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Abstract
Understanding of multidrug binding at the atomic level would facilitate drug design and strat-

egies to modulate drug metabolism, including drug transport, oxidation, and conjugation.

Therefore we explored the mechanism of promiscuous binding of small molecules by study-

ing the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR).

Because of the low sequence identities of PAS domains to be used for homology modeling,

structural features of the widely employed HIF-2α and a more recent suitable template,

CLOCK were compared. These structures were used to build AhR PAS-B homology mod-

els. We performed molecular dynamics simulations to characterize dynamic properties of

the PAS-B domain and the generated conformational ensembles were employed in in silico
docking. In order to understand structural and ligand binding features we compared the sta-

bility and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting spe-

cific interactions or no ligand binding function. Our exhaustive in silico binding studies, in

which we dock a wide spectrum of ligand molecules to the conformational ensembles, sug-

gest that ligand specificity and selection may be determined not only by the PAS-B domain

itself, but also by other parts of AhR and its protein interacting partners. We propose that

ligand binding pocket and access channels leading to the pocket play equally important

roles in discrimination of endogenous molecules and xenobiotics.

Introduction
Resistance to chemotherapy is the major cause of the unsuccessful treatment of cancers. Major
players in multidrug resistance are ABC (ATP Binding Cassette) membrane transporters,
which are located in the plasma membrane and pump out xenobiotics from the cell in an ATP
dependent manner [1,2]. Although high resolution structures of full length ABC proteins have
been determined in different conformations, the mechanism of drug binding and transport is
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largely unknown [3]. Details of the recognition of chemically unrelated compounds at the
atomic level may help in the rational design of small molecules either to evade or inhibit these
proteins. However, the large size and hydrophobic nature of ABC transporters bring significant
difficulties in characterizing their multidrug binding properties employing either experimental
or computational approaches.

It is very important to realize that there are other cellular proteins, which also recognize
xenobiotics, including drug metabolizing enzymes and multi-ligand binding transcription fac-
tors. These soluble proteins together with membrane transporters act in a network forming the
chemoimmune system to protect the cell from harmful molecules [1]. Phase I (e.g. oxidation
by cytochrome P450s, CYPs) and phase II (e.g. conjugation by glutathione S-transferases) met-
abolic enzymes in the cell convert xenobiotics to a less toxic product [4,5]. Some ABC trans-
porters take part in both limiting the entry of xenobiotics into the cell (phase 0) and extruding
their metabolized forms (phase III) [2,6]. All these processes influence the ADME-Tox
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of drugs and result
in a concentration of drugs below the effective intracellular level, preventing them to act on
their targets.

Although there are many structural studies aiming to explain the basis of promiscuous bind-
ing of nuclear receptors and metabolic enzymes, the understanding of multidrug recognition
and the generation of predictive models for in silico screening of substrates and ligands are still
challenging [7–9].

In order to investigate the details of the interaction of proteins with multiple small mole-
cules including xenobiotics and drugs, we selected the small soluble promiscuous ligand bind-
ing C-terminal PAS (or PAS-B) domain of the human aryl hydrocarbon receptor (AhR). PAS
stands for Per-Arnt-Sim domains from Period circadian protein, Aryl hydrocarbon receptor
nuclear translocator protein, and Single-minded protein. AhR is a ligand-dependent transcrip-
tion factor regulating a broad spectrum of biological processes including detoxification, devel-
opment, cellular oxidation/antioxidation, responding to ultraviolet light, melanogenesis,
inflammation, and regulation of immune signaling [10,11]. Functional domains of AhR are the
basic helix-loop-helix domain (bHLH) responsible for DNA binding, two PAS domains of
which the C-terminal PAS-B is the ligand binding domain, and a transactivation domain
(TAD) at the far C-terminus [10,12] (Fig 1). AhR can be found in the cytoplasm in complex
with two Hsp90 (heat shock protein 90) molecules, a XAP2 protein (hepatitis B virus X-associ-
ated protein 2), and the p23 co-chaperone (Hsp23) [13]. p23 interacts only with Hsp90 and

Fig 1. The ligand binding competent AhR is part of a cytoplasmic protein complex. In the cytoplasmic
AhR complex Hsp90 has been indicated to bind AhR at two locations. At the N-terminal region it overlaps with
the nuclear localization signal (orange box), bHLH, and PAS A domain. Hsp90 also interacts with the PAS B
domain, while XAP2 binds C-terminal of this AhR domain. Secondary structure elements of the PAS-B
domain (α/β) and the belt region are indicated. AhR interactions with Hsp90 and XAP2 are labeled with
magenta and turquoise boxes, respectively. Green dots indicate TCDD binding amino acids. PPI: protein-
protein interactions.

doi:10.1371/journal.pone.0146066.g001
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stabilizes the conformation of the chaperone in the ATP-bound conformation [10,14], which
has been suggested to be more rigid compared to the apo conformation [15]. The potential
functions of XAP2 are contradictory but might involve modulating the localization of the AhR
complex and its sensitivity to ligand binding [16]. A large part of AhR, including the bHLH
and both PAS domains, has been reported to interact with the Hsp90 homodimer. It has been
suggested that one Hsp90 molecule is bound only within the PAS region while the other Hsp90
appeared to require interaction both with the bHLH and also with the PAS regions [10,17].
The bHLH domain of AhR also contains a nuclear localization signal (NLS) [18] which signals
the transport of the complex into the nucleus upon ligand binding [18], where AhR dissociates
and dimerizes with the Aryl hydrocarbon Receptor Nuclear Translocator (ARNT). This
nuclear complex is capable of binding to xenobiotic response elements (XRE), interacting with
transcriptional activators and repressors, thus influencing the transcription from the corre-
sponding promoters [19,20].

