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Hall polynomials and the Gabriel–Roiter submodules of
simple homogeneous modules

Csaba Szántó and István Szöllősi

Abstract

Let k be an arbitrary field and Q be an acyclic quiver of tame type (that is, of type
Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8). Consider the path algebra kQ, the category of finite-dimensional right
modules mod-kQ, and the minimal positive imaginary root of Q, denoted by δ. In the first part of
the paper, we deduce that the Gabriel–Roiter (GR) inclusions in preprojective indecomposables
and homogeneous modules of dimension δ, as well as their GR measures are field independent (a
similar result due to Ringel being true in general over Dynkin quivers). Using this result, we can
prove in a more general setting a theorem by Bo Chen which states that the GR submodule P of
a homogeneous module R of dimension δ is preprojective of defect −1 and so the pair (R/P, P )
is a Kronecker pair. The generalization consists in considering the originally missing case Ẽ8 and
using arbitrary fields (instead of algebraically closed ones). Our proof is based on the idea of
Ringel (used in the Dynkin quiver context) of comparing all possible Hall polynomials with the
special form they take in case of a GR inclusion. For this purpose, we determine (with the help
of a program written in GAP) a list of tame Hall polynomials which may have further interesting
applications.

1. Introduction

Classical Hall algebras associated with discrete valuation rings were introduced by Steinitz
and Hall to provide an algebraic approach to the classical combinatorics of partitions.
The multiplication is given by classical Hall polynomials which play an important role in the
representation theory of the symmetric groups and the general linear groups (see [9], the famous
book by MacDonald devoted to its properties). In 1990, Ringel defined Hall algebras for a
large class of rings, namely finitary rings, including in particular path algebras of quivers over
finite fields. In general, these Ringel–Hall algebras are not commutative, in contrast with the
classical ones (which correspond to the one-loop quiver in this context). In case of Ringel–Hall
algebras associated to quivers, we know due to Ringel and Green that the subalgebra generated
by the simple modules is up to a minor modification the positive part of the corresponding
Drinfeld–Jimbo quantum group.

For Ringel–Hall algebras corresponding to Dynkin quivers (that is, of type An,Dn, E6, E7, E8)
and tame quivers (that is, of type Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8), it was proved by Ringel and Hubery
that the structure constants of the multiplication are again polynomials in the number of
elements of the base field. These are the generalized Hall polynomials, which will be referred
simply as Hall polynomials throughout the paper. If we look at Hall polynomials associated
to indecomposable modules, then the classical ones are just 0 or 1 and those appearing in
the Dynkin case are also known and have degree up to 5. However, we do not have too much
information about them in the tame case. One of the results of the paper is a list of some new
Hall polynomials over tame quivers.
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Hall polynomials appear in various contexts: as mentioned above, they are the structure
constants of quantum groups, they are used in the theory of cluster algebras and they can
also be used successfully to investigate the structure of the module category. In this direction,
the main results of the paper describe properties of Gabriel–Roiter (GR) submodules of some
specific modules, using Hall polynomials in the proofs.

The GR measure was introduced by Gabriel in order to give a combinatorial interpretation
of the induction scheme used by Roiter in his proof of the first Brauer–Thrall conjecture.
Ringel used it as a foundation tool for the representation theory of artin algebras. Consider
a finite-dimensional algebra and its finite length modules. If M is an indecomposable module
that is not simple, then it has GR submodules. These are indecomposable submodules U
satisfying a certain maximality condition, with length |U | determined by M and with M/U
indecomposable. The GR measure μ(M) of M is the set of lengths {|M1|, . . . , |Mt|} where M1

is simple, Mt = M and Mi−1 is a GR submodule of Mi. A GR inclusion is a monomorphism
whose image is a GR submodule in the codomain.

Let Q be a tame quiver (without oriented cycles) with vertex set Q0, let k be a field and
mod-kQ be the category of finite-dimensional right modules over the path algebra kQ. It is well
known that the dimension vectors of indecomposable modules are just the positive roots of the
corresponding Kac–Moody root system (which depends only on Q and is a subset of ZQ0, the
free abelian group with basis Q0). Because Q is tame, there exists a minimal positive imaginary
root δ which defines a linear function ∂ on ZQ0, called the defect. More precisely, ∂x = 〈δ, x〉,
using the Euler form of Q. Looking at the defects of the dimensions, the indecomposables
are either preprojectives (having negative defect), or preinjectives (having positive defect) or
regulars (having zero defect). Note that a preprojective (preinjective) is uniquely determined
(up to isomorphism) by its dimension vector, which is a positive real root x. Hence we may use
the notation P (x, k). The family of regular indecomposable modules with dimension δ that are
homogeneous (that is, isomorphic with their Auslander–Reiten translate) play an important
role in the global structure of mod-kQ. We will call them simply homogeneous modules with
dimension δ.

