎛
⎝ 0 0 β1

0 0 iβ1

β2 iβ2 0

⎞
⎠

⎛
⎝ χ

iχ

0

⎞
⎠

⎛
⎝ δ iδ 0

iδ −δ 0
0 0 0

⎞
⎠

⎛
⎝0

0
0

⎞
⎠

allow us to transform the dominant frequency term to be time
independent, without spoiling the secular terms.

Let νd ∈ {ν∗,ν∗∗} denote the dominant frequency (the
method works for the frequencies �′, 1

2�′ − ω as well),
and ρ ′(t) = R(νd t)ρ(t) is the vector representation of the
density matrix after the rotation, where R(νt) is the 3 × 3
rotation matrix around the z axis in the positive direction.
Keeping only the time independent terms in the Bloch
equation for ρ ′(t) yields ρ̇ ′(t) = B̃dρ

′(t) + b̃d , where B̃d =∑
B̃(ν) − RṘ−1 and b̃d = ∑

b̃(ν) with the sum going through
ν ∈ Vd = {0, ± νd,±2νd}. The matrix structure of the Fourier
components are shown in Table II, the matrix elements are
given explicitly in the Appendix C.

At this level of approximation, ρ ′ achieves a constant
stationary value determined by the matrix elements of the
Fourier components. Going back to the interaction picture, we
see a constant ρstac

z and oscillating ρstac
x,y with π

2 phase difference
between them (Fig. 8). The amplitude of this oscillation
is given by ρ⊥ =

√
ρ ′2

x + ρ ′2
y . These steady-state values are

expressed as

ρ ′stac
z = − εζ1 − ζ2

ξζ1 − ζ3
, ρ ′stac

⊥ = 2

∣∣∣∣ ζ4

ξζ1 − ζ3

∣∣∣∣, (B1)

ζ1 = η2 − 4|δ|2 + (ν − η2)2, (B2)

ζ2 = 4�{χβ∗
2 (η + i(ν − η2)) − 2χβ2δ

∗}, (B3)

ζ3 = 4�{β1β
∗
2 (η + i(ν − η2)) − 2β1β2δ

∗}, (B4)

FIG. 8. Stationary state dynamics of the density matrix on the
Bloch sphere in the interaction and Schrödinger pictures. The curves
show the path of ρ close to a critical point, where the nonsecular
terms are non negligible. In the secular approximation (red dashed
curve and arrow), ρ reaches a constant value in the interaction picture,
which corresponds to a circular motion in the laboratory frame (i.e.,
in the Schrödinger picture). In the DFA, ρ draws a circle around the
secular solution in the interaction picture. This circle also has a fine
structure, if we go beyond the DFA (blue solid curve and arrow).

ζ4 = (χξ − β1ε)(η + i(ν − η2))

+ 2β2(χ∗β1 − χβ∗
1 ) + 2δ(β∗

1 ε − χ∗ξ ). (B5)

This expression makes it clear that as the dissipation strength
α tends to zero, the solution approaches the secular one,
ρstac

z = − ε
ξ

and ρstac
⊥ = 0. This can be seen by observing

that the only terms of order α are εν2 in the nominator of
ρstac

z and ην2 in the denominators; all the others are at least
O(α2). On the other hand, for any finite system-bath coupling
strength, approaching the critical points—where the dominant
frequency vanishes—close enough, the secular approximation
breaks down. Now we discuss separately the results of the
DFA for the various couplings.

In the U(1) symmetric XYZ case, there are no dangerous
nonsecular terms, and the full time evolution can be mapped
to be exactly time independent applying the method described
above with νd = �′. This yields an analytical solution for the
stationary fermion occupations.

The U(1) breaking XYZ and XXZ case has a single
dangerous nonsecular term corresponding to the frequency
ν∗∗ [because ν∗ does not enter in B(t) and b(t)]. This vanishes
if ω > 1

2� at the critical momenta p∗∗
± = ω ± √

4ω2 − �2,
giving rise to peaks in the stationary values of ρz and ρ⊥. In
contrast to the singularity in the secular solution at ω = �,
these peaks grow up gradually as ω is increased, and are
also present in the ω < 1

2� case [see Fig. 4(c) for the same
phenomenon in XXX case]. We note that Eq. (B1) is in the
most general form, and it simplifies for νd = ν∗∗ as δ ≡ 0 in
this case.

In the XXX coupling, in addition to ν∗∗, the frequency
ν∗ becomes dangerous as well, and it vanishes at momenta
p∗

± for ω > �. These are the momenta between which
excitations are present in the steady state even in the secular
approximation. The contribution of the dominant frequency
terms is that additional peaks grow at p∗

± on the top of the
secular solution of ρz and ρ⊥ [Fig. 4(a)]. In principle, the
frequency ν∗∗∗ = �′ − 1

2ω could be dangerous as well, but
the matrix elements χ = β1,2 ≡ 0 at this frequency. Because
of the vanishing matrix elements, it does not change the secular
behavior, see, e.g., Eq. (B1).