AhR PAS-B domain is a relatively small domain consisting of approximately 110 amino
acids which can bind various endogenic and xenobiotic compounds from which the most pro-
totypical and studied is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) [20]. Although
the structure of the PAS-B domain has not been determined so far, the high structural similar-
ity of PAS domains allows to build reliable homology models in spite of their low sequence
similarity [21,22]. These models have been based on PAS domain structures of HIF-2α
(PDBIDs: 3F1P, 3H82 [7]; 1P97, 1X0O [23,24]; 3F1O, 3H7W, 3H82 [25]; and 1P97 [26]) and
multiple PAS structures have also been employed simultaneously as templates (PDBIDs: 1P97,
1X0O, 1WA9, 1BYW, 1LL8, 1G28, 1OJ5, 1DRM, 1NWZ) [27]. Many past studies have used
homology models to investigate the interaction between docked ligands and specific amino
acids putatively involved in ligand binding, in many cases complemented with mutational
experiments [7,23–27]. Some of these investigations have used a limited number of ligands,
which were usually AhR agonists with high affinity, for in silico docking simulations. Moreover,
most calculations have been carried out on one energy minimized conformation without taking
the inherent flexibility of the PAS-B domain into account. Motto et al. employed a more
advanced approach and validated their structural model of rat AhR ligand binding domain by
docking 14 polychlorodibenzo-p-dioxins to a conformational ensemble generated via cluster-
ing of homology models [25]. However, the selection and energy minimization of the homol-
ogy models were performed in the presence of a ligand inside the putative binding cavity of the
model, thus the resulting structures might have been biased to form a specific conformation for
accommodating a given ligand. Nuti et al. [28] have built homology models based on HIF-2α
structures containing a bound ligand and performed MD simulations using complexes with
docked TCDD or endogenous AhR ligands [28]. Their results suggested that different ligands
interact with different amino acids and change the conformational landscape of the PAS-B
domain differently. Unfortunately, differences between conformations and data on dynamics
other than RMSD values have not been presented.

The aim of our study was to gain insight into the multidrug recognition by analyzing the
dynamics and the ligand binding properties of the AhR PAS-B domain. Since flexibility has
been suggested to be important in recognizing multiple molecules, we generated conforma-
tional ensembles employing different types of molecular dynamic simulation techniques using
homology models based on different template structures including the widely used HIF-2α and
also CLOCK with higher sequence similarity. The ensembles were used for the docking of vari-
ous ligands ranging from high affinity ligands to compounds not interacting with the AhR
PAS-B domain. The similar binding pattern of drugs with highly different affinities suggests
that the ligand recognition also involves other entities than the PAS-B domain, such as other
parts of AhR and protein interaction partners in the cytosolic complex. We suggest that access

AhR Xenobiotics Recognition

PLOS ONE | DOI:10.1371/journal.pone.0146066 January 4, 2016 3 / 22



pathways to binding pockets may play as important roles in the ligand or substrate selection in
the case of AhR and ABC multidrug transporters as indicated for CYP450s and nuclear recep-
tors [29–31]. Therefore this composite recognition process may provide a general mechanism
for ligand and substrate selections for proteins with highly promiscuous and hydrophobic
binding pocket.

Materials and Methods

Structural models
Two homology models of the human AhR PAS-B domain (amino acids 283–392) were built,
one based on the HIF-2α (PDBID:1P97; [32]) and the other based on the more recent CLOCK
protein PAS-B domain in the CLOCK/BMAL dimer (PDBID:4F3L; [33]). The latter one exhib-
its somewhat higher sequence similarity to AhR PAS-B (BLAST identity: 28%, E-value:
2.64�10−9), while the first template has been used in many earlier studies (BLAST identity:
27%, E-value: 9.40�10−7). 1P97 is a NMR structural ensemble containing 20 structures. The
template was selected using OLDERADO as in [27].

The alignments, which were created with ClustalW 2.1 [34] and used as input for Modeller
9.12 [35], are shown in S1 Fig. We generated 100 homology models and selected the model
based on the lowest DOPE (Discrete Optimized Protein Energy) score [36]. The selected mod-
els were further optimized by the energy minimization protocol of Chiron [37,38]. The quality
of the optimized models was checked by various methods. The z-score of ProSA [39] and
QMEAN [40] were calculated for each model to assess the overall quality of the structures. Pro-
Check [41] was employed to gain detailed information on the stereochemistry of the structural
models. This method lists all residues in favored, allowed, and disallowed regions of the Rama-
chandran plot.

Other PAS containing protein structures were also analyzed to study PAS domain dynam-
ics, their detailed properties (e.g. names, PDB IDs) are presented in Table 1.

In order to analyze the intradomain residue-residue interactions in the AhR homology
models and their template structures we employed the MDAnalysis toolkit and its elastic

Table 1. PAS containing structures used in DMD equilibrium simulations.

