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ABSTRACT: 6.6 nm Pt nanoparticles with narrow size distribution were anchored on mostly 

identical, amorphous silica supports (SBA-15, MCF-17, Silica Foam) and were tested in ethanol 

decomposition reactions at < 300 °C. The reaction on the Pt/SBA-15 was ~2 times faster (0.073 

molecules·site-1·s-1) compared to Pt/MCF-17 (0.042 molecules·site-1·s-1) and Pt/SF (0.040 mole-

cules·site-1·s-1) at 300 °C. In the case of Pt/SF, selectivity towards acetaldehyde was ~2 times 

higher compared to the Pt/MCF-17 and Pt/SBA-15 catalysts. In the case of Pt/MCF-17 and 

Pt/SBA-15, the methane to acetaldehyde ratio was ~ 4 times higher compared to the Pt/SF cata-

lyst. The ethene selectivity was ~1.5 times higher in the case of Pt/SBA-15 compared to 

Pt/MCF-17 and Pt/SF.  Small Angle X-ray Scattering (SAXS) studies showed striking differ-

ences in the nature of the surface of the different silica supports, which may be responsible for 

the activation, and selectivity deviation in ethanol decomposition reactions. The SBA-15 has the 

most disordered mesostructure and SF has a fine surface structure with a diffuse phase boundary 

may resulted in the high activity and varying selectivity, respectively.

 

INTRODUCTION 

Mesoporous silica-based catalyst supports are common in both industry and research due to their 

high specific surface area and ordered pore structure. In silica-based catalysts, some metal-

support interactions (sintering1, encapsulation2, alloy-formation3, inter-diffusion4 etc.) can arise 

at elevated temperatures5 evidenced by regular surface analyzing techniques (Transmission Elec-

tron Microscopy, Low Energy Electron Diffraction, X-ray Photoelectron Spectroscopy etc.); 
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however, at moderate conditions these supports are relatively inert due to their irreducible nature. 

Are they really inert? 

Due to the inertness, these oxides are frequently used for reference state supports in heterogene-

ous catalytic test reactions. The hydrogenation of crotonaldehyde over silica supported Pt nano-

particles showed that the silica has no active role in the reaction. Titania supported catalyst 

showed higher activity and selectivity compared to Pt supported on mesoporous silica6. In CO 

oxidation over Pt nanoparticles anchored onto the surface of several mesoporous metal-oxides, 

mesoporous silica (MCF-17) was used as a comparative support7. 

On the other hand, silica materials are covered by weak acidic silanol groups, which are catalyti-

cally inert. However, the surface hydroxyl density has an effect on the charge transfer and the 

adhesion of the metal8,9. Additionally, we know that the metal-silica interface plays an important 

role in catalysis as CeO2-Pt-SiO2 tandem catalyst show activation in ethylene hydroformilation 

reaction where Pt-CeO2-SiO2 system was inactive10. 

In the present work we give an account of the decomposition of ethanol on several almost identi-

cal silica based supported Pt catalysts, with particular emphasis on the effects of the supports. 

We focused on the comparison of three similarly structured, zeotype mesoporous silica materials 

namely MCF-17, SBA-15 and Silica Foam (SF). MCF-17 is a member of the Mesostructure Cel-

lular Foam (MCF) family with a three-dimensional (3D) structure with ultra-large (>20 nm) and 

robust mesopores. SBA-15 has uniform hexagonally ordered pores with narrow size distribu-

tion11, while SF is a mesoporous silica with a disordered structure. 

