A SPIKY BALL

MÁRTON NASZÓDI

Abstract. The illumination problem may be phrased as the problem of covering a convex body in Euclidean n-space by a minimum number of translates of its interior. By a probabilistic argument, we show that, arbitrarily close to the Euclidean ball, there is a centrally symmetric convex body of illumination number exponentially large in the dimension.
§1. Introduction. For two sets K and L in \mathbb{R}^{n}, let $N(K, L)$ denote the translative covering number of K by L, that is, the minimum number of translates of L that cover K.

Let K be a convex body (that is, a compact, convex set with non-empty interior) in \mathbb{R}^{n}. Following Hadwiger [10], we say that a point $p \in \mathbb{R}^{n} \backslash K$ illuminates a boundary point $b \in \operatorname{bd} K$ if the ray $\{p+\lambda(b-p): \lambda>0\}$ emanating from p and passing through b intersects the interior of K. Boltyanski [5] gave the following slightly different definition. A direction $u \in \mathbb{S}^{n-1}$ is said to illuminate K at a boundary point $b \in \operatorname{bd} K$ if the ray $\{b+\lambda u: \lambda>0\}$ intersects the interior of K. It is easy to see that the minimum number of directions that illuminate each boundary point of K is equal to the minimum number of points that illuminate each boundary point of K. This number is called the illumination number $\mathrm{i}(K)$ of K.

We call a set of the form $\lambda K+v$ a smaller positive homothet of K if $0<\lambda<1$ and $v \in \mathbb{R}^{n}$. Gohberg and Markus asked how large the minimum number of smaller positive homothets of K covering K can be. It is not hard to see that this number is equal to $N(K$, int $K)$. It is also easy to see that $\mathrm{i}(K)=N(K$, int $K)$.

Any smooth convex body (i.e., a convex body with a unique support hyperplane at each boundary point) in \mathbb{R}^{n} is illuminated by $n+1$ directions. Indeed, for a smooth body, the set of directions illuminating a given boundary point is an open hemisphere of \mathbb{S}^{n-1}, and one can find $n+1$ points (e.g., take the vertices of a regular simplex) in \mathbb{S}^{n-1} with the property that every open hemisphere contains at least one of the points. Thus, these $n+1$ points in \mathbb{S}^{n-1} (i.e., directions) illuminate any smooth convex body in \mathbb{R}^{n} (cf. [6] for details).

On the other hand, the illumination number of the cube is 2^{n}, since no two vertices of the cube share an illumination direction. Even though we do not discuss it, it would be difficult to omit mentioning the Gohberg-Markus-Levi-Boltyanski-Hadwiger conjecture (or illumination conjecture), according to

[^0]which for any convex body K in \mathbb{R}^{n}, we have $\mathrm{i}(K)=2^{n}$, where equality is attained only when K is an affine image of the cube.

For more background on the problem of illumination, see $[\mathbf{1 , 2 , 8}, 11]$. In [6, $\mathrm{Ch} . \mathrm{VI}$, one can find a proof of the equivalence of the four definitions of $\mathrm{i}(\mathrm{K})$ given above.

The Euclidean ball is a smooth convex body and hence is of illumination number $n+1$. Theorem 1.1 shows that, arbitrarily close to the Euclidean ball, there is a convex body of much larger illumination number.

We denote the closed Euclidean unit ball in \mathbb{R}^{n} centered at the origin o by \mathbf{B}^{n}, and its boundary, the sphere, by \mathbb{S}^{n-1}.

THEOREM 1.1. Let $1<D<1.116$ be given. Then, for any sufficiently large dimension n, there is an o-symmetric convex body K in \mathbb{R}^{n}, with illumination number

$$
\begin{equation*}
\mathrm{i}(K)=N(K, \text { int } K) \geqslant 0.05 D^{n} \tag{1}
\end{equation*}
$$

for which

$$
\begin{equation*}
\frac{1}{D} \mathbf{B}^{n} \subset K \subset \mathbf{B}^{n} \tag{2}
\end{equation*}
$$

We will use a probabilistic construction to find K. We are not aware of any lower bound for the illumination problem that was obtained by a probabilistic argument.