Name UniProt entry name PDBID Ligand binding

Sensor protein FixL [40] FIXL_RHIME 1EW0 YES*#

Nitrogen fixation regulatory protein [43] NIFL_AZOVI 2GJ3 YES

Aryl hydrocarbon receptor nuclear translocator-like protein 2 BMAL2_HUMAN 2KDK NO

Blue-light photoreceptor, Sensor protein fixL [48] PHOT_BACSU 2PR5 YES

Sensor protein DCUS [64] DCUS_ECOLI 2W0N YES

Phototropin-1 [65] PHOT1_ARATH 2Z6C YES*

Aryl hydrocarbon nuclear translocator [73,74] ARNT_HUMAN 3F1P_B NO

Period circadian protein homolog 2 [75] PER2_MOUSE 3GDI NO

Drosophila PERIOD PER_DROME 3GEC NO

Erythrobacter litoralis El222 [76] Q2NB98_ERYLH 3P7N YES

Potassium voltage-gated channel subfamily H member 1 [77] KCNH1_MOUSE 4HOI NO

Potassium voltage-gated channel subfamily H member 2 [77] KCNH2_HUMAN 4HQA NO#

Endothelial PAS domain-containing protein 1 [73,74] EPAS1_HUMAN 3F1P_A YES#

Photoactive yellow protein [78] PYP_HALHA 1NWZ YES*#

*contains prosthetic group
#employed in replica exchange simulation

doi:10.1371/journal.pone.0146066.t001
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network analysis module [42,43]. The energy minimized homology models and template struc-
tures were used as input and a pair of amino acids was considered connected when their Cα
atoms were closer than 7Å, the default value in the module. To allow the visual examination of
the connected residues, we created a network arrangement resembling the cartoon representa-
tion of the PAS domain [27].

Molecular dynamics simulations
Equilibrium simulations were carried out using GROMACS 4.6.1 [44–47] with two different
force fields. We employed CHARMM36 [48] and also GROMOS43a2, as it has been used
before for AhR PAS-B homology model simulations in a similar study [27]. The structures
were solvated in water (SPC for GROMOS and TIP3P for CHARMM) in a cubic box with peri-
odic boundary conditions. The dimensions of the box were set to allow at least 0.8 nm between
protein and box walls on each side. After addition of ions to neutralize the system, a short min-
imization with the steepest descent method was performed until the maximal force in the sys-
tem was lower than 10 kJ/mol/nm in the case of CHARMM and 1,000 kJ/mol/nm in the case of
GROMOS. For CHARMM36 simulations a two-step equilibration was performed, a constant
volume and temperature (NVT, T = 300 K) setup was followed by one with constant pressure
and temperature (NPT, p = 1 bar, T = 300 K). Both equilibration steps were 100 ps long. For
GROMOS simulations the energy minimized structures were equilibrated for 1 ns while the
pressure and temperature were kept constant (NPT, p = 1 bar, T = 300 K). The potential energy
change was checked at each step for all the systems and indicated sufficient level of minimiza-
tion (not shown). The equilibrated systems were used as starting points for simulations. All
production simulations (n = 3 for each system) were carried out for 50 ns and coordinates were
saved at every 20 ps resulting in 2,500 structures for each simulation. For long-range electro-
static interactions, the Particle Mesh Ewald summation method was employed. Van der Waals
interactions were described by a 6–12 Lennard-Jones potential with a distance cutoff of 1.0 nm
and 0.9 nm for simulations with CHARMM and GROMOS, respectively. For short-range elec-
trostatic cutoff the same values were used. Protein and solvent were independently coupled to a
thermal bath by velocity rescaling (CHARMM) and a Berendsen thermostat (GROMOS) at
300 K and a coupling coefficient of 0.1 ps. For pressure coupling the Parrinello-Rahman baro-
stat was used at 1 bar with a coupling coefficient of 2 ps. The internal degrees of freedom of
water molecules and all bond distances in the proteins were constrained by the LINCS
algorithm.

In order to have more divergent conformations from the starting structure and also to be
able performing replica exchange simulations on reasonable time scales, all-atom discrete
molecular dynamics (DMD) was employed [37,49,50]. DMD is an event (atomic collision)
driven simulation method using a discrete potential energy function that reduces the amount
of calculations, as there is no need to compute forces and accelerations and causes an adaptive
time step. Because of the discretized nature of DMD simulations, internal time and tempera-
ture units are used instead of regular units. Given the units of mass [M, dalton, 1.66×10−24

