Incorporation of iron into chloroplasts triggers the restoration of cadmium induced inhibition of photosynthesis

Ádám Solti¹ *, Éva Sárvári¹, Brigitta Tóth², Ilona Mészáros³, Ferenc Fodor¹

¹Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
² Department of Agricultural Botany, Crop Physiology and Biotechnology, Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, Debrecen, 4032, Hungary
³Department of Botany, Institute of Biology and Ecology, Faculty of Sciences and Technology, University of Debrecen, P.O. Box: 14 Debrecen, 4010 Hungary

*corresponding author: adam.solti@ttk.elte.hu
Abstract

Photosynthetic symptoms of acute Cd stress can be remedied by elevated Fe supply. To shed more light on the most important aspects of this recovery, the detailed Fe trafficking and accumulation processes as well as the changes in the status of the photosynthetic apparatus were investigated in recovering poplar plants. The Cd-free, Fe-enriched nutrient solution induced an immediate intensive Fe uptake. The increased Fe/Cd ratio in the roots initiated the translocation of Fe to the leaf with a short delay that led to the accumulation of Fe in the chloroplasts, finally. The chloroplast Fe uptake was directly proportional to the Fe translocation to leaves. The accumulation of PSI reaction centres and the recovery of PSII function studied by Blue-Native PAGE and chlorophyll a fluorescence induction measurements, respectively, began in parallel to the increase in the Fe content of chloroplasts. The initial reorganisation of PSII was accompanied with a peak in the antennae-based non-photochemical quenching. In conclusion, Fe accumulation of the chloroplasts is a process of prime importance in the recovery of photosynthesis from acute Cd stress.

Key words: cadmium; chloroplast; chlorophyll-protein complexes; iron; photosynthesis; poplar
Introduction

Many regions all over the world suffer from heavy metal pollution due to anthropogenic activities. Areas with high industrial or agricultural uses have to cope with increased soil cadmium (Cd) concentration (Nagajyoti et al., 2010). Cd has a known toxicity to the environment and to all plants (Sanità di Toppi and Gabbielli, 1999), thus Cd contamination has increasing importance. Poplars (Populus spp.), which are able to tolerate Cd exposure, are economically important species from the point of view of phytoremediation.

In plants, Cd disturbs, among others, the homeostasis of several metals by competing essential metal uptake and translocation (Gallego et al., 2012). Cd stress leads to strong Fe-deficiency in the shoot (Siedlecka and Krupa, 1999; Fodor et al., 2005; Solti et al., 2008). Root-to-shoot Fe transport requires citrate for Fe(III)-citrate complex formation (Rellán-Álvarez et al., 2010). While Cd is supposed to translocate in non-chelated form, it reduced the expression of AtFRD3 citrate transporter in Arabidopsis (Yamaguchi et al., 2010) leading to a diminished Fe translocation, and Fe deficiency in the shoot. In addition, the signalling pathways of the expression are disrupted and altered by the presence of Cd both in the roots (Besson-Bard et al., 2009; Wu et al., 2012) and in leaf tissues (Li et al., 2014). In contrast to the effects of Cd on root Fe uptake and translocation, its effects on the uptake of Fe across different membrane systems in the mesophyll cells is hardly known.

In the shoot, Cd toxicity and Cd induced Fe deficiency deeply influence the development and activity of the photosynthetic apparatus (Siedlecka and Krupa, 1999). Inhibition of the chlorophyll (Chl) biosynthesis is one of the causes of the retarded thylakoid development. Although Cd inhibits δ-ALA dehydratase directly, the main reason for the Cd-induced inhibition of Chl accumulation is the inhibition of Mg-protoporphyrin-IX-monomethyl-ester oxidative cyclase, which is an enzyme operating with Fe cofactor (Padmaja et al., 1990). Inhibition of Chl biosynthesis decreases the accumulation of all Chl-protein complexes
Fagioni et al., 2009; Basa et al., 2014). Cd induced alterations in the photosynthetic structures are in many ways similar to those caused by Fe deficiency. As photosystem I (PSI) is the major Fe containing complex in the photosynthetic apparatus, Fe deficiency strongly retards the accumulation of PSI in the thylakoid membranes (Andaluz et al., 2006; Timperio et al., 2007; Basa et al., 2014). Strong inhibition of the photosynthetic electron transport is a general response to Cd stress. While PSI activity was less affected, Cd was shown to inhibit photosystem II (PSII) at molecular level (Sigfridsson et al., 2004). Functional disturbances of photochemical reaction centres lead to the generation and accumulation of reactive oxygen species (ROS) (Gallego et al., 2012). In the chloroplasts, one of the most important targets of ROS is the D1 protein of PSII. Damages in the PSII reaction centre leads to inactivation. Non-photochemical quenching (NPQ) pathways are essential to eliminate the surplus excitation energy thus prevent the generation of ROS. Among the variable quenching mechanisms, heat dissipation in antenna complexes and quenching by inhibited PSII centres can significantly contribute to NPQ (Hendrickson et al., 2005). Using internal non-photochemical quenching routes, the inactive reaction centres protect the neighbouring active PSIIIs (Chow et al., 2005).

Elevated level of Fe was shown to provide protection against many toxic effects of Cd. In the presence of Cd, increased Fe supply helped in retention of growth, pigments, and photosynthetic activity in bean and poplar seedlings (Siedlecka and Krupa, 1996; Sárvári et al., 2011). In Brassica juncea, the presence of Fe was found to protect thylakoid complexes against Cd compared to Fe deficient circumstances (Qureshi et al., 2010). In addition, it was also proved that a five-fold higher Fe supply was able to recover the acute Cd toxicity symptoms of photosynthesis (Solti et al., 2008), which also caused a Fe accumulation in the leaves independently of the presence of Cd in the nutrient solution. However, the exact reasons of this recovery: how and why this Fe accumulation starts and how does it contribute to the physiological restoration are not yet clear. Thus, our aim was to find out the
determining processes in this recovery. Therefore, the detailed dynamics of the Fe trafficking and accumulation processes as well as the changes in the status of the photosynthetic apparatus were investigated in recovering poplar plants.