For a point $u \in \mathbb{S}^{n-1}$ and $0<\varphi<\pi / 2$, let $C(u, \varphi)=\left\{v \in \mathbb{S}^{n-1}: \varangle(u, v)\right.$ $\leqslant \varphi\}$ denote the spherical cap centered at u of angular radius φ. We denote the normalized Lebesgue measure (that is, the Haar probability measure on \mathbb{S}^{n-1}) of $C(u, \varphi)$ by $\Omega_{n-1}(\varphi)$.

In Theorem 1.2, we give an upper bound for the illumination number for bodies close to the Euclidean ball. It follows from [3] but, for the sake of completeness, we will sketch a proof.

THEOREM 1.2. Let K be a convex body in \mathbb{R}^{n} such that $(1 / D) \mathbf{B}^{n} \subset K \subset \mathbf{B}^{n}$ for some $D>1$. Then the illumination number of K is at most

$$
\begin{equation*}
\mathrm{i}(K) \leqslant \frac{n \ln n+n \ln \ln n+5 n}{\Omega_{n-1}(\alpha)} \tag{3}
\end{equation*}
$$

where $\alpha=\arcsin (1 / D)$.
By combining Theorem 1.2 with the estimate (5) on Ω_{n-1}, one can see that (1) is asymptotically sharp, that is, the base D cannot be improved.

Next, we consider an application of Theorem 1.1. Let K be an originsymmetric convex body in \mathbb{R}^{n}, and denote its gauge function by $\|\cdot\|_{K}$ (that is, $\|p\|_{K}=\inf \{\lambda>0: p \in \lambda K\}$ for any $p \in \mathbb{R}^{n}$). We use vert P to denote the set of vertices of the polytope P. The illumination parameter, introduced by Bezdek [1], is defined as

$$
\operatorname{ill}(K)=\inf \left\{\sum_{p \in \operatorname{vert} P}\|p\|_{K} \mid P \text { a polytope such that vert } P \text { illuminates } K\right\} .
$$

The vertex index of K, introduced by Bezdek and Litvak [4], is

$$
\operatorname{vein}(K)=\inf \left\{\sum_{p \in \operatorname{vert} P}\|p\|_{K} \mid P \text { a polytope such that } K \subseteq P\right\}
$$

Clearly, $\operatorname{ill}(K) \geqslant \operatorname{vein}(K)$ for any centrally symmetric body K, and they are equal for smooth bodies. It is shown in [4] that vein $\left(\mathbf{B}^{n}\right)$ is of order $n^{3 / 2}$ (see also [9]).

By (2), for the body K constructed in Theorem 1.1 we have that vein (K) is of order $n^{3 / 2}$, while $\operatorname{ill}(K) \geqslant \mathrm{i}(K)$ is exponentially large.

Thus, as an application of Theorem 1.1, we obtain that ill (K) and vein (K) are very far from each other for some K.
§2. Preliminaries. We will rely heavily on the following estimates of Ω_{n} by Böröczky and Wintsche [7].

Lemma 2.1 [7]. Let $0<\varphi<\pi / 2$.

$$
\begin{align*}
\Omega_{n}(\varphi) & >\frac{\sin ^{n} \varphi}{\sqrt{2 \pi(n+1)}} \tag{4}\\
\Omega_{n}(\varphi) & <\frac{\sin ^{n} \varphi}{\sqrt{2 \pi n} \cos \varphi} \text { if } \varphi \leqslant \arccos \frac{1}{\sqrt{n+1}} \tag{5}\\
\Omega_{n}(t \varphi) & <t^{n} \Omega_{n}(\varphi) \quad \text { if } 1<t<\frac{\pi}{2 \varphi} \tag{6}
\end{align*}
$$

The following is known as Jordan's inequality:

$$
\begin{equation*}
\frac{2 x}{\pi} \leqslant \sin x \quad \text { for } x \in[0, \pi / 2] . \tag{7}
\end{equation*}
$$

§3. Construction of a spiky ball. We work in \mathbb{R}^{n+1} instead of \mathbb{R}^{n} to obtain slightly simpler formulas. We describe a probabilistic construction of $K \subset \mathbb{R}^{n+1}$ which is close to the Euclidean ball and has a large illumination number. We use the standard notation $[N]$ for the set $\{1, \ldots, N\}$, and $|A|$ denotes the cardinality of a set A.