gram], length [L, angstrom, 10−10 m], and energy [E, kcal/mol], the time unit can be calculated
as [L]�([M]/[E])0.5, which is approximately 50 femtosecond. The temperature unit is kcal/
mol�kB or 5.03×102 Kelvin, where kB is the Boltzmann constant [49]. Equilibrium DMD simu-
lations were done at 0.53 and 0.59 temperature units (approx. 267K and 297K, respectively) for
106 time units, which is approximately 50 ns of real time and coordinates were saved at every
200 time units resulting in 5,000 structures for every simulation. Simulations with two different
temperature setups were performed to enhance the conformational sampling and ensure that
relevant structures are generated for further analysis. For temperature coupling, Andersen's
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thermostat was used and the heat exchange factor was set to 0.1. Three parallel simulations
were started for each structure and temperature. Replica exchange (RX) simulations were also
performed for 106 time units at 0.5246, 0.5451, 0.5665, 0.5886, 0.6116, 0.6355, 0.6604 and
0.6862 temperature units with the same settings as in the equilibrium simulations. Tempera-
tures were selected to ensure at least 25% exchange probability between neighboring tempera-
tures. Conditions for replica exchange were tested every 1,000 time units and frames were
saved every 200 time units, thus 5,000 conformations were generated for each replica. To ana-
lyze the thermostability, the molar heat capacity as a function of temperature was calculated
from the RX simulations using the Weighted Histogram Analysis Method (WHAM) [51]
(http://www.hegelab.org/pywham.py). The πDMD software employed for DMD simulations
was kindly provided by Molecules in Action, LLC (http://www.moleculesinaction.com).

Analysis of the conformational ensembles
GROMACS tools were used to evaluate the flexibility of the simulated models by calculating root
mean squared deviation (RMSD, calculated with g_rms) and root mean squared fluctuations
(RMSF, calculated with g_rmsf) for the Cα atoms, with the starting structure used as the refer-
ence. While RMSD values indicate the overall flexibility of the whole structure during a simula-
tion, RMSF values show the flexibility of a protein at the amino acid level averaged for the whole
simulation. Results of the parallel simulations were averaged and plotted with ± standard devia-
tion indicated as a similarly colored band around the RMSD or RMSF curve.

Potential ligand binding pockets were analyzed using MDpocket, which is included in
Fpocket 2.0 [52,53], with default parameters. The software searches for internal pockets in an
ensemble based on a predefined structure, which was defined as the energy minimized starting
structure. The grid cut-off was set to 0.5, which enabled us to find small and/or transient
pockets.

Molecular docking
In order to take the dynamic properties of PAS domains into account in ligand binding, we per-
formed docking to the conformational ensembles generated by equilibrium simulations. To com-
plete this in a rational time frame, AutoDock Vina 1.1.2 [54] was employed. Preparation of the
structures was done with python scripts delivered by AutoDockTools. The search space for dock-
ing contained the whole structure, thus the ligand could bind to any part of the protein (S2 Fig).
Docking exhaustiveness and number of models were set to 64 and 100, respectively. From every
docking simulation, in which the ligand interacted with at least five known TCCD binding
amino acids (ligand and amino acid distances were less than 4.5 Å), the complex with the ligand
pose exhibiting the lowest binding energy was taken for further analysis. The TCCD binding
amino acids at positions T289, H291, F295, P297, L308, L315, Y322, F324, I325, M340, F351,
L353, A367, V381 and Q383 [55] (S1 Fig) were considered as the major residues defining the
binding pocket (S2 Fig). 13 ligand molecules listed in Table 2 and shown in S3 Fig were selected
for in silico docking based on their affinity to AhR ranging from high to zero affinity ligands. All
other calculations and plotting not mentioned above were done in Python and R [56].

Results and Discussion

Properties of the AhR homology models are not strongly dependent on
template structures
Since no high resolution experimental structure of AhR has been determined, we employed
homology modeling. Two structural models were generated based on PAS domains using
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human HIF-2α (PDBID: 1P97) and mouse CLOCK (PDBID: 4F3L) structures as templates, as
the former one is employed in most of the studies in the last decade and the latter one exhibits
higher sequence similarity to the human AhR PAS-B. We refer to the homology models in the
manuscript as AhRHIF and AhRCLOCK, indicating the template structures in subscripts. As the
template structures contained no bound molecule, the homology models should be considered
as apo conformations. The structures of the models and templates are similar to each other
with pairwise root mean squared deviation (RMSD) 0.711 Å and 0.525 Å for HIF-2α/AhRHIF

and CLOCK/AhRCLOCK, respectively (S1 Fig). Our models were validated through protein
structure evaluating methods including PROCHECK [41] and ProSA [39]. PROCHECK indi-
cated amino acids in favored and disallowed Ramachandran regions as 76.5% and 3.9% for
HIF-2α, 89.3% and 0% for CLOCK, 82.3% and 0% for AhRHIF, and 85.4% and 0% for AhR-

CLOCK, respectively. In contrast, the z-scores obtained using the ProSA web server were -6.53
for HIF-2α, -5.52 for CLOCK, -4.61 for AhRHIF, and -4.46 for AhRCLOCK, respectively, where a
lower value indicates a better model. All these values are within the range for native protein
structures of similar size. In addition we also estimated the quality of the models by the
QMEAN server (Fig C in S1 Fig), in which the HIF-2α-based AhR model performed slightly
better.

However, because of the low sequence similarity of PAS domains, we found it important to
further characterize the homology models. To uncover potential structural differences between
the homology models based on different templates which may influence the results of molecu-
lar dynamics simulations, we calculated the interaction graph of the template structures and
homology models (Fig 2). The CLOCK structure exhibits a higher number of intramolecular
interactions compared to the HIF-2α structure, especially the belt region (a region between the
second β-sheet and the connector helix, Fig 1) provides more contacts to the β-sheet. Interest-
ingly, the homology models possess highly similar interaction matrices which are more similar
to that of CLOCK. Based on these observations, the stability of the two AhR models and the
CLOCK structure can be predicted to be higher compared to the stability of the HIF-2α PAS-B
structure.