Materials and methods

Plant material and treatments

Experiments were performed on micropropagated poplars (*Populus Jacquemontiana* var. *glauca* [Haines] Kimura cv. ‘Kopeczkii’). Plants were grown in climatic chamber [14/10 hours light (100 µE m⁻² s⁻¹)/dark periods, 24/22 °C and 70/75% relative humidity] in hydroponics of quarter-strength Hoagland solution [1.25 mM Ca(NO₃)₂, 1.25 mM KNO₃, 0.5 mM MgSO₄, 0.25 mM KH₂PO₄, 0.08 µM CuSO₄, 4.6 µM MnCl₂, 0.19 µM ZnSO₄, 0.12 µM Na₂MoO₄, 11.56 µM H₃BO₃, and 10 µM Fe(III)-citrate as iron source] for three weeks (four-leaf stage). Low growth irradiance was necessary for the survival of Cd treated plants (Solti et al., 2011). Then, non-treated control (Ctrl) plants were further grown under the same conditions. A set of plants were treated with 10 µM Cd(NO₃)₂ for one week (Cad plants). Nutrient solution was changed in every two days. To induce regeneration processes, Cd treated plants were transferred to Cd-free nutrient solution containing a five-fold elevated Fe supply (50 µM Fe(III)-citrate; Cad/Ctrl50 plants). Recovery processes were followed on 6th leaves, which developed entirely under Cd treatment and before the regeneration period.

Determination of chloroplast iron content

Intact chloroplasts of poplar leaves were isolated using a stepwise sucrose gradient, as mentioned in Sárvári et al. (2011). Fe content of solubilised chloroplasts was measured in reduced form as ferrous-bathophenantroline complex: [Fe(BPDS)₃]⁺ at 535 nm (ε=22.14 mM⁻¹ cm⁻¹).
Determination of Fe concentration in the nutrient solution

Samples of 1 mL volume were taken from the 400 mL nutrient solution of the plants. After reducing the whole available Fe content into Fe$^{2+}$ form by adding 100 µM ascorbic acid, 300 µM BPDS was added to determine the Fe concentration according to the above mentioned bathophenanthroline method.

Determination of element concentrations

Leaves were dried for a week at 60 °C, powdered and digested using HNO$_3$ for 30 min at 60 °C, and then bleached by H$_2$O$_2$ for 90 min at 120 °C. After filtration through MN 640W paper, element contents were measured by ICP-MS (Inductively Connected Plasma Mass Spectrometer, Thermo-Fisher, USA).

Measurements of photosynthetic pigments

Chlorophyll content of leaves was determined in 80% (v/v) acetone extracts by a UV-VIS spectrophotometer (Shimadzu, Japan) using the absorption coefficients of Porra et al. (1989).

For the quantification of xanthophyll cycle components, leaf discs were adapted to darkness or to an actinic light of 100 µmol m$^{-2}$ s$^{-1}$ for 30 minutes, and stored in liquid nitrogen. Discs were powdered in liquid nitrogen and extracted with 80% (v/v) acetone containing 0.1% (v/v) NH$_4$OH at 4 °C. Carotenoid components were separated by HPLC method (Goodwin and
Britton, 1988) using a Nucleosil C18 column in HPLC-system equipped with an UV/VIS detector (JASCO Int. Co., Japan). The eluents were (i) acetonitrile:water mixture (9:1, 0.01% (v/v) triethylamine) and (ii) ethyl acetate. Zeaxanthin standard was used for the identification of peaks and calculation of pigment concentrations (Tóth et al., 2002). The de-epoxidation state of xanthophyll cycle pigments (DEEPS) was calculated as DEEPS=(Z+0.5A)/(V+A+Z), where V refers to the amount of violaxanthin, A to antheraxanthin and Z to zeaxanthin, respectively.

Separation and estimation of chlorophyll-protein complexes

Thylakoid membranes were isolated then solubilised, separated, identified and quantified as described by Sárvári et al. (2014). Shortly, after solubilisation with 2% (w/v) n-dodecyl-β-D-maltoside on ice for 30 min, 1st D electrophoresis was run using BlueNative PAGE (Kügler et al., 1997) in 5–12% (w/v) acrylamide gradient gels (Mini-Protean, BioRad) with 10–20 µl solubilized thylakoids (0.5 mg Chl ml⁻¹) applied per lane. Electrophoresis was carried out with constant voltage of 40 V (15 min), then 150 V and a maximum of 5 mA per gel at 6 °C for approximately 6 h. To analyse the polypeptide composition of the different complexes, thin slices of native gels were transferred to the top of denaturing gels, and run in second dimension by the method of Laemmli (1970) with a modification by adding 10% glycerol to the stacking (5%) and separating (10–18% linear gradient) gels. Complexes were identified by their characteristic polypeptide patterns as in Basa et al. (2014). Gels were scanned using an Epson Perfection V750 PRO gel scanner. The quantity of Chl-protein complexes were assessed according to the pixel density of the different bands in the 1st D BlueNative lanes using Phoretix 4.01 software (Phoretix International, Newcastle upon Tyne, UK). In the case of the complex PSI and PSII dimer band, the pixel number of PSII dimers was calculated proportionally to the pure PSII monomer band on the basis of the density ratio of CP47.
apoproteins (PsB) found in the complex and in the monomer PSII bands in the 2nd D gel pattern. Treatment-induced changes in the absolute amounts of complexes were estimated after the total pixel density of each lane was normalized to identical density (identical Chl content) and then to the total Chl content in leaves of differently treated plants (µg Chl leaf⁻¹).