In our first two theorems (Theorems 3.8 and 3.10), we prove that in the case when Q is tame
without oriented cycles, the GR inclusions in preprojective indecomposables and homogeneous
modules of dimension δ as well as their GR measures are field independent. A similar result
for Dynkin quivers was obtained by Ringel in [13]. More precisely, our first theorem asserts
that the GR measure of P (y, k) is independent from k. Moreover, if P (x, k) → P (y, k) is a GR
inclusion, then the roots x depend also only on the root y and not on k. The second theorem
claims that GR measures of non-isomorphic homogeneous modules of dimension δ are equal
and field independent. For a GR inclusion P (x, k) → R, where R is homogeneous of dimension
δ, the root x is independent from k and also from the isomorphism class of R. In order to prove
these theorems, we use Ringel’s ideas from [13], Chen’s results from [5], Hall polynomials and
results from algebraic geometry.

As an application of the theorems above, we can prove a result by Chen in [6] in a more
general context: our result is valid also for the case Ẽ8 (this case is missing from [6]) and it
is field independent (in [6] k is algebraically closed). More precisely, we prove in Theorem 5.1
that a GR submodule P of a homogeneous module R of dimension δ has defect −1. As a
consequence, we obtain a Kronecker pair (R/P, P ) and in this way we can embed the module
category of the Kronecker algebra into mod-kQ, by sending the simple projective to P and the
simple injective to R/P .

The proof of the theorem above follows the idea of Ringel from [13]: one compares all possible
Hall polynomials with the special form they take in case of a GR inclusion. We have developed
a GAP program in order to obtain the list of tame Hall polynomials corresponding to exact
sequences of the form 0 → P → R → I → 0, where P is a preprojective, I is a preinjective
indecomposable and R is a homogeneous module of dimension δ (see Theorem 4.2). It is
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surprising that there are only six different polynomials depending only on the defect of P (and
not even on the type of the tame quiver).

2. Preliminaries

First of all, we list some needed facts related to representations of tame quivers. For a detailed
description, we refer the reader to [1, 2, 7].

Let Q = (Q0, Q1) be a tame quiver without oriented cycles. Suppose that the vertex set
Q0 has n elements and for an arrow α ∈ Q1 we denote by t(α), h(α) ∈ Q0 the tail and head
of α. The Euler form of Q is a bilinear form on ZQ0

∼= Zn given by 〈x, y〉 =
∑

i∈Q0
xiyi −∑

α∈Q1
xt(α)yh(α). Its quadratic form qQ (called Tits form) is independent from the orientation

of Q and in the tame case it is positive semidefinite with radical Zδ, where δ is a minimal
positive imaginary root of the corresponding Kac–Moody root system. The defect of x ∈ ZQ0

is then ∂x = 〈δ, x〉.
Let k be a field. The category mod-kQ will be identified with the category rep-kQ of the

finite-dimensional k-representations of the quiver. We will denote by [M ] the isomorphism
class of the module M , by dimM ∈ ZQ0

∼= Zn its dimension vector and by ∂M = ∂(dimM)
the defect of M . As mentioned in the introduction, the indecomposable modules in mod-kQ are
of three types: preprojectives (having negative defect), preinjectives (having positive defect)
and regulars (having zero defect).

For P preprojective (that is, with all its indecomposable components preprojective),
I preinjective and R regular module, we have Hom(R,P ) = Hom(I, P ) = Hom(I,R) =
Ext1(P,R) = Ext1(P, I) = Ext1(R, I) = 0. It follows that the submodules of a preprojective
module are always preprojective and a submodule of a regular module cannot have preinjective
components. Preprojective and preinjective indecomposables are exceptional (that is, their
endomorphism space is one-dimensional and they have no self-extensions) and are determined
up to isomorphism by their dimension vector, which is a positive real root of the root system
of Q. Note also that the possible defects of a preprojective indecomposable are −1 in the Ãn

case, −1 or −2 in the D̃n case, −1, −2 or −3 in the Ẽ6 case, ranging from −4 to −1 in the Ẽ7

case and ranging from −6 to −1 in the Ẽ8 case.
The category of regular modules is an abelian, exact subcategory which decomposes into a

direct sum of serial categories with Auslander–Reiten quiver of the form ZA∞/m, called tubes
of rank m. These tubes are indexed by the points of the projective line P1

k, the degree of a
point a ∈ P1

k being denoted by deg a. A tube of rank 1 is called homogeneous, otherwise it is
called non-homogeneous. We have at most three non-homogeneous tubes indexed by points a of
degree deg a = 1. All the other tubes are homogeneous. We assume that the non-homogeneous
tubes are labelled by some subset of {0, 1,∞}, whereas the homogeneous tubes are labelled
by the closed points of the scheme Hk = HZ ⊗ k for some open integral subscheme HZ ⊂ P1

Z
.