Table 2. Ligandmolecules used in molecular docking.

Abbreviation Name PubChem
ID

Equipotent
concentration

TCDD [20] Tetrachlorodibenzodioxin 15625 20 nM

TCDF [20] 2,3,7,8-tetrachlorodibenzofuran 39929 0.1 μM

Dibenzanthracene
[20]

Dibenz-a,h-pyrene 5889 0.1 μM

Ficz [20] 5,11-dihydroindolo[3,2-b]carbazole-6-carbaldehyde 1863 0.1 μM

3mc [20] Methylcholanthrene 1674 1 μM

Benz-a-pyrene [20] Benz-a-pyrene 2336 1 μM

pbc126 [20] 3,4,5,3',4'-pentachlorobiphenyl 63090 1 μM

Bnf [20] beta-Naphthoflavone 2361 1 μM

Indirubin [20] Indigopurpurin 5359405 1 μM

Leflunomid [79] leflunomide 3899 >30 μM

Yh [20] Mivotilate 148185 10 μM

Sto [72] 7-Oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic Acid 16760660 -*

BBQ [72] 17-amino-6-chloro-3,10,17-triazahexacyclo[13.6.2.02,10.04,9.012,22.019,23]tricosa-1
(21),2,4,6,8,12(22),13,15(23),19-nonaene-11,16,18-trione

sketched -*

*Not interacting

doi:10.1371/journal.pone.0146066.t002
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In order to test this and since the stability of the structures used in molecular dynamics sim-
ulations is also critical, we compared the melting temperature of the models, the templates, and
also other PAS domains (Fig 3 and S4 Fig) employing replica exchange (RX) simulations using
discrete molecular dynamics (DMD) [51,57,58]. In RX simulations several replicas run in par-
allel at different temperatures. Temperatures of replicas are exchanged in a stochastic manner
based on the Metropolis criterion to ensure that replicas can escape from a local minimum at a
higher temperature leading to an increased sampling of the conformational space. Although
replica exchange itself provides a better sampling of the potential energy surface, we combined
it with DMD to further improve computational performance.

Fig 3 displays the molar heat capacity versus temperature graphs, which are the first deriva-
tives of the melting curves, providing information on the stability of the two AhR homology
models and their templates (HIF-2α and CLOCK). Thus the peaks of the curves correspond to
the melting temperatures, where folded and unfolded states of domains or subdomains are in
equilibrium. The lowest melting point (0.6624 temperature units, 333K) can be observed for
the HIF-2α structure. The two homology models exhibit quite similar melting points, 0.6704

Fig 2. The contact maps of the homologymodels based on different templates are similar. The
network of the interacting residues was determined by the Elastic Network Analysis Module of the
MDAnalysis toolkit for the HIF-2α (A) and CLOCK (B) X-ray structures and AhR homology models based on
the HIF-2α (C) and CLOCK (D) templates. Nodes are colored according to the main secondary structural
modules in AhR (cyan: β-sheet, red: α-helix, green: ‘belt’ region, orange: small helices in the ‘belt’ region). On
the C and D panels the blue edges represent interactions specific to either AhRHIF or AhRCLOCK compared to
each other.

doi:10.1371/journal.pone.0146066.g002
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temperature units (337K) for AhRHIF and 0.6785 temperature units (341K) for AhRCLOCK, and
the CLOCK structure is the most stable with a melting point of 0.7066 temperature units
(356K). These values are in good accordance with the stability rank predicted by the contact
maps (see above). Moreover, the melting curves indicate a two-step unfolding process by the
more or less pronounced shoulders and a well-defined peak at higher temperatures which cor-
respond to the unfolding of the connector helix and the β-sheets, respectively (Fig 3). The ‘belt’
region exhibit instability already at temperatures below the first observable melting point.

Fig 3. Melting temperatures of the homologymodels are between those of the templates. (A) Melting points as maxima of heat capacity curves were
calculated from replica exchange DMD simulations usingWHAM. (B) The unfolding events connected to the two peaks were determined and representative
AhRCLOCK conformations observed realized below and above the melting temperatures are shown as examples. The presented conformations are centroids
of the largest clusters generated by clustering based on pairwise RMSD of conformations visited at 0.6116, 0.6604, and 0.6862 temperature units (indicated
by arrows).

doi:10.1371/journal.pone.0146066.g003
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These results indicate that in spite of the low sequence similarity of PAS domains the main
structural and thermodynamic properties of homology models based on different templates are
similar to each other and also to those of other PAS domains with experimental high resolution
structures (S4 Fig). Therefore and because the previously published AhR homology models
were based on of HIF-2α, we employed both homology models (AhRHIF and AhRCLOCK)
throughout our study.

Generation of conformation ensembles for in silico docking
Since docking to protein structures having flexible side chains or backbone is computationally
highly intensive, we aimed to circumvent this problem by generating a large set of conforma-
tions and using them as targets in rigid docking calculations [59]. Using apo structures for
such calculations is also justified, as PAS domains most likely recognize their ligands by confor-
mational selection, as demonstrated for HIF-2α [40]. According to the theory of conforma-
tional selection, all possible conformations of the protein are realized in the absence of ligands
including conformations being capable to bind substrates [60–63]. The substrate selects its
favored conformation to bind to.