Chlorophyll a fluorescence induction

Fluorescence induction measurements were carried out with intact leaves using a PAM 101-102-103 Chlorophyll Fluorometer (Walz, Effeltrich, Germany). Leaves were dark-adapted for 30 min. The F₀ level of fluorescence was determined by switching on the measuring light with modulation frequency of 1.6 kHz and photosynthetic photon flux density (PPFD) less than 1 µmol m⁻² s⁻¹ after 3 s illumination by far-red light in order to eliminate reduced electron carriers. The maximum fluorescence yields, Fₘ in the dark-adapted state and Fₘ' in light-adapted state, were measured by applying a 0.7 s pulse of white light (PPFD of 3500 µmol photon m⁻² s⁻¹, light source: KL 1500 electronic, Schott, Mainz, Germany). The maximal and actual efficiency of PSII centres were determined as Fᵥ/Fₘ = (Fₘ − F₀)/Fₘ and ΔF/Fₘ' = (Fₘ'−Fᵣ)/Fₘ', respectively. For quenching analysis, actinic white light (PPFD of 100 µmol photon m⁻² s⁻¹, KL 1500 electronic) was provided. Simultaneously with the onset of actinic light the modulation frequency was switched to 100 kHz. The steady-state fluorescence of light-adapted state (Fᵣ) was determined when no change was found in Fₘ' values between two white light flashes separated by 100 s. Considering that all stress factors inhibiting photosynthesis also leads to light stress, the quenching parameters of Hendrickson et al. (2005) were used for assessing the excitation energy allocation in all samples as follows:

ϕₚₛᵦᵣ = (1 − Fᵣ/Fₘ')*(Fᵥ/Fₘ / FᵥM / FₘM); φₚᵦₜₗ = (Fᵣ/Fₘ')*(Fᵥ/Fₘ / FᵥM / FₘM);
\[\Phi_{F, D} = \left(\frac{F_i}{F_m} \right) \times \left(\frac{F_i / F_m}{F_{i,M} / F_{m,M}} \right) ; \quad \Phi_{NF} = 1 - \left(\frac{F_i / F_m}{F_{i,M} / F_{m,M}} \right) ; \]

\(\Phi_{PSII} \): the photochemical efficiency of functional PSII centres; \(\Phi_{NPQ} \): \(\Delta \)pH dependent, xanthophyll-cycle coupled non-photochemical quenching; \(\Phi_{f,D} \): fluorescence/thermal dissipation of the absorbed energy; \(\Phi_{NF} \): the thermal dissipation by inactive PSII centres. The intensity of actinic light (100 \(\mu \)mol photon m\(^{-2}\) s\(^{-1}\)) corresponded to the optimal growth light intensity of Cad plants. \(F_{i,M}/F_{m,M} \) was applied as the mean of \(F_i/F_m \) values of Ctrl (quasi non-inhibited) plants according Solti et al. (2014a).

Statistical analysis

The element and pigment contents of three individual plants per treatments were measured in two subsequent experiments (n=6 biological repetitions). Thylakoid were isolated from five plants per treatments in two subsequent experiments, and run by 2D BN/SDS PAGE 3 times (2 biological and 3 technical repetitions per sample). To compare multiple treatments, ANOVA tests with Tukey-Kramer multiple comparison post hoc tests were performed by InStat v. 3.00 (GraphPad Software, Inc.). The term, ‘significantly different’, means that the probability for similarity of samples is \(P < 0.05 \).

Results

In order to study the detailed restoration process, growth, nutritional and photosynthetic parameters of Cd treated plants were determined frequently after the transfer to Cd-free nutrient solution containing a five-fold elevated Fe supply (Cad/Ctrl50 plants). In comparison, the behaviour of Ctrl leaves was studied only at the beginning and the end of the short...
investigating period to indicate the physiological characteristics of non-treated plants in partially and totally developed leaves, and to address to which extent the values of parameters in Cad/Ctrl50 leaves approximated the Ctrl level. Based on the previously reported data in Solti et al. (2008), the continuous Cad (Cad/Cad) treatment was not repeated here since no significant changes in the values of the parameters were detected in the period of the present investigation.

Growth parameters

The 6th leaves of Ctrl plants reached their full physiological activity before the time of investigations (Supplementary Table 1). Nevertheless, growth of leaves continued during the recovery period. Cadmium treatment caused a significant decrease in the growth parameters of 6th leaves compared to the Ctrl ones (Supplementary Table 1). Leaves reached about 75% of their size up to the beginning of regeneration, and showed only a moderate increase further during the recovery period. Both the growth of leaf area and dry weight terminated on the third day of the recovery treatment. While the increase in fresh weight and leaf area was more or less continuous (Fig. 1A, B), the dry weight accumulation was only significant during the light period (Fig. 1C). Because of the slight increase in the growth parameters, we present the physiological data on a leaf basis that represents the net changes occurred in whole leaves.