Let Xk ⊆ Hk be the set of points of degree 1. The indecomposables on a homogeneous tube
labelled by a ∈ Hk are denoted by Rk(1, a) ⊂ Rk(2, a) ⊂ · · · . For a partition λ = (λ1, . . . , λn),
let Rk(λ, a) = Rk(λ1, a) ⊕ · · · ⊕ Rk(λn, a). Note that the homogeneous modules of dimension δ
mentioned in the introduction are up to isomorphism the regular simples Rk(1, a), with a ∈ Xk.
For simplicity, we will denote them by Rk(a). Note that dimk End(Rk(a)) = 1.

We will describe now the so-called decomposition symbol and class used by Hubery in [8]. A
module without homogeneous regular components can be described combinatorially in a field
independent manner, using a system of positive real roots together with the dimensions of quasi-
socles for the non-homogeneous regular components of dimension tδ. We denote this system
by μ and let M(μ, k) be the corresponding unique module in mod-kQ (up to isomorphism).
A Segre symbol is a multiset σ = {(λ1, d1), . . . , (λr, dr)}, where λi are partitions and di ∈ N∗.
It will describe the homogeneous regular components of the module. Using the definitions
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above, a decomposition symbol is pair α = (μ, σ). Given a decomposition symbol α = (μ, σ)
and a field k, we define the decomposition class S(α, k) to be the set of isomorphism classes of
modules of the form M(μ, k) ⊕ R, where R = Rk(λ1, a1) ⊕ · · · ⊕ Rk(λr, ar) for some distinct
points a1, . . . ar ∈ Hk such that deg ai = di.

Note that for k finite with q elements |Xk| is either q + 1 or q or q − 1 in the Ãn case and
q − 2 for other tame quivers. So if k has two elements and the quiver is not of type Ãn, then
there are no homogeneous modules of dimension δ. We also mention that for a decomposition
symbol α the polynomial nα(q) = |S(α, k)| is strictly increasing in q > 1.

For simplicity, denote by x the decomposition symbol corresponding to a preprojective
(preinjective) indecomposable given by the root x. Also, denote by δ the symbol corresponding
to homogeneous modules of dimension δ.

A pair of indecomposable modules (Y,X) is called a Kronecker pair if they are exceptional,
Hom(X,Y ) = Hom(Y,X) = Ext1(X,Y ) = 0 and dimk Ext1(Y,X) = 2. It is known due to
Hubery (see [8]) that in the tame case the Kronecker pairs are the pairs (I, P ), where P
is an indecomposable preprojective of defect −1 and I is the indecomposable preinjective of
dimension δ − dimP (and thus of defect 1).

Next we mention some needed facts about Ringel–Hall algebras. Suppose that k is finite.
We consider the rational Ringel–Hall algebra H(kQ) of the algebra kQ. Its Q-basis is formed
by the isomorphism classes [M ] from mod-kQ and the multiplication is defined by [N1][N2] =∑

[M ] F
M
N1N2

[M ]. The structure constants FM
N1N2

= |{U ⊆ M | U ∼= N2, M/U ∼= N1}| are called
Ringel–Hall numbers.

Hubery proved the existence of Hall polynomials in tame cases with respect to the
decomposition classes.

Theorem 2.1 [8]. Given decomposition symbols α, β and γ, there exists a rational
polynomial F γ

αβ such that for any finite field k with |k| = q,

F γ
αβ(q) =

∑

A∈S(α,k)
B∈S(β,k)

FC
AB for all C ∈ S(γ, k).

We end this part with some facts on GR measures and submodules (see [12, 13] for
details).

Let P(N∗) be the set of all subsets of N∗. A total order on P(N∗) can be defined as follows: if
I, J are two different subsets of N, then write I < J if the smallest element in (I \ J) ∪ (J \ I)
belongs to J . Using the total order above, for each M ∈ mod-kQ let μ(M) be the maximum
of the sets {|M1|, |M2|, . . . , |Mt|}, where M1 ⊂ M2 ⊂ · · · ⊂ Mt is a chain of indecomposable
submodules of M . Then μ(M) the GR measure of M . If M ∈ mod-kQ is indecomposable and
not simple, then an indecomposable submodule U ⊂ M is called a GR submodule provided
μ(M) = μ(U) ∪ {|M |}, thus if and only if every proper submodule of M has GR measure at
most μ(U). A monomorphism N → M between two indecomposable modules is called GR
inclusion if μ(M) = μ(N) ∪ {|M |} (that is, N is isomorphic with a GR submodule of M). It is
known that the factor of a GR inclusion is indecomposable. If N ⊂ M is a GR inclusion, then
the exact sequence 0 → N → M → M/N → 0 will be called a GR exact sequence.