Let N be a fixed positive integer, to be given later. We pick N points, X_{1}, \ldots, X_{N}, independently and uniformly on the Euclidean unit sphere \mathbb{S}^{n} of \mathbb{R}^{n+1}. Let

$$
\begin{equation*}
K=\operatorname{conv}\left(\left\{ \pm X_{i}: i \in[N]\right\} \cup \frac{1}{D} \mathbf{B}^{n+1}\right) \tag{8}
\end{equation*}
$$

Clearly, K is o-symmetric and $(1 / D) \mathbf{B}^{n+1} \subset K \subset \mathbf{B}^{n+1}$. We need to bound the illumination number of K from below. Let $\pi / 4<\alpha<\pi / 2$ be such that $\sin \alpha=1 / D$.

We define two "bad" events, E_{1} and E_{2}. Let E_{1} be the event that there are $i \neq j \in[N]$ with $\varangle\left(X_{i}, X_{j}\right)<\pi-2 \alpha$ or $\varangle\left(-X_{i}, X_{j}\right)<\pi-2 \alpha$ (see Figure 1). We observe that if E_{1} does not occur, then for all $i \in[N]$ we have

Figure 1: Event E_{1} : when X_{j} falls on the dotted cap (the arc with arrows at its end points) or on its reflection about the origin.

The set of directions (a subset of \mathbb{S}^{n}) that illuminate K at X_{i} is the spherical cap centered at $-X_{i}$ of spherical radius α.

We want to prove that, with non-zero probability, no point of \mathbb{S}^{n} belongs to too many of these caps. Thus, to illuminate K at each X_{i}, we will need many directions.

Let $T \in \mathbb{Z}^{+}$be fixed, to be specified later. Let E_{2} be the event that there is a direction $u \in \mathbb{S}^{n}$ with $\left|C(u, \alpha) \cap\left\{ \pm X_{i}: i \in[N]\right\}\right|>T$.

Observe that if neither E_{1} nor E_{2} occurs, then $\mathrm{i}(K) \geqslant 2 N / T$. However, it is difficult to bound the probability of E_{2}. Thus, we will replace E_{2} by a "more finite" condition E_{2}^{\prime} as follows.

We fix a $\delta>0$. We call a set $\Lambda \subset \mathbb{S}^{n}$ a δ-net (it could also be called a metric δ-net) if $\bigcup_{v \in \Lambda} C(v, \delta)=\mathbb{S}^{n}$, that is, if the caps of radius δ centered at the points of Λ cover the sphere. By (4), the measure of a cap of radius δ is larger than $\sin ^{n}(\delta) / 3 \sqrt{n}$. Thus, [13, Theorem 1] yields that there is a covering of the sphere by at most $n^{2} / \sin ^{n}(\delta)$ caps of radius δ. That is, there is a δ-net Λ of size at most $|\Lambda| \leqslant n^{2} / \sin ^{n}(\delta)$.

Let $p=2 \Omega_{n}(\alpha+\delta)$. Let $\Theta>1$ be fixed, and set $T=N \Theta p$. We define the event E_{2}^{\prime} as follows: there is a direction $v \in \Lambda$ with $\mid C(v, \alpha+\delta) \cap\left\{ \pm X_{i}: i \in\right.$ $[N]\} \mid>N \Theta p$. Clearly, if E_{2} occurs, then so does E_{2}^{\prime}. Thus, we have

$$
\begin{equation*}
\left(\operatorname{not}\left(E_{1}\right) \text { and } \operatorname{not}\left(E_{2}^{\prime}\right)\right) \text { implies } \mathrm{i}(K) \geqslant 2 /(\Theta p) \tag{10}
\end{equation*}
$$

Now, we need to set our parameters such that the event $\left(\operatorname{not}\left(E_{1}\right)\right.$ and $\left.\operatorname{not}\left(E_{2}^{\prime}\right)\right)$ is of positive probability and $2 /(\Theta p)$ is exponentially large in the dimension.