Uptake and translocation of Fe and Cd

After one-week Cd treatment, Fe concentration in the 6th leaves of treated poplar plants decreased significantly compared to that of the corresponding Ctrl (Ctrl: 217.0±4.3 µg g⁻¹ DW; Cad: 102.0±2.8 µg g⁻¹ DW, see also Supplementary Table 1). Transferring Cad plants to a Cd-free, Fe-enriched nutrient solution, both the Fe uptake (measured as the remaining Fe content of the nutrient solutions; Fig. 2) and translocation (measured as the Fe content of
leaves; Fig. 3A) increased significantly. The Fe uptake was clearly associated to the light
periods both in Ctrl and Cad/Ctrl50 plants as no change in the Fe concentration of the nutrient
solutions was found before and after the dark periods (Fig. 2). The relative intensity of the
uptake of Fe in both Ctrl and Cad/Ctrl50 plants was maximal in the first light period, and
decreased in parallel to the decline of the Fe content of the nutrient solution. Similarly to Ctrl
plants, Cad/Ctrl50 plants also removed more or less the total Fe content from their 400 mL
nutrient solution during the 72 h regeneration period, which means a 3.83±0.13 µmol (Ctrl)
and 19.26±0.26 µmol (Cad/Ctrl50) net Fe uptake from the total 4 and 20 µmol available Fe
content, respectively.
Fe content of the 6th leaves of Cad/Ctrl50 plants started to increase following a 3 h lag-period.
It only increased during the light periods, while the Fe content of leaves was the same before
and after the dark periods (Fig. 3A). The intensity of Fe accumulation in leaves was the
highest during the second light period (400.5±6.2 µg Fe leaf⁻¹ accumulated in an hour, in
average). In contrast to Fe content, Cd content of 6th leaves was more or less stable in the
light, and an increase was detected between the end of the previous and the start of the next
light periods (Fig. 3B).
One-week Cd treatment significantly decreased the Fe content of the chloroplasts compared to
Ctrls (Supplementary Table 1). The Fe content of chloroplasts of Cad/Ctrl50 plants also
increased only in the light periods (Fig. 3C). Although chloroplast Fe content started to rise in
the first light period, this increase was significantly higher during the second and third light
periods. As a result of three-day recovery, the Fe content of chloroplast in 6th leaves of
Cad/Ctrl50 plants reached the Ctrl level measured at the beginning of the recovery period
(Supplementary Table 1). The Fe content of chloroplasts in Ctrl plants also increased together
with plant growth.
Fe translocation and chloroplast Fe accumulation were analysed as the function of the root Fe uptake or root Fe/Cd ratio and as the function of leaf Fe content or the amount of translocated Fe, respectively. These analyses indicated that the Fe translocation into the leaves and Fe uptake of chloroplast were directly proportional to the Fe taken up by roots and by leaves, respectively (Fig. S1). Translocation to the 6th leaf started when the Fe/Cd ratio in roots was ≥2 on a dry weight basis (Fig. 4A). Chloroplast Fe uptake was first detected when the Fe concentration in the 6th leaf exceeded about 2 nmol Fe mg⁻¹ DW (Fig. 4B).

Restoration of photosynthetic pigments

The amount of Chl pigments significantly decreased under acute Cd stress (Supplementary Table 1). The Fe-enriched recovery medium caused a restoration in the pigment pool. The total Chl content (Chl a+b) remained unchanged and increased during the first and second light period, respectively (Fig. 5A). However, a slight increase in the standard deviation of the Chl content at the end of the first light period also indicates the initiation of Chl accumulation, which, perhaps, was interrupted by the dark period. A slow but gradual Chl accumulation was found during the subsequent light periods. As a result of this increase, the total Chl content in Cad/Ctrl50 leaves approximated the level of Ctrl before the recovery period in three days (Supplementary Table 1). Higher amount of Chls was found in Ctrl leaves in a growth-dependent manner.

The Chl a/b ratio of treated leaves changed markedly by the elevated Fe supply (Fig. 5B). Cd treatment caused a significant decrease in Chl a/b ratio which started to increase in parallel to the rise in chloroplast Fe content. The Chl a/b ratio exceeded the level of Ctrl in the second light period, then lowered back to the level of Ctrl. Later on, no further oscillations were measured. No similar variability was observed in the Chl a/b ratio of Ctrl leaves (data not shown).
The amount of carotenoids decreased significantly in Cad leaves compared to Ctrl (Supplementary Table 1). Carotenoid content also showed characteristic changes in 6th leaves of Cad/Ctrl50 plants. The amount of β-carotene stagnated in the initial phase of recovery but turned into accumulation in the third part of the first light period (Fig. 6A). During the second light period, some accumulation was also observed, then no further significant changes were measured in the β-carotene content. In contrast to the β-carotene, both of the lutein and the ΣVAZ contents remained unchanged during the first light period, and started to increase only later in the second light period (Fig. 6B,C). Afterwards, no significant changes were observed. Carotenoid content of Ctrl leaves increased significantly during the recovery treatment without any change in the carotenoid composition (Supplementary Table 1).

In Cad/Ctrl50 leaves, the change in the de-epoxidation of xanthophyll cycle pigments under light adapted conditions (DEEPS) showed similar trend to that of the Chl a/b ratio (Fig. 6D). It started to increase in the first light period, reached its maximum in the second light period and began to decrease markedly from the end of the second light period gradually reaching the level of the Ctrl.