For two sets I, J ∈ P(N∗), we say that J starts with I provided I = J or I ⊂ J and for all
elements a ∈ I and b ∈ J \ I we have a < b. Finally, for X,Y indecomposables let us denote
by Sing(X,Y ) the set of maps X → Y that are not monomorphisms.

We have the following lemma.

Lemma 2.2. Let X,Y, Y1, . . . , Yt and Z be indecomposable modules.

(a) If X is a proper submodule of Y, then μ(X) < μ(Y ).
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(b) Suppose there is a monomorphism f : X → Y1 ⊕ · · · ⊕ Yt. If max{μ(Yi)} starts with
μ(X) then there is some j such that πjf is injective, where πj : Y1 ⊕ · · · ⊕ Yt → Yj is the
canonical projection.

(c) If X → Y is a GR inclusion, then Sing(X,Y ) is a k-subspace of Hom(X,Y ).
(d) Suppose that k is finite with q elements and let X → Y be a GR inclusion. Then the

number uY
X of submodules of Y that are isomorphic to X is qs−r(qh−s − 1)/(qe−r − 1), where

e = dimk End(X), r = dimk radEnd(X), h = dimk Hom(X,Y ), s = dimk Sing(X,Y ) and thus
h > s � r, e > r.

3. GR measure of preprojectives and homogeneous modules of dimension δ

The first aim of this section is to prove that the GR inclusions in preprojectives are field
independent. In particular, the GR measure of preprojectives is also field independent. A similar
statement is true for all the indecomposables in the Dynkin case (see [13]). Our approach for
the tame case uses Ringel’s ideas from [13] but also introduces some new concepts. Note that
contrary to the Dynkin case, we cannot use Schofield short exact sequences.

First, we consider some conventions. Consider a representation M of dimension x = (xi)i∈Q0

such that its linear application kxt(α) → kxh(α) corresponding to the arrow α is given by the
matrix Aα (in the canonical base). An endomorphism of this representation (using the canonical
bases) can be identified with a collection (Xi)i∈Q0 of square matrices Xi of dimension xi that
satisfy the relations AαXt(α) = Xh(α)Aα. These relations induce a homogeneous linear system
of equations with the unknowns being the elements of Xi. Denote by AM the matrix of this
system. Trivially, we have dimk End(M) = corankAM .

Let k be a field with prime field k0, x be a positive real root such that ∂x < 0 and
P (x, k) be the preprojective indecomposable representation over k with dimension x (unique
up to isomorphism). In case we use the representation P (x, k0) over the prime field k0 of
k, we agree that the representation P (x, k) is constructed in the following way: for α ∈ Q1

consider the linear application kxt(α) → kxh(α) having the same matrix in the canonical
base as the linear application k

xt(α)
0 → k

xh(α)
0 in the representation P (x, k0). Note that

P (x, k) is an indecomposable representation over k of dimension x (since AP (x,k) = AP (x,k0),
so dimk End(P (x, k)) = corankAP (x,k) = corankAP (x,k0) = 1 = dimk End(P (x, k0))). A second
convention is that if we use the rational representation P (x, Q) with rational matrices
corresponding to the arrows (in the canonical base) Aα, then for a big enough prime p the
representation P (x, Fp) has matrices Aα mod p. Note also that this representation P (x, Fp) is
indecomposable for p big enough.

The conventions above and the fact that a rational matrix taken modulo a big enough prime
keeps its rank imply the following lemma.

Lemma 3.1. (a) If there is a monomorphism P (x, k0) → P (y, k0), then there is a
monomorphism P (x, k) → P (y, k).

(b) If there is a monomorphism P (x, Q) → P (y, Q), then there is a monomorphism
P (x, Fp) → P (y, Fp) for a prime p big enough.

The next lemma is a straightforward generalization of the corresponding result by Ringel in
the Dynkin case (see [13]).

Lemma 3.2. If there is a GR inclusion P (x, k) → P (y, k), then there is a monomorphism
P (x, k0) → P (y, k0).

Using the existence of Hall polynomials in the tame case, we obtain the following lemma.
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Lemma 3.3. If there is a monomorphism P (x, k) → P (y, k) for k finite, then there is a
monomorphism P (x, k′) → P (y, k′) for k′ finite and |k′| big enough.