Equilibrium simulations with the AhR homology models and their template structures were
performed with three different simulation setups including GROMACS with two different
force fields (GROMOS43a2 and CHARMM36) and πDMD. We employed the GROMOS force
field for comparability, as it has been used in earlier studies of PAS domains [27]. We also uti-
lized πDMD in spite of its simplified nature (discrete energy function and implicit water model
are employed), since its algorithm and force field have been reported to achieve sampling qual-
ity and folding accuracy comparable to explicit-solvent simulations [49]. Its Medusa force field
is based on CHARMM [49,50]. Importantly, DMD ensembles have been applied successfully
in various docking studies [48,64–66]. Fig 4 shows the deviation of the homology models from
the initial structure during the simulation (root mean squared deviation, RMSD) and also the
fluctuations projected to individual residues (root mean squared fluctuation, RMSF). Fig 4A
and 4B indicate that the two homology models exhibited similar level of deviation from the
starting structure in conventional MD simulations, while the deviation from the initial confor-
mations was higher in the case of DMD simulations and the dynamics of AhRCLOCK was
slightly decreased compared to AhRHIF (Fig 4B). The RMSF values highlight the flexibility of
the belt region as well as of the loops between the β-strands (Fig 4C and 4D) which are in good
agreement with published MD simulation results using the HIF-2α PAS domain [32,66]. The
higher mobility of the belt region may play a role in regulating the access to the binding pocket
as also proposed by others [28,67].

A similar phenomenon has been suggested to be responsible for promiscuity of certain
nuclear receptors and CYPs. Their ability to bind multiple ligands or substrates has been con-
nected to their highly flexible thus polymorphic binding pocket [68]. To test whether this is the
case for AhR, we performed equilibrium DMD simulations at two temperatures (0.53 and 0.59
temperature units) with PAS domains from proteins with or without ligand binding function,
listed in Table 1. Comparing the average RMSF values of the ligand binding PAS domains to
those PAS domains that are not known to participate in ligand binding, we could observe
slightly but significantly higher average RMSF values for those structures that have ligand bind-
ing function (S5 Fig). Moreover, unfolding events have also been detected when transitioning
between the holo and apo forms of HIF-2α [32]. Therefore we also compared the thermody-
namic stability of a few PAS domains having experimentally determined structures and found
that those domains exhibit somewhat higher stability which include a prosthetic group or do
not have an explicit ligand binding function (S4 Fig).
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These observations indicate that the ligand binding ability of PAS domains may require
higher inherent flexibility. However, the small difference suggests that the main ground of pro-
miscuous ligand binding may be encoded at a different level of structure or dynamics.

Therefore we continued to focus on and analyze the possible ligand binding pockets of the
conformations generated by equilibrium simulations of the homology models and the corre-
sponding templates. Fig 5 shows the volume of ligand binding pockets throughout MD and
DMD simulations calculated by Fpocket2 [52]. The template structures exhibit relatively small
internal cavities (90 Å3 for HIF-2α and 200 Å3 for CLOCK) compared to that of the homology
models (400–600 Å3). The AhR PAS-B models exhibit larger voids because the amino acids
surrounding their cavities possess smaller side chains (e.g. I325 in AhR is smaller than residues

Fig 4. The belt region and the loops between secondary structural elements are the most flexible. Equilibrium simulations were performed using
AhRHIF and AhRCLOCK models employing GROMOS and CHARMM force fields and discrete molecular dynamics (DMD, 0.53 temperature units). (A, B)
Deviation from the starting conformation is characterized by RMSD values. Curves show the average value and colored bands correspond to the standard
deviation from 3 independent simulations. (C, D) RMSF is calculated for individual residues for the characterization of protein flexibility.

doi:10.1371/journal.pone.0146066.g004
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at homologous positions including Y281 in HIF-2α and Y313 in CLOCK). At a first glance
strong force field dependence of the volume of the cavity can be observed. The GROMOS43a2
force field yielded small pockets mostly below 220 Å3 which is the approximate size of the
TCDDmolecule. In contrast, simulations with the CHARMM36 force field and DMD gener-
ated pockets with sizes sufficient for TCDD binding. Therefore conformations generated by
MD employing CHARMM36 and DMD were used in docking simulations.

Ligands with highly different affinity dock efficiently
In order to extract relevant information about the promiscuous binding properties of the AhR
PAS-B domain, we carried out docking simulations. In the last years it has become evident that

Fig 5. The size of the binding pocket is sufficiently large for ligand binding in CHARMM and DMD simulations, while significantly decreased or
missing using the GROMOS force field. Average ligand binding pocket volume calculated for each conformation from 3–3 independent GROMOS,
CHARMM, and DMD (0.53 temperature units) simulations are plotted for the HIF-2α (A), CLOCK (B), and AhRmodels (C, D). The distribution of the volume
values are shown on the right of the graphs.

doi:10.1371/journal.pone.0146066.g005
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docking to a conformational ensemble compared to docking to a single structure resulted in
more relevant ligand binding poses [3,14]. To some extent this approach overcomes the diffi-
culties that are associated with taking the protein flexibility into account in docking
simulations.