Chl-protein composition of thylakoid membranes

The main Chl-containing bands separated by Blue-Native PAGE, after resolution of their individual proteins by SDS PAGE, were identified as PSI (supercomplexes and monomers, both contain PSI subcomplexes), PSII supercomplexes (contain PsbB, PsbC, and Lhcb antennae), PSII dimers and monomers (contain PsbB, PsbC), PSII complexes that lack CP43 (contains PsbB, but not PsbC), Lhc supercomplex (LHCII that also bind connecting antennae), Lhc complexes and monomers (contain Lhcb trimers and/or Lhcb proteins) (Fig. 7A,B).
The amount and ratio of each complexes were strongly altered under acute Cd stress compared to Ctrl: the amount of all complexes were reduced, and a retardation in the relative abundance of LHCII trimers and PSI complexes was observed (Supplementary Table 2, Fig. 7C). Starting up the recovery, the complexes showed characteristic changes in the 6th leaves of Cad/Ctrl50 plants (Fig. 7C, Fig. 8). Accumulation of reaction centres (both PSI and PSII) could be detected from the beginning of the second light period, in parallel to the increase in the chloroplast Fe concentration, while the amount of LHCII trimers and Lhc monomers increased mainly from the second part of the second light period accompanied by the decrease in the Chl \(a/b\) ratio (Fig. 8, black arrows). However, remarkable changes were already observed in the macrocomplex organisation of PSII in the very early phase of recovery, practically in parallel to the start of the increase in the Fe content of leaves and chloroplasts. Reorganisation of PSII complexes and their antenna was evidenced by the elevated amounts of PSII supercomplexes, PSII dimers and Lhc supercomplexes (Fig. 8, grey arrows). By the time of 53. hour of the recovery, the abundance of PSII complexes, Lhc supercomplexes and LHCII trimers more or less approached the level of the initial value (0 h) of the Ctrl leaves, whereas the amount of PSI complexes still remained well below the Ctrl value (Supplementary Table 2). In the Ctrl leaves, together with Chl accumulation, all thylakoid complexes increased in abundance during the investigated time period. Some reorganization of the thylakoids, i.e. the elevated ratio of supercomplexes was also observed.

Excitation energy allocation

Control plants reached their full physiological activity before the start of recovery as it was proved by the observed stability in the excitation energy allocation parameters during the recovery period (Supplementary Table 1). In contrast, acute Cd stress caused strong decrease in the photochemical quenching (\(\Phi_{\text{PSII}}\)), and elevated the constant thermal dissipation and
fluorescence ($\Phi_{f,D}$) and non-photochemical quenching by inactive PSII reaction centres (Φ_{NF}).

During recovery treatment, the Φ_{PSII} started to rise slowly but tendentiously (Fig. 9A). By the third light period, there was no significant difference between Cad/Ctrl50 and Ctrl leaves. The tendency of changes in both $\Phi_{f,D}$ and Φ_{NF} were roughly the opposite compared to Φ_{PSII} parameter but the relaxation of $\Phi_{f,D}$ was faster than that of Φ_{NF} (Fig. 9C,D). Though acute Cd stress did not cause any significant changes in the antennae-based non-photochemical quenching, the start of the recovery processes was clearly associated with a peak-like elevation of Φ_{NPQ} values approximately 6-10 hours after the start of regeneration at the end of the first light period (Fig. 9B). In the second light period, the Φ_{NPQ} values of regenerating plants did not differ from those of theCtrls’. Altogether, the most important changes were associated with the 6-11 h time window after exposure to elevated Fe level.

Discussion

Acute cadmium stress resulted in inhibited Fe accumulation in leaves thus causing disturbed development of the photosynthetic apparatus (Siedlecka and Krupa, 1999; Solti et al., 2008).

By increasing the Fe supply of Cd stressed poplar plants, an appropriate sequence of restoration processes was observed in Fe uptake and translocation, chloroplast Fe uptake, and in the recovery of photosynthetic parameters.

Uptake and translocation of Fe

After replacing the nutrient solution to Cd-free, Fe-enriched medium (Cad/Ctrl50 plants), the Fe content of roots, leaves and chloroplasts became elevated in a short time period. Increase in the Fe translocation and in the chloroplast Fe uptake were directly proportional to the Fe uptake by roots and Fe translocation to leaves, respectively, i.e. dependent on the actual Fe flux into the roots and to the leaves.
Concerning the Fe uptake, the Fe content of the fresh nutrient solution decreased without any delay (Fig. 2) indicating that the Cd stress does not inhibit the Fe uptake of the roots. The total Fe content of the medium was taken up by both the Ctrl and Cad/Ctrl50 plants (4 and 20 µmol Fe in the 400 mL nutrient solution, respectively) during three light periods, which underlines the importance of the periodic nutrient solution refreshments in experimental protocols. Moreover, the decrease in the Fe content of Ctrl50 solution was much higher compared to Ctrl, which must be connected to the fast increase in the Fe concentration of root tissues of Cad/Ctrl50 plants. The high Fe uptake intensity of Cad/Ctrl50 roots found in this work also supports that the activity/number of Fe uptake-related enzymes/transporters (NtIRT1 and NtFRO1 orthologs) were higher in the roots of Cad than in Ctrl plants, as it was also shown at expression level by Yoshihara et al. (2006). In agreement, Cad treatment induced an accumulation of not only Cd but also Fe in the roots (Fodor et al., 2005). The dependence of root Fe uptake on light periods may be related to the fact that root carbon metabolism and root exudation strongly depends on the phloem carbon import, and thus on photosynthesis (Dilkes et al., 2004). The Fe uptake is probably source-limited (organic acids and reducing power) during the dark periods. Shoot-born signals also contribute to the diurnal regulation of Fe uptake related proteins in strategy-I plants (Vert et al., 2003). Moreover, the Fe nutritional status also has a feedback regulation on the circadian clock (Hong et al., 2013).

With a short delay to the Fe uptake, Fe translocation also started in regenerating plants (Fig. 3). The decreased leaf Fe, which is a well-known indirect effect of Cd treatment (Siedlecka and Krupa, 1999), started to increase after a three-hour lag period probably connected to a delay in the root-to-shoot Fe translocation. The short delay indicates that the regulation of Fe translocation may be in strong interaction with the increase in the Fe/Cd ratio of root symplast from 0.3, characteristic to Cad plants (Fodor et al., 2005), to around 2.0 (Fig 4A). The quasi-continuous Cd translocation to leaves (from the Cd reservoir of roots) and the
strong Fe uptake of roots caused a shift in Fe/Cd ratio which probably affected the Fe-related signal transduction pathways. Since the xylem loading of Fe is strongly dependent on the presence of citrate (Rellán-Álvarez et al., 2010), and Cd stress decreases the amount of the FRD3 citrate transporter significantly (Yamaguchi et al., 2010), the increasing translocation of Fe could be a result of enhanced transcription of \textit{AtFrd3} \textit{Populus} ortholog (Durrett et al., 2007). Similarly to Fe uptake, Fe translocation also seems to have a diurnal activity as the citrate is converted from sugar and sugar alcohol molecules transported to the roots in the phloem. At the same time, the effect of the root pressure may be the dominant impulsive force in Cd translocation.