Proof. Denote by α the decomposition symbol of the cokernel in the monomorphism
P (x, k) → P (y, k). Using Theorem 2.1, there is a rational polynomial F y

αx such that for
any field k′ with q′ � q elements F y

αx(q′) =
∑

A∈S(α,k′) F
P (y,k′)
AP (x,k′). Due to our condition, F y

αx

is a nonzero polynomial, so for q′ big enough F y
αx(q′) is also nonzero. This implies our

statement.

Using all the lemmas above, we obtain the following proposition.

Proposition 3.4. (a) Consider a field k and its prime field k0. Then μ(P (x, k0)) =
μ(P (x, k)), moreover we have a GR inclusion P (x, k0) → P (y, k0) if and only if we have a
GR inclusion P (x, k) → P (y, k).

(b) Consider two fields k, k′ with prime characteristic and a third field k′′ of characteristic 0.
Then μ(P (x, k)) = μ(P (x, k′)) � μ(P (x, k′′)) = μ(P (x, Q)), moreover we have a GR inclusion
P (x, k) → P (y, k) if and only if we have a GR inclusion P (x, k′) → P (y, k′).

Proof. (a) If μ(P (x, k)) = {n1, . . . , nt}, then (using the fact that submodules of prepro-
jectives are preprojective) there is a sequence of GR inclusions P (x1, k) → · · · → P (xt, k) =
P (x, k) with |P (xi, k)| = ni. By Lemma 3.2, there is a chain of monomorphisms P (x1, k0) →
· · · → P (xt, k0) = P (x, k0) with |P (xi, k0)| = ni. It follows that μ(P (x, k)) � μ(P (x, k0)). In
the same manner, using Lemma 3.1(a) we obtain that μ(P (x, k0)) � μ(P (x, k)), so μ(P (x, k)) =
μ(P (x, k0)).

Suppose now that we have a GR inclusion P (x, k) → P (y, k), so μ(P (y, k)) = μ(P (x, k)) ∪
{|y|}. Then by Lemma 3.2, we have a monomorphism P (x, k0) → P (y, k0). Moreover,
using the first part of our statement we have μ(P (y, k0)) = μ(P (y, k)) = μ(P (x, k)) ∪ {|y|} =
μ(P (x, k0)) ∪ {|y|}, which means that we have a GR inclusion P (x, k0) → P (y, k0). Conversely,
we proceed in the same way.

(b) Using (a), we have μ(P (x, Q)) = μ(P (x, k′′)). Suppose that char k = p and char
k′ = q. Then again by (a), we have μ(P (x, k)) = (P (x, Fp)) and μ(P (x, k′)) = μ(P (x, Fq)).
Using Lemma 3.3, one gets that μ(P (x, Fp)) � μ(P (x, Fql)) for l big enough. But as before
μ(P (x, Fql)) = μ(P (x, Fq)), so μ(P (x, Fp)) � μ(P (x, Fq)), which implies (changing p with q)
that μ(P (x, Fp)) = μ(P (x, Fq)). By Lemma 3.1(b), we obtain that μ(P (x, Q)) � μ(P (x, Fr))
for a big enough prime r.

Suppose now that we have a GR inclusion P (x, k) → P (y, k), so μ(P (y, k)) = μ(P (x, k)) ∪
{|y|}. Then by Lemma 3.2, we have a monomorphism P (x, Fp) → P (y, Fp), so by Lemma 3.3
we also have a monomorphism P (x, Fql) → P (y, Fql) for l big enough. Moreover, using the first
part of our statement we have μ(P (y, Fql)) = μ(P (y, k)) = μ(P (x, k)) ∪ {|y|} = μ(P (x, Fql)) ∪
{|y|}, which means that we have a GR inclusion P (x, Fql) → P (y, Fql). By Lemmas 3.1(a)
and 3.2, this implies a monomorphism P (x, k′) → P (y, k′) which is in fact a GR inclusion since
μ(P (y, k′)) = μ(P (y, k)) = μ(P (x, k)) ∪ {|y|} = μ(P (x, k′)) ∪ {|y|}.

The proposition above and Lemma 2.2 together imply the following proposition.

Proposition 3.5. Let k′ be a finite field with q′ elements. If we have a GR inclusion
P (x, k′) → P (y, k′), then there is a prime power q0 such that for every finite field k with q � q0

elements it is true that

u
P (y,k)
P (x,k) =

qh − qs

q − 1
= qs(qh−s−1 + · · · + q + 1),

where h = dimk Hom(P (x, k), P (y, k)) > s = dimk Sing(P (x, k), P (y, k)) are field independent.
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Proof. By Theorem 2.1, there is a rational polynomial f =
∑

α F y
αx, where α runs over all

decomposition symbols of dimension y − x. We also know that there is a prime power q0 such
that nα(q) = |S(α, k)| 
= 0 for all decomposition symbols α of dimension y − x and every finite
field k with q � q0 elements.