Clearly,

$$
\begin{equation*}
\mathbb{P}\left(E_{1}\right) \leqslant N^{2} \Omega_{n}(\pi-2 \alpha) . \tag{11}
\end{equation*}
$$

Consider a fixed $v \in \Lambda$. When X_{i} is picked randomly, the probability that v is contained in $C\left(X_{i}, \alpha+\delta\right)$ or in $C\left(-X_{i}, \alpha+\delta\right)$ is p (recall that $p=2 \Omega_{n}(\alpha+\delta)$). Thus, the probability that v is contained in more than $N \Theta p$ caps of the form $C\left(\pm X_{i}, \alpha+\delta\right)$ is $\mathbb{P}(\xi>N \Theta p)$, where ξ is a binomial random variable of distribution $\operatorname{Binom}(N, p)$. Thus,

$$
\begin{equation*}
\mathbb{P}\left(E_{2}^{\prime}\right) \leqslant \frac{n^{2}}{\sin ^{n}(\delta)} \mathbb{P}(\xi>N \Theta p) \quad \text { with } \xi \sim \operatorname{Binom}(N, p) \tag{12}
\end{equation*}
$$

By a Chernoff-type inequality (cf. [12, p. 64]),

$$
\begin{equation*}
\mathbb{P}(\xi>N \Theta p)<2^{-N \Theta p} \quad \text { for any } \Theta \geqslant 6 \tag{13}
\end{equation*}
$$

Consider the following three inequalities:

$$
\begin{align*}
N & \leqslant\left(\frac{1}{4 \Omega_{n}(\pi-2 \alpha)}\right)^{1 / 2} \tag{14}\\
\frac{n^{2}}{\sin ^{n} \delta} 2^{-\Theta N p} & \leqslant \frac{1}{4} \tag{15}\\
6 & \leqslant \Theta \tag{16}
\end{align*}
$$

Combining (10)-(13), we obtain the following. If there are $N \in \mathbb{Z}^{+}, \delta>0$ and $\Theta \geqslant 0$ (all depending on n) such that the three inequalities (14)-(16) hold, then there is a $K \subset \mathbb{R}^{n+1} o$-symmetric convex body with $\mathrm{i}(K) \geqslant 2 /(\Theta p)$, where $p=2 \Omega_{n}(\alpha+\delta)$. In fact, in this case, our construction yields such a K with probability at least $1 / 2$.

Now, (15) holds if $\Theta N p>2 n \log _{2}(1 / \sin \delta)$. Thus, an integer N satisfying (14) and (15) exists if

$$
4 n \log _{2} \frac{1}{\sin \delta} \leqslant \Theta p\left(\frac{1}{4 \Omega_{n}(\pi-2 \alpha)}\right)^{1 / 2}
$$

which we rewrite as

$$
\frac{1}{\Theta p} \leqslant \frac{1}{8 n\left(\Omega_{n}(\pi-2 \alpha)\right)^{1 / 2} \log _{2}(1 / \sin \delta)}
$$

By (7), we can replace it by the following stronger inequality:

$$
\begin{equation*}
\frac{1}{\Theta p} \leqslant \frac{1}{24 n\left(\Omega_{n}(\pi-2 \alpha)\right)^{1 / 2} \log _{2}(1 / \delta)} \tag{17}
\end{equation*}
$$

On the other hand, by substituting the value of p, we see that (16) is equivalent to

$$
\begin{equation*}
\frac{1}{\Theta p} \leqslant \frac{1}{12 \Omega_{n}(\alpha+\delta)} \tag{18}
\end{equation*}
$$

Finally, let $\delta=\alpha / n$.