The majority of shoot Fe content is localised in the chloroplasts, particularly in thylakoids (Morrissey and Guerinot, 2009). As a result of acute Cd stress and also under Fe deficiency, the Fe content of chloroplasts decreased in accordance with previous data (Sárvári et al., 2011; Basa et al., 2014). The effect of Cd on Fe transport mechanisms inside the mesophyll cells is poorly known. Under acute Cd stress, the reduced Fe uptake of chloroplasts is connected to (i) the inhibited photosynthetic activity and the direct coupling of the photosynthetic electron transport and the reduction-based Fe uptake mechanism of chloroplast (Solti et al., 2014b) and (ii) the possible preferred mitochondrial Fe uptake under Fe limited conditions (Vigani, 2012, Vigani et al., 2013). Nevertheless, during regeneration, the short (approximately 5-6 hours) delay between the start of leaf and chloroplast Fe accumulation and the direct proportionality between Fe translocation and chloroplast Fe uptake together indicate that chloroplast Fe uptake is preferred if more Fe (at least around 2 nmol mg$^{-1}$ DW) is available in the leaf (Fig. 4B), and consequently, in the cytoplasm of the mesophyll cells. Based on our data, the further translocation of Cd to the leaf could have negligible impact on the chloroplast Fe acquisition process. In agreement, the presence of a large amount of Cd in chloroplasts has not been verified yet (Ramos et al., 2002; Pietrini et al., 2003).
Restoration of photosynthetic structures and activity

It has long been known that the reasons for many symptoms of acute Cd stress are indirect, the most serious one, in the context of photosynthetic structures and activity, being the Cd induced Fe deficiency (Siedlecka and Krupa, 1999; Solti et al., 2008). Together with the inhibition of Chl synthesis, the accumulation of PSI complexes was inhibited primarily, but the development of PSII and particularly its antenna system was also retarded under Cd treatment (Fagioni et al., 2009; Basa et al., 2014) as well as under Fe deficiency (Timperio et al., 2007; Basa et al., 2014). Since the amount of PSII complexes were the least sensitive to Cd stress, the markedly lowered PSII activity (decreased Φ_{PSII}) is connected to the presence of damaged PSII reaction centres verified by the high proportion of quenching related to non-functional PSII reaction centres (high Φ_{NF}). As a result of Cd stress, the amount and aggregation of Lhc complexes also decreased (Fig. 8, Basa et al., 2014). Similarly, reduced amount of Lhcb1 and Lhcb2 proteins was also observed in rye under similar conditions, which significantly decreased the Chl-Chl and Chl-carotenoid energy transfer rate (Janik et al., 2010). The declined efficiency of excitation energy transfer may be the main reason for the elevated $\Phi_{f,D}$ values in Cad plants.

During regeneration, together with the increase in the chloroplast Fe content (Fig. 3), both the accumulation of Chl-protein complexes and their structural remodelling and functional restoration were observed (Fig. 8). The Chl a/b ratio and the amount of β-carotene increased first indicating the accumulation of reaction centres. According to the analysis of pigment-protein complexes, the main reason was the sharp elevation in the amount of the Fe containing PSI reaction centres. As the biosynthesis of Chls and Fe-S cofactor binding proteins such as the PSI reaction centre requires a significant amount of Fe (Jensen et al., 2003; Amunts et al., 2010), the start of their accumulation is an indirect sign of the elevation...
of bioactive Fe content in chloroplasts. According to a recent discovery in *Chlamydomonas reinhardtii*, the nuclear-encoded TAA1 protein may contribute to the sensing of the chloroplast Fe nutritional status and contribute to the expression of *PsaA* gene (Lefebvre-Legendre et al., 2015). The delay we measured under the recovery treatment between the uptake of Fe into the chloroplasts and the appearance the *PsaA* was similar to that found in *Chlamydomonas*. Nevertheless, the presence of TAA1 homologs in higher plants has not been proved yet.

Lowering of the Chl a/b ratio and increase in the amounts of lutein and other xanthophylls, i.e. the accumulation of Chl a+b containing Lhc antennae, mostly LHCII trimers, was delayed to the second light period. Together with the accumulation of thylakoid complexes, the actual quantum efficiency (ΦPSII) also recovered gradually in parallel to the decrease in excitation energy dissipation by inactive PSII reaction centres (ΦNF). In addition to the decreasing ΦNF values, other processes also indicate the remodelling of the different non-photochemical quenching routes. A sharp, peak-like increase in the antennae based non-photochemical quenching (ΦNPQ) observed in the third part of the first light period of recovery coincided with the fast reorganisation of complexes (elevated ratio of PSII dimers, PSII- and Lhc supercomplexes) without a net increase in their amounts (Fig. 9C vs. Fig. 8). Thus, the reorganisation of PSII may have contributed to this peak ΦNPQ values.

Conclusion

The root-to-shoot Fe translocation and the Fe uptake of chloroplasts is retarded under a threshold value of root and leaf Fe content (or Fe/Cd ratio), respectively. During the recovery of Cd stressed plants performing high Fe-uptake capacity, the elevated Fe supply starts a rapid Fe accumulation in the roots. The increase in the root Fe/Cd ratio induces root-to-leaf Fe translocation, and the increased Fe content of leaves enhances Fe uptake into the chloroplasts.
Accumulation of Fe in chloroplasts precedes the recovery of photosynthesis independently of the presence and further translocation of Cd to the leaf. Among the Fe homeostasis linked structural and physiological parameters, the biogenesis of PSI complexes and the remodelling and reactivation of PSII complexes are the most important in the initialization of the restoration of photosynthesis.