Since we have a GR inclusion P (x, k′) → P (y, k′), then using the proposition above we have
a GR inclusion P (x, k) → P (y, k) for every finite field k and by Lemma 2.2(c) and (d)

u
P (y,k)
P (x,k) = qsk(qh−sk−1 + · · · + q + 1),

where h = dimk Hom(P (x, k), P (y, k)) = 〈x, y〉 is field independent (preprojectives being
directing) and sk = dimk Sing(P (x, k), P (y, k)). Obviously, we also have that u

P (y,k)
P (x,k) = f(q)

for a finite field k with q � q0 elements. Since sk < h, there is a value s < h such that

u
P (y,k)
P (x,k) = qs(qh−s−1 + · · · + q + 1)

for infinitely many values q, but this means that f = (Xh − Xs)/(X − 1).

Our next proposition uses a classical lemma taken from [4] (see also [14]).

Lemma 3.6 [4]. Let X be a variety defined over some ring of algebraic integers. We denote
by X(C) (respectively, X(Fq)) the set of C-points (respectively, Fq-points) of X. Suppose that
there exists a polynomial f with integral coefficients such that |X(Fq)| = f(q) for infinitely
many prime powers q. Then the Euler–Poincaré characteristic (with compact support) of X(C)
is given by χ(X(C)) = f(1).

Proposition 3.7. If there is a GR inclusion P (x, k) → P (y, k) for a finite field k, then
there is a monomorphism P (x, C) → P (y, C).

Proof. Due to Ringel (see [11]), we know that P (x, C) and P (y, C) are tree modules, so
we can suppose that their matrices corresponding to the arrows contain only 0 and 1. These
representations exist also over Q and modulo p (with the same matrices) in case p is a big
enough prime. We fix such a p from now on.

Define X = {N ∈ mod-QQ |N � P (y, Q), N ∼= P (x, Q)}. Since we have that X = {N ∈
mod-QQ |N � P (y, Q), dimN = x, dimk End(N) = 1}, one can see that X is a (locally closed)
subvariety of the quiver Grassmannian Grx(P (y, Q)) = {N ∈ mod-QQ |N � P (y, Q), dim N =
x}. One can also see that X has in fact a Z-form (see [14]) and in this way X(Fpl) = {N ∈
mod-FplQ |N � P (y, Fpl), N ∼= P (x, Fpl)}.

Since we have a GR inclusion P (x, k) → P (y, k) for a finite field k, then using Proposition 3.5
we obtain for p big enough that

|X(Fpl)| = u
P (y,F

pl )

P (x,F
pl )

= pls(pl(h−s−1) + · · · + pl + 1),

so using Lemma 3.6 we have that χ(X(C)) 
= 0 which means that there is a monomorphism
P (x, C) → P (y, C).

Putting together all the pieces from above, we obtain our first main result.

Theorem 3.8. Consider two fields k, k′. Then μ(P (x, k)) = μ(P (x, k′)), moreover, we have
a GR inclusion P (x, k) → P (y, k) if and only if we have a GR inclusion P (x, k′) → P (y, k′).

Proof. By Proposition 3.4, it is enough to consider the case when k has characteristic
0 and k′ characteristic p. We know already that μ(P (x, k)) � μ(P (x, k′)). Conversely, by
Propositions 3.4 and 3.7 we have μ(P (x, k′)) = μ(P (x, Fp)) � μ(P (x, C)) = μ(P (x, Q)) =
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μ(P (x, k)). The second part of the statement follows in the same manner as in the proof of
Proposition 3.4.

We consider now homogeneous modules of dimension δ denoted by Rk(a), with a ∈ Xk. We
will prove that the GR measure of Rk(a) and also the GR inclusions in Rk(a) do not depend
on a and on the field k.

For the proof of the second main theorem, we need the following result from [5].

Lemma 3.9 [5]. If P is a preprojective indecomposable and Rk(a) is a homogeneous module
of dimension δ, then μ(P ) < μ(Rk(a)). Moreover, if |P | < |δ|, then there is a monomorphism
P → tRk(a) for some t ∈ N∗, so P is cogenerated by Rk(a).

Theorem 3.10. Consider the fields k, k′ and the points a ∈ Xk, a′ ∈ Xk′ . Then we have
μ(Rk(a)) = μ(Rk′

(a′)). Moreover, we have a GR inclusion P (x, k) → Rk(a) if and only if we
have a GR inclusion P (x, k′) → Rk′

(a′).