Since $1<D=1 / \sin \alpha<1.116$, we have that $1.11<\alpha<\pi / 2$ and thus $\sin ^{2}(\alpha+\delta)>\sin (\pi-2 \alpha)$. Now, by Lemma 2.1, (18) is a stronger inequality than (17). Thus, so far we have that if we can satisfy (18), then the proof is complete.

By (6), we have that (18) holds if

$$
\begin{equation*}
\frac{1}{\Theta p} \leqslant \frac{1}{36 \Omega_{n}(\alpha)} \tag{19}
\end{equation*}
$$

By (5), it holds for $1 / \Theta p=\frac{1}{36} D^{n}$. Since $\mathrm{i}(K) \geqslant 2 /(\Theta p)$, this finishes the proof of Theorem 1.1.

Remark 3.1. The body K is not a polytope. However, the construction can easily be modified to obtain a polytope. One simply replaces the ball of radius $1 / D$ by a sufficiently dense finite subset A of this ball in the definition of K as follows: $K=\operatorname{conv}\left(\left\{ \pm X_{i}: i \in[N]\right\} \cup A\right)$.

Proof of Theorem 1.2. Since $(1 / D) \mathbf{B}^{n} \subset K \subset \mathbf{B}^{n}$, it follows that for any boundary point b of K, the set of directions (as a subset of \mathbb{S}^{n-1}) that illuminate K at b contains an open spherical cap of radius $\alpha=\arcsin (1 / D)$. Thus, any subset A of \mathbb{S}^{n-1} that pierces each such cap illuminates K. However, finding such A is equivalent to finding a covering of \mathbb{S}^{n-1} by caps of radius α. Such a covering of the desired size exists by [13] (see also [7]).

Acknowledgements. I am grateful for conversations with Károly Bezdek, Gábor Fejes Tóth and János Pach. I also thank the referee, whose comments made the exposition more clear.

References

1. K. Bezdek, The illumination conjecture and its extensions. Period. Math. Hungar. 53(1-2) (2006), 59-69.
2. K. Bezdek, Classical Topics in Discrete Geometry (CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC), Springer (New York, 2010).
3. K. Bezdek and G. Kiss, On the X-ray number of almost smooth convex bodies and of convex bodies of constant width. Canad. Math. Bull. 52(3) (2009), 342-348.
4. K. Bezdek and A. E. Litvak, On the vertex index of convex bodies. Adv. Math. 215(2) (2007), 626-641.
5. V. Boltyanski, The problem of illuminating the boundary of a convex body. Izv. Mold. Fil. Akad. Nauk SSSR 76 (1960), 77-84.
6. V. Boltyanski, H. Martini and P. S. Soltan, Excursions into Combinatorial Geometry (Universitext), Springer (Berlin, 1997); MR 1439963 (98b:52001).
7. K. Böröczky Jr. and G. Wintsche, Covering the sphere by equal spherical balls. In Discrete and Computational Geometry (Algorithms and Combinatorics 25), Springer (Berlin, 2003), 235-251.
8. P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer (New York, 2005).
9. E. D. Gluskin and A. E. Litvak, A remark on vertex index of the convex bodies. In Geometric Aspects of Functional Analysis (Lecture Notes in Mathematics 2050), Springer (Heidelberg, 2012), 255-265.
10. H. Hadwiger, Ungelöste probleme, nr. 38. Elem. Math. 15 (1960), 130-131.
11. H. Martini and V. Soltan, Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57(2-3) (1999), 121-152.
12. M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press (Cambridge, 2005).
13. C. A. Rogers, Covering a sphere with spheres. Mathematika 10 (1963), 157-164.

Márton Naszódi,
ELTE,
Department of Geometry,
Lorand Eötvös University,
Pázmány Péter Sétány 1/C,
Budapest 1117,
Hungary
E-mail: marton.naszodi@math.elte.hu

[^0]: Received 27 April 2015.
 MSC (2010): 52A22, 52 C 17 (primary).
 The author acknowledges the support of a János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and the Hungarian Scientific Research Fund (OTKA) grant PD104744.