Acknowledgements

We would like to thank to Zsuzsanna Ostorics for technical assistance. This work was supported by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (BO/00207/15/4) and by the National Office for Research, Development, and Innovation, Hungary (NKFIH, PD-112047).

References

toxicity in *Arabidopsis* by promoting cadmium accumulation in roots and by up-
regulating genes related to iron uptake. Plant Physiol. 149, 1302–1315.

Durrett, T.P., Gassmann, W., Rogers, E.E., 2007. The FRD3-mediated efflux of citrate into
the root vasculature is necessary for efficient iron translocation. Plant Physiol. 144,
197–205.

multiprotein complexes in the thylakoid membrane upon cadmium treatment. J.
Proteome Res. 8, 310–326.

Fodor, F, Gáspár, L, Morales, F, Gogorcena, Y, Lucena, JJ, Cseh, E, Kröpfl, K, Abadía, J,
Sárvári, É., 2005. The effect of two different iron sources on iron and cadmium
ammodation in cadmium exposed poplar plants (*Populus alba* L.). Tree Physiol. 25,
1173–1180.

and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83,
33–46.

Goodwin, T.W., Britton, G. 1988. Distribution and analysis of carotenoids, in: Goodwin,

fluorescence parameter that correlates with the rate coefficient of photoinactivation of
Photosystem II. Photosynth. Res. 84, 43–49.

Sárvári, É., Mihailova, G., Solti, Á., Keresztes, Á., Velitchkova, M., Georgieva K., 2014. Comparison of thylakoid structure and organization in sun and shade *Haberlea*