Proof. Suppose that μ(Rk(a)) < μ(Rk′
(a′)) and denote by P (x, k) and P (x′, k′) the

GR submodules of Rk(a) and Rk′
(a′). On one hand, we have that μ(P (x, k)) ∪ {|δ|} <

μ(P (x′, k′)) ∪ {|δ|} which implies μ(P (x, k)) < μ(P (x′, k′)). On the other hand, using The-
orem 3.8 and the proposition above we obtain μ(P (x′, k′)) = μ(P (x′, k)) < μ(Rk(a)) =
μ(P (x, k)) ∪ {|δ|}, a contradiction since all the lengths in μ(P (x, k)) and μ(P (x′, k′)) are
smaller then |δ|.

Suppose now that we have a GR inclusion P (x, k′) → Rk′
(a′). This means using the results

above that μ(Rk(a)) = μ(Rk′
(a′)) = μ(P (x, k′)) ∪ {|δ|} = μ(P (x, k)) ∪ {|δ|}. So one can see

that μ(Rk(a)) starts with μ(P (x, k)).
Since |P (x, k)| = |P (x, k′)| < |δ|, it follows by Lemma 3.9 that there is a monomor-

phism P (x, k) → tRk(a) for some t ∈ N∗. But then using Lemma 2.2(b), it follows that
there is a monomorphism P (x, k) → Rk(a). However μ(Rk(a)) = μ(P (x, k)) ∪ {|δ|}, so this
monomorphism is a GR inclusion.

The following corollary clarifies the form of the Hall polynomial corresponding to the GR
inclusion P (x, k) → Rk(a).

Corollary 3.11. Let k be a finite field with q elements. Then u
Rk(a)
P (x,k) = F δ

δ−xx(q) =
(q−∂x − qs)/(q − 1) where −∂x = 〈x, δ〉 > s = dimk Sing(P (x, k), Rk(a)) are field independent
and independent of a.

Proof. Since we have a GR inclusion P (x, k) → Rk(a), then the factor is indecomposable,
so it is isomorphic to I(δ − x, k). By Theorem 2.1, there is a rational polynomial F δ

δ−xx such

that F δ
δ−xx(q) = F

Rk(a)
I(δ−x,k)P (x,k). Since by the previous theorem the GR inclusions in Rk(a) do

not depend on a and on the field k, we obtain using Lemma 2.2(d) that for q big enough
F δ

δ−xx(q) = (q−∂x − qsk)/(q − 1) (with sk < −∂x), which means that there is a value s such
that for infinitely many values q we have F δ

δ−xx(q) = (q−∂x − qs)/(q − 1). But then F δ
δ−xx =

(X−∂x − Xs)/(X − 1).

4. Reflection functors and Hall polynomials

In this section, we suppose that the tame quiver Q is not of type Ãn (so it is a tree) and k is
a finite field with q elements.
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Let i be a sink in the quiver Q. Denote by si the reflection induced by the vertex i, by σiQ
the quiver obtained by reversing all arrows involving i and by Qi the quiver having the same
underlying graph as Q with all its edges pointing towards i (so i is the unique sink in Qi). Let
mod-kQ〈i〉 be the full subcategory of modules not containing the simple module corresponding
to the vertex i as a direct summand.

We consider the reflection functors S+
i : mod-kQ → mod-kσiQ and S−

i : mod-kσiQ →
mod-kQ. For all details concerning reflection functors, we refer the reader to [3]. It is well
known that for an indecomposable M we have S+

i M 
= 0 if and only if M � Si. Moreover,
in this case S+

i M is indecomposable and dimS+
i M = si(dimM). Also the functors S+

i , S−
i

induce quasi-inverse equivalences between mod-kQ〈i〉 and mod-kσQ〈i〉. It is easy to see
that for M ∈ mod-kQ〈i〉 indecomposable, we have that ∂S+

i M = ∂M and if R is a simple
homogeneous (respectively, non-homogeneous) regular, then so is S+

i R. Finally, note that for
M,N,L ∈ mod-kQ〈i〉 we have FL

MN = F
S+

i L

S+
i MS+

i N
.

Let i be a sink in Q and denote by Ni the set of neighbours of i. Then there exists a sequence
i1, . . . , it of vertices of Q different from i and not in Ni such that for each s ∈ {1, . . . , t} the
vertex is is a sink in σis−1 · · ·σi1Q and σit

· · ·σi1Q = Qi.
Let Rk(a) and Rk(a′) be two homogeneous modules of dimension δ and P (x, k) be an inde-

composable preprojective and I(δ − x, k) be the corresponding indecomposable preinjective.
Then by Theorem 2.1, we have a Hall polynomial F δ

δ−xx such that

F
Rk(a)
I(δ−x,k)P (x,k) = F

Rk(a′)
I(δ−x,k)P (x,k) = F δ

δ−xx(q).