Docking of selected molecules was performed using Autodock Vina to every frame (2,500
fromMD and 5,000 from DMD simulations). Moreover, docking simulations were carried out
for all the three MD and three DMD simulation ensembles and the pose with the lowest energy
from the relevant poses docked to each conformation was used in subsequent analysis. A pose
was considered relevant if the ligand was within 4.5 Å to at least five of the 15 residues which
take part in TCDD binding. These TCDD binding-fingerprint residues, which are listed in the
Methods section, have been published to be responsible for ligand binding in the AhR PAS-B
domain based on mutagenesis experiments [23,28,55]. Our approach for evaluation of ligand
binding ensured that poses located outside of the pocket (e.g. on the outer side of the β-strands)
were not taken into account. 13 molecules were selected for the docking simulations based on
their affinity to AhR ranging from high affinity (equipotent concentration� 1μM) to low affin-
ity or non-binder ligands. Detailed information on the ligands is listed in Table 2 and their for-
mulas are shown in S3 Fig.

The relative docking success of AhR ligands with different affinities is plotted in Fig 6. The
bar and the numbers above them indicate the percentage of the conformations that could
accommodate a molecule inside the binding pocket. Unexpectedly, these total numbers of rele-
vant poses are highly diverse in docking simulations on different ensembles, suggesting that
MD simulations sampled different parts of the conformational space. In particular, most of the
visited conformations by the HIF-2α-based AhR model were not sufficient to accommodate
molecules in the binding pocket. Most importantly, molecules with high and low affinities
could not be separated based on binding energies (S6 Fig). In addition, one of the lowest affin-
ity molecules, Leflunomid binds the most efficiently, most likely because of its small size (212
Å3) that makes it easier to accommodate into the binding pocket. Interestingly, a smaller num-
ber of relevant binding poses could be observed for other low affinity ligands with AhR confor-
mations derived from conventional MD simulations, except in the case of the AhRCLOCK

conformational ensemble with the highest number of relevant docking poses (Fig 6). In order
to select conformations that accommodate high affinity but not low affinity ligands and vice
versa, the number of relevant docking poses was projected to the ensembles to monitor confor-
mations preferred by individual ligands. As an example, the AhRCLOCK MD and DMD simula-
tions are shown in Fig 7 and S7 Fig, respectively. The structure of the complexes revealed that
three types of conformations exists in the ensembles: (1) one set binds only high affinity ligands
in the pocket, (2) one set can accommodate all the tested molecules (both low and high affinity
ligands), and (3) one group of conformations where ligands could only be docked on the sur-
face of the PAS domain. Typical ligand binding poses and corresponding conformations are
shown in S8 Fig. We analyzed the ensembles to highlight the characteristic properties of bind-
ing and non-binding conformations (S9 Fig) and to reveal side chains important for discrimi-
nating molecules with high and low affinities (S10 Fig). None of our efforts could uncover a
characteristic set of residues with specific side chain orientations which would discriminate
these groups of conformations thus low and high affinity ligands.

Since docking to conformational ensembles was not able to explain differences in binding of
molecules with different affinities, we applied two more approaches. We also tested the novel
Induced Fit Calculations software (Schrödinger 2015–3, [59,69]) that allowed flexibility not
only for the ligand, but also for the protein. Although the extensive mode was applied, no dif-
ferences in binding energies of molecules with high and low affinities could be observed (S11
Fig). Since bound molecules may have different effects on the PAS-B domain structure and
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dynamics as suggested for Bnf [20], we characterized the dynamics of drug-bound complexes
using equilibrium DMD and MD simulations. However, we could not detect biologically rele-
vant differences between complexes with high or low affinity ligands (S12 Fig).

All of the above results indicate that ligand binding pocket itself is not highly specific and
may play only partial role in xenobiotics recognition. Prediction of ligand binding to the AhR
PAS-B domain is challenging even when using conformational ensembles or cutting edge
methods allowing protein flexibility.

Ligand specificity may not be determined solely by PAS-B
Based on our results we speculated that ligand selection may be influenced by other proteins
through protein-protein interactions happening in the cytoplasmic complex. Therefore we
aimed to collect as much information on the AhR-containing complex as possible to assemble
a structural model, which could be used to predict the mechanism of AhR ligand recognition.
Binding location of cytoplasmic AhR binding partners were collected from the literature and
projected on the AhR sequence (Fig 1). Hsp90 binds to both the ligand binding domain and

Fig 6. Docking to conformational ensembles does not show discriminative differences between
binding of agonists with high and low affinity.Docking of molecules to each conformation from
simulations was performed for three ensembles per setup using AutoDock Vina. The number of
conformations that could accommodate a given molecule in its binding pocket was counted and depicted for
each drug as a colored box with a size of that number. The percentage of these conformations compared to
the possible maxima (2,500 and 5,000 in the case of MD and DMD, respectively) is indicated above the bars.
Green colors indicate drugs with high affinity, while the other colors depict low affinity ligands or non-binders.

doi:10.1371/journal.pone.0146066.g006
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also the N-terminal part of AhR involving the middle region of Hsp90 (amino acids 272–617)
[10,70]. Although the available information is too sparse to generate a reliable Hsp90/AhR/
XAP2 complex, it allowed generating a model for allosteric communications upon ligand bind-
ing. Since the binding initiates the translocation of the complex to the nucleus [10], this event
also has to trigger the visibility of the nuclear localization signal (NLS), which can be found on
the AhR N-terminus [18]. The signal from the PAS-B to the NLS is not expected to propagate
internally through the AhR protein, as the linker regions between the domains are highly flexi-
ble. However, both the ligand binding PAS-B and the NLS are connected to the middle section
of Hsp90, thus the information of ligand binding is very likely communicated allosterically to
the NLS via Hsp90 (Fig 1). If a somewhat rigid structure is supposed for this communication,