Figure 1. Area growth (A) and increase in fresh (B) and dry weight (C) of Cad/Ctrl50 leaves during the recovery period. Ctrl values at the beginning of the recovery treatment are indicated by arrows. Grey fields indicate the dark periods and the error bars show the SD, n=6.
Figure 2. Changes in the Fe concentration in the nutrient solutions of Ctrl (open circles) and Cad/Ctrl50 (closed circles; after transferring the plants to a Cd-free nutrient solution) plants. Grey fields indicate the dark periods and the error bars show the SD, n=6.
Figure 3. Changes in the Fe (A) and Cd (B) content of 6th leaves, and the Fe content of chloroplasts (C) in Cad/Ctrl50 plants during the recovery period. Ctrl values at the beginning of the recovery treatment are indicated by arrows. Cd content in Ctrl leaves was below the limit of detection. Grey fields indicate the dark periods and the error bars show the SD, n=6.
Figure 4. Dependence of root-to-leaves Fe translocation and chloroplast Fe uptake on the Fe/Cd ratio in roots (A) and the leaf Fe content (B), respectively. For the correlation analysis between the parameters, linear regressions were performed, where R^2 values were (A): 0.9523 and (B): 0.9825. Error bars represent SD values.
Figure 5. Changes in the total Chl content (A) and Chl \(a/b\) ratio (B) in 6\(^{th}\) leaves of Cad/Ctrl50 plants during the recovery period. Ctrl values at the beginning of the recovery treatment are indicated by arrows. Grey fields indicate the dark periods and the error bars show the SD, n=6.
Figure 6. Changes in the amount of β-carotene (A), lutein (B), and $\Sigma $VAZ (C) pigments, and the de-epoxidation of light-adapted xanthophyll cycle pigment pool (DEEPS; D) in 6th leaves of Cad/Ctrl50 plants during the recovery period. Ctrl values at the beginning of the recovery treatment are indicated by arrows. Grey fields indicate the dark periods and the error bars show the SD, n=6.
Figure 7. Separation and analysis of thylakoid membrane complexes by 2D BlueNative/SDS PAGE. (A) 1st D BlueNative PAGE profile of a representative control thylakoid membrane. The identified protein complexes are indicated. (B) 2nd D SDS PAGE: polypeptide patterns of the same representative control thylakoid membrane complexes. Characteristic proteins used to identify complexes are indicated. (C) Representative differences in the composition of thylakoid membranes isolated from 6th leaves of Ctrl, Cad and Cad/Ctrl50 plants at the beginning (0 h) and the end (53 h) of the recovery treatment, respectively. Abbreviations: BN – BlueNative; LHC/Lhc – light-harvesting complex, PS – photosystem; cyt bo/f – cytochrome bo/f complex, CP – chlorophyll-protein, s – supercomplex, t – trimer, d – dimer, m – monomer.
Figure 8. Changes in the amount of Chl-protein complexes in 6th leaves of Cad/Ctrl50 plants during the recovery period given in the percentage of the initial values (0 h treatment time). For starting and end values see: Supplementary Table 2. Abbreviations: Lhc-s – Lhc supercomplex; LHCCI-t – Lhcb trimer (LHCCI complex); Lhc-m – Lhcb monomer; PSII-s – PSII supercomplex; PSII-d – PSII dimer; PSII-m – PSII monomer; CP43-less PSII – PSII complexes lacking CP43. Filled arrows indicate the first sign of accumulation of the complexes: grey arrow – first light period; black arrow – second light period. Ctrl values at the beginning of the recovery treatment are indicated by open arrows. Erros bars indicate SD values, n=6.
Figure 9. Changes of the Φ_{PSII} (A), Φ_{LD} (B), Φ_{NPQ} (C) and Φ_{NF} (D) parameters in 6th leaves of Ctrl (open circles) and Cad/Ctrl50 plants (closed circles) during the recovery period. Data points represent single measurements from a sample population of five plants per treatment. Grey fields indicate the dark periods and the error bars show the SD, n=6. Arrow shows the peak values of Φ_{NPQ} around 6-10 hours of recovery.
Supplementary Table 1. Physiological parameters of the 6th leaves at the beginning and in the 53. hour of the investigated recovery period. Treatments: Ctrl – control or Cad – one week treatment without or with 10 µM CdNO$_3$ in Hoagland solution of ¼ strength, 53 h Ctrl or Cad/Ctrl50 – further treatment under Ctrl conditions or with five-fold elevated Fe supply. Similarities between samples (n=6) were analysed with one-way ANOVA with post-hoc Tukey-Kramer test (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>0 h</th>
<th>53 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ctrl</td>
<td>Cad</td>
</tr>
<tr>
<td>leaf area (cm2)</td>
<td>46.7±3.9a</td>
<td>33.9±0.4b</td>
</tr>
<tr>
<td>fresh weight (mg)</td>
<td>320.9±19.2a</td>
<td>245.2±56.2b</td>
</tr>
<tr>
<td>dry weight (mg)</td>
<td>53.8±3.2a</td>
<td>35.7±4.0b</td>
</tr>
<tr>
<td>leaf Fe content (µg leaf$^{-1}$)</td>
<td>11.7±0.2a</td>
<td>3.6±0.1b</td>
</tr>
<tr>
<td>chloroplast Fe content (fmol chloroplast$^{-1}$)</td>
<td>0.74±0.24a</td>
<td>0.40±0.13b</td>
</tr>
<tr>
<td>leaf Cd content (µg leaf$^{-1}$)</td>
<td>n.d.</td>
<td>9.0±0.4a</td>
</tr>
<tr>
<td>Chl a+b content (µg leaf$^{-1}$)</td>
<td>736.8±172.8ac</td>
<td>319.6±7.2b</td>
</tr>
<tr>
<td>Chl a/b ratio</td>
<td>3.40±0.01a</td>
<td>3.01±0.05b</td>
</tr>
<tr>
<td>β-carotene content (µmol leaf$^{-1}$)</td>
<td>5.03±0.95ab</td>
<td>4.07±0.94a</td>
</tr>
<tr>
<td>lutein content (µmol leaf$^{-1}$)</td>
<td>92.9±5.5a</td>
<td>46.3±1.3b</td>
</tr>
<tr>
<td>ΣVAZ (µmol leaf$^{-1}$)</td>
<td>17.2±1.1a</td>
<td>10.9±1.7b</td>
</tr>
<tr>
<td>DEEPS</td>
<td>0.018±0.002a</td>
<td>0.068±0.006b</td>
</tr>
<tr>
<td>Φ$_{PSII}$</td>
<td>0.698±0.020a</td>
<td>0.521±0.040b</td>
</tr>
<tr>
<td>Φ$_{NPQ}$</td>
<td>0.041±0.009a</td>
<td>0.040±0.016a</td>
</tr>
<tr>
<td>Φ$_{LD}$</td>
<td>0.258±0.014a</td>
<td>0.315±0.021b</td>
</tr>
<tr>
<td>Φ$_{NF}$</td>
<td>0.004±0.004a</td>
<td>0.124±0.038b</td>
</tr>
</tbody>
</table>
Supplementary Table 2. Abundance of Chl-protein complexes (values given in µg Chl leaf⁻¹) in the differently treated 6th leaves. Treatments: Ctrl – control or Cad – one week treatment without or with 10 µM CdNO₃ in Hoagland solution of ¼ strength, 53 h Ctrl or Cad/Ctrl50 – further treatment under Ctrl conditions or with five-fold elevated Fe supply. Abbreviations: LHC/Lhc – light-harvesting complexes, PS – photosystem; CP – chlorophyll-protein, s – supercomplex, t – trimer, d – dimer, m - monomer. Similarities between samples (n=6) were analysed with one-way ANOVA with post-hoc Tukey-Kramer test (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>0 h</th>
<th>53 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ctrl</td>
<td>Cad</td>
</tr>
<tr>
<td>PSI</td>
<td>189.6±2.9ᵃ</td>
<td>68.7±7.9ᵇ</td>
</tr>
<tr>
<td>PSII-s</td>
<td>30.5±4.5ᵃᵇ</td>
<td>24.5±3.1ᵃ</td>
</tr>
<tr>
<td>PSII-d</td>
<td>49.7±3.0ᵇ</td>
<td>16.3±5.9ᵃ</td>
</tr>
<tr>
<td>PSII-m</td>
<td>89.7±1.8ᵃ</td>
<td>25.3±2.6ᵇ</td>
</tr>
<tr>
<td>CP43-less PSII</td>
<td>16.3±4.5ᵃ</td>
<td>10.2±1.1ᵃᵇ</td>
</tr>
<tr>
<td>Lhc-s</td>
<td>30.9±9.6ᵇ</td>
<td>7.9±2.3ᵃ</td>
</tr>
<tr>
<td>LHCII-t</td>
<td>214.3±7.5ᵇ</td>
<td>107.3±6.8ᵃ</td>
</tr>
<tr>
<td>Lhc-m</td>
<td>83.0±3.1ᵃ</td>
<td>44.8±10.4ᵃᵇ</td>
</tr>
</tbody>
</table>
Supplementary Figure 1. Dependence of Fe translocation and chloroplast Fe uptake on the Fe uptake of roots (A) and the root-to-leaf Fe translocation (B), respectively. The values measured during the lag periods with no significant uptake and translocation were omitted from this evaluation. As for correlation analysis between the parameters, linear regressions were performed, where R^2 values were (A): 0.9393 and (B): 0.9863. Thus, it can be concluded that Fe translocation into the leaves as well as Fe uptake into the chloroplasts is directly proportional to the Fe taken up by roots and by leaves, respectively.