Let ei = (0, . . . , 1, . . . 0) (with 1 at the ith place) be the dimension of the simple projective
module corresponding to the unique sink i in Qi. We show that the Hall polynomials F δ

δ−xx

over the quiver Q are equal to special Hall polynomials F δ
δ−eiei

over unique sink quivers Qi.

Proposition 4.1. There is a vertex i (with δi = −∂x) such that QF δ
δ−xx = QiF δ

δ−eiei
,

where the first polynomial is taken over the quiver Q and the second one over the quiver Qi.

Proof. We know that there exists field independently a sequence i1, . . . , it of vertices in Q
such that for each s ∈ {1, . . . , t} the vertex is is a sink in σis−1 · · ·σi1Q and S+

it
· · ·S+

i1
P (x, k) =

S′′(i) ∈ mod-kQ′′ is a simple projective corresponding to the sink i in Q′′ = σit
· · ·σi1Q. It

follows that

F
Rk(a)
I(δ−x,k)P (x,k) = F

S+
it
···S+

i1
Rk(a)

S+
is

···S+
i1

I(δ−x,k) S′′(i)
= FR′′

S+
is

···S+
i1

I(δ−x,k) S′′(i),

where R′′ is a homogeneous regular module in mod-kQ′′ of dimension δ. Also there is a
sequence j1, . . . , jr of vertices in Q′′ different from i and not in Ni such that for each
s ∈ {1, . . . , t} the vertex js is a sink in σjs−1 · · ·σj1Q

′′ and σjr
· · ·σj1Q

′′ = Qi. It follows that
S+

jr
· · ·S+

j1
S′′(i) = S′(i) is the simple projective in mod-kQi corresponding to the unique sink i

in Qi. The statement now follows using the same argument as above.

Using a computer program written in GAP (see [15]), we have computed the special Hall
polynomials from above. The program computes the Ringel–Hall numbers over small finite
fields and interpolates the Hall polynomials. Due to the particular orientation of Qi, the low
dimensions and the symmetries, only a few cases occur and thus the computing time is very
short. It takes around 15 min to obtain the polynomial list in the following theorem. We should
also remark that using our program we could reproduce Ringel’s list of Hall polynomials in the
Dynkin case (see [10]). Summarizing all above, we obtain the following theorem.
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Theorem 4.2. Let x be a positive real root with ∂x < 0. Then F δ
δ−xx = f−∂x, where:

f1 = 1,

f2 = X − 3,

f3 = X2 − 5X + 7,

f4 = X3 − 6X2 + 15X − 14,

f5 = X4 − 7X3 + 22X2 − 37X + 26,

f6 = X5 − 7X4 + 22X3 − 45X2 + 62X − 39.

5. The defect of GR submodules in homogeneous modules of dimension δ

As an application of the results from the previous sections, using Ringel’s idea from [13] we
can prove the main result from [6] in a more general setting: the result is valid also for the
case Ẽ8 (this case is missing from [6]) and the base field k is arbitrary (in [6] k is algebraically
closed).

Theorem 5.1. Let Q be a tame quiver with minimal radical vector δ. If R is a homogeneous
module with dimension δ and P a GR submodule, then P has defect −1. As a consequence,
the pair (R/P, P ) is a Kronecker pair.

Proof. Since in the case Ãn the defect of a preprojective indecomposables is always −1, we
suppose that Q is not of type Ãn. We have P = P (x, k), where x is a positive real root with
∂x < 0. Using Theorem 3.10, it follows that P (x, k′) → Rk′

(a′) is a GR inclusion for any field
k′ and any point a′ ∈ Xk′ . By Corollary 3.11, this means that F δ

δ−xx = (X−∂x − Xs)/(X − 1).
But we also know from Theorem 4.2 that F δ

δ−xx = f−∂x. Comparing the polynomials, one can
see that ∂x = −1.

Since R/P is indecomposable preinjective of defect 1, the second assertion follows using the
observations in Section 2.

Using the observations from Section 2, note that if P = P (x, k) is a GR submodule in a homo-
geneous module R of dimension δ, then R/P = I(δ − x, k) and the pair (I(δ − x, k), P (x, k))
exists and remains a Kronecker pair even in the case when the field has two elements and the
quiver is not of type Ãn (so we do not have homogeneous modules of dimension δ).

Acknowledgements. The authors are very grateful to the referee for suggestions and
comments to improve the manuscript.
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