Fig 7. Low and high affinity ligands dock to similar set of frames. The number of conformations with relevant docking poses was counted in every
ensemble, binned, and plotted for one of the MD CHARMM36 AhRCLOCK simulations as an example. In this simulation the number of the relevant docked
poses of low affinity molecules (except Leflunomid) is significantly lower. Green colors indicate drugs with high affinity, while the other colors depict low
affinity ligands or non-binders. See Table 2 and S3 Fig for details on these molecules.

doi:10.1371/journal.pone.0146066.g007
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the role of p23 in the complex can be understood: this chaperone stabilizes Hsp90 in a rigid,
ATP-bound conformation [10,15,71]. Another member of the cytoplasmic complex, XAP2

Fig 8. Discrimination of xenobiotics from endogenousmolecules may be realized by access pathways to the binding pockets, acting as filters. (A)
Based on visual examination of our simulations, two putative ligand entry pores (indicated with arrows) can be identified in the conformations of the AhR PAS
B domain. Both of these regions are involved in Hsp90 binding (purple segments) suggesting that Hsp90 can directly influence the accessibility of the pores
and potentially participate in ligand selection (cyan segment indicates XAP2 binding residues.) (B, C) A role of access pathways (indicated on the protein
structures by blue arrows) in ligand selection has been described for nuclear receptors (B: PXR, PDBID:3R8D) and also for CYPs (C: bacterial CYP101D2,
PDBID:3NV6). (D) Similarly, a substrate selective access pathway from the cytoplasmic leaflet of the membrane to the low affinity binding pocket of ABC
multidrug transporters localized in the outer membrane leaflet may play a role in xenobiotics recognition (T.maritima TM287/288, PDBID:4Q4J). Blue arrows:
ligand/substrate entry pathway; blue circle: location of the ligand binding pocket inside the structure.

doi:10.1371/journal.pone.0146066.g008
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might also participate in the transduction of conformational changes associated with ligand
binding, since it is bound to the C-terminus of PAS-B, where the central β-strand is located
(Fig 1). This location is the most rigid part of PAS-B, thus even minor changes may dramati-
cally influence the whole domain. Moreover, this part of PAS-B may serve as a ligand sensor,
as it contains the residue Q383 penetrating into the middle of the ligand binding pocket.

Conclusions
We aimed to understand the molecular basis of multidrug recognition of large membrane
transporters based on ligand interaction of the small soluble promiscuous PAS-B domain of
AhR. Although amino acids surrounding the binding pocket have been shown by computa-
tional studies and mutagenesis [23,28,55] to play an important role in ligand selection, we
could observe a relatively uniform docking of chemicals with highly different affinities employing
extensive structural modeling and molecular dynamics simulations. The side chains protruding
into the binding pocket certainly have effect on xenobiotics binding and can explain species dif-
ferences in ligand recognition. However, this domain may play a more important role in alloste-
ric signal transduction than in ligand selection, especially when taking into account the binding
of various molecules into the same pocket as agonists or antagonists [20,72]. We hypothesize that
the main step of ligand selection may happen by access channels connecting the domain surface
to the binding pocket. A potential entrance is partially covered by the belt region, which is an
interacting site of Hsp90, thus this chaperone can affect ligand accessibility [28,67] (Fig 8). More-
over, a different entrance path on the PAS-B can also be observed, which is indicated to be sur-
rounded and directly controlled by Hsp90. The simulations of the complexes of drugs and
PAS-B (S12 Fig) indicate that the segments with decreased dynamics overlap with both Hsp90
binding regions and the central β-sheet core of the structure (Fig 1). This result also strengthens
the hypothesis that the ligand binding event and the visibility of the nuclear localization signal is
connected by Hsp90, stabilized in the rigid conformation by p23.

A similar ligand selection mechanism via access channels have been proposed for other
multidrug binding proteins, including CYPs and nuclear receptors [29–31] (Fig 8). However,
in the case of AhR, the selection pathway may be formed not internally, but created by inter-
molecular interactions provided by the protein interaction partners. In a somewhat similar
way, cofactor binding of nuclear receptors has been reported to influence their ligand access
and ligand binding [31,44]. In the case of large multidrug transporters, selection of xenobiotics
from endogenous molecules may also occur via filtering before entering the binding pocket
(Fig 8). A specific orientation of transmembrane helices and their intracellular parts, which
could be realized in a bottom-closed apo and not in a bottom-open apo transporter conforma-
tion [46,47], may serve as the structural basis of a substrate selection to differentiate harmful
chemicals from non-toxic molecules.

In summary, promiscuous proteins may exhibit a hydrophobic binding pocket with low selec-
tivity, and the differentiation of endogenous molecules from xenobiotics may be realized via an
access channel from the outside of the molecule or protein complex to the internal binding cavity.
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S2 Fig. The ligand binding pocket of AhR PAS-B defined by residues interacting with
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(PDF)
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