An equivalent way to look at the DFA is to take the Fourier
transform of Eq. (19), which maps the differential equation
to an (infinite) set of coupled linear equations iρ̃(ωi)ωi =∑

j B̃(ωi − ωj )ρ̃(ωj ) + b̃(ωi). The approximation is to keep
only the dominant frequency νd in the expansion of ρ̃,
neglecting the higher harmonics as well. The generalization
to keep more (dominant) frequencies is straightforward in this
language, but analytically hardly treatable.
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APPENDIX C: MATRIX ELEMENTS

The diagonal matrix elements of B̃(0) and b̃(0) were already given in the main text. The Lamb shift η2 is

η2 = − i
b2

z

8

(
�

�′

)2

[�∗
z (−�′) − �z(−�′) − �∗

z (�′) + �z(�
′)]

+ i
b2

x

32

{(
1 + ω − p

�′

)2

[�∗
x (ω − �′) − �x(ω − �′) − �∗

x (�′ − ω) + �x(�′ − ω)]

+
(

1 − ω − p

�′

)2

[�∗
x (−ω − �′) − �x(−ω − �′) − �∗

x (�′ + ω) + �x(�′ + ω)]

}
+ “x ↔ y” (C1)

for the XYZ case, and the same for the XXZ/XXX cases are given by the substitution �y = �x , �y = �z = �x .
The Fourier component ν∗ = �′ − ω appears only in the XXX case, with the matrix elements

χ = (bx − iby)bz

16

{
ω − p

�′

(
1 + ω − p

�′

)
[�x(�′ − ω) − �∗

x (ω − �′) + �∗
x (0) − �x(0)]

− �2

�′2 [�∗
x (ω) − �x(−ω) + �∗

x (�′) − �x(−�′)]
}
, (C2)

β1 = (bx − iby)bz

8

{
ω − p

�′

(
1 + ω − p

�′

)
[�x(�′ − ω) + �∗

x (ω − �′)] − �2

�′2 [�x(�′) + �∗
x (−�′)]

}
, (C3)

β2 = (bx − iby)bz

8

{
ω − p

�′

(
1 + ω − p

�′

)
[�∗

x (0) + �x(0)] − �2

�′2 [�∗
x (ω) + �x(−ω)]

}
, (C4)

δ = (bx − iby)2

32

(
1 + ω − p

�′

)2

[�x(�′ − ω) + �∗
x (ω − �′)], (C5)

but the second harmonic 2ν∗ is present in the XXZ and XYZ cases as well. In the former, δ is identical to that of the XXX case,
while for the latter

δ = b2
x

32

(
1 + ω − p

�′

)2

[�x(�′ − ω) + �∗
x (ω − �′)] − “x ↔ y”. (C6)

In the case of Fourier component ν∗∗ = �′ − 2ω, the second harmonic δ ≡ 0 in all the coupling schemes. The other matrix
elements are

χ = b2
x

32

�

�′

(
1 + ω − p

�′

)
[�∗

x (ω) − �x(−ω) + �x(�′ − ω) − �∗
x (ω − �′)] − “x ↔ y”, (C7)

β1 = b2
x

16

�

�′

(
1 + ω − p

�′

)
[�x(�′ − ω) + �∗

x (ω − �′)] − “x ↔ y”, (C8)

β2 = b2
x

16

�

�′

(
1 + ω − p

�′

)
[�∗

x (ω) + �x(−ω)] − “x ↔ y” (C9)

for the XYZ case, and

χ = (bx − iby)2

32

�

�′

(
1 + ω − p

�′

)
[�∗

x (ω) − �x(−ω) + �x(�′ − ω) − �∗
x (ω − �′)], (C10)

β1 = (bx − iby)2

16

�

�′

(
1 + ω − p

�′

)
[�x(�′ − ω) + �∗

x (ω − �′)], (C11)

β2 = (bx − iby)2

16

�

�′

(
1 + ω − p

�′

)
[�∗

x (ω) + �x(−ω)] (C12)

for the XXZ and XXX cases.
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The matrix elements of the Fourier coefficients �′ in the XYZ are

χ = b2
x

32

�

�′

{(
1 + ω − p

�′

)
[−�x(ω) + �∗

x (−ω) + �x(�′ − ω) − �∗
x (ω − �′)]

+
(

1 − ω − p

�′

)
[−�∗

x (ω) + �x(−ω) + �∗
x (−�′ − ω) − �x(�′ + ω)]

}
+ “x ↔ y”

+ b2
z

8

�

�′
ω − p

�′ [�z(0) − �∗
z (0) − �z(�

′) + �∗
z (−�)], (C13)

β1 = b2
x

16

�

�′

{(
1 + ω − p

�′

)
[�x(�′ − ω) + �∗

x (ω − �′)] −
(

1 − ω − p

�′

)
[�x(�′ + ω) + �∗

x (−ω − �′)]
}

+ “x ↔ y”

− b2
z

4

�

�′
ω − p

�′ [�z(�
′) + �∗

z (−�′)], (C14)

β2 = b2
x

16

�

�′

{(
1 + ω − p

�′

)
[�x(ω) + �∗

x (−ω)] −
(

1 − ω − p

�′

)
[�x(−ω) + �∗

x (ω)]

}
+ “x ↔ y”

− b2
z

4

�

�′
ω − p

�′ [�z(0) + �∗
z (0)], (C15)

δ = b2
x

32

[(
ω − p

�′

)2

− 1

]
[�x(�′ + ω) + �x(�′ − ω) + �∗

x (ω − �′) + �∗
x (−ω − �′)] + “x ↔ y”

+ b2
z

8

�2

�′2 [�z(�
′) + �∗

z (−�)], (C16)

and the same for the XXZ/XXX cases are given by the substitution �y = �x and �y = �z = �x .
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