6.6 nm Pt nanoparticles with controlled size were deposited on SBA-15, MCF-17 and SF sup-

ports and were tested in ethanol decomposition at 100-300 °C in the gas phase. The ethanol de-

composition on the Pt/SBA-15 was ~2 times faster (0.073 molecules·site-1·s-1) compared to 
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Pt/MCF-17 (0.042 molecules·site-1·s-1) and Pt/SF (0.040 molecules·site-1·s-1) at 300 °C. In the 

case of Pt/SF, selectivity towards acetaldehyde was ~2 times higher compared to the Pt/MCF-17 

and Pt/SBA-15 catalysts.  We found similarities between the silica supports and derived catalysts 

with powder X-ray Diffraction (XRD) and N2 sorption techniques. All silica based supports are 

highly amorphous with a mesoporous structure and a high specific surface area. Besides the reg-

ular surface characterization methods, Small Angle X-ray Scattering (SAXS) studies showed 

striking differences in the porosity, pore- and mesostructure, as well as the surface fine structure 

which may be responsible for the catalytic activity and selectivity risen from the different nature 

of Pt-SiO2 interfaces of the different silica supports. 

 

RESULTS & DISCUSSION 

Characterization of the silica supports, Pt nanoparticles and supported catalysts 

MCF-17, SBA-15 and Silica Foam (SF) mesoporous silica supports were synthesized successful-

ly by a soft template method from tetraethyl orthosilicate (TEOS) precursor (see Supporting In-

formation for details)12-14. MCF-17 mesoporous silica has tetragonal-shape wall building blocks 

and is determined by a hexagonally ordered mesostructure where the thickness of the walls are 2-

4 nm and the pore diameter is 20-30 nm (Fig. 1/A.). In the case of SBA-15, linearly ordered 

pores are characteristic where the average pore diameter as well as the wall thickness is 4-5 nm 

(Fig. 1/B.). Mainly, the ends of the pores are open, however capping and reversals are also pre-

sented. In the case of SF silica, the average diameter of the pores is 4-9 nm, where the wall 

thickness is ~ 2-4 nm. SF silica is built of randomly situated tiny and porous silica building 

blocks linked together (Fig. 1/C.). 
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Figure 1. Typical TEM images of (A) MCF-17, (B) SBA-15 and (C) SF silica supports as well 

as (D) 6.6 ± 0.8 nm metallic Pt nanoparticles with narrow size distribution (ED pattern shows the 

presence of metallic Pt). 

 

The Pt nanoparticles were synthesized by the polyol method from platinum-based salt precursor 

using polyvinylpyrrolidone (PVP) as a capping agent and ethylene glycol as a reducing agent and 

the media for the reaction. The as-prepared Pt nanoparticles have narrow size distribution with 

an average diameter of 6.6 ± 0.8 nm (Fig. 1/D.). Electron Diffraction patterns confirms the pres-

ence of Pt (111), Pt (200), Pt (220) and Pt (311) crystallite planes characteristic for metallic face-

centered cubic (fcc) Platinum. 

For comparing the effect of the different silica support in heterogeneous catalysis, the as-

prepared 6.6 nm Pt nanoparticles were deposited onto the surface of MCF-17, SBA-15 and SF 
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with a loading of 1.1-1.3 wt%. The Pt nanoparticles show an even surface coverage with a well-

defined distribution on the surface of the silica supports (Fig. S1.). 

 

Ethanol decomposition reaction over 6.6 nm Pt nanoparticles supported on MCF-17, SBA-

15 and SF silica supports 

The as-prepared catalysts were tested in thermal decomposition of ethanol in the gas phase at 

100-300 °C (Fig 2.) as this reaction has industrial importance as well as reaction kinetics re-

search interest. The mechanism is based on two main pathways towards ethene (dehydration) and 

acetaldehyde (dehydrogenation) and one side pathway through the decomposition of acetalde-

hyde towards methane and carbon-monoxide (Scheme 1.). 

 

Scheme 1. The reaction pathways for ethanol decomposition towards acetaldehyde, methane and 

carbon-monoxide and ethene 

 

 

The ethanol decomposition on the Pt/SBA-15 was ~2 times faster (0.073 molecules·site-1·s-1) 

compared to Pt/MCF-17 (0.042 molecules·site-1·s-1) and Pt/SF (0.040 molecules·site-1·s-1) at 300 

°C (Fig. 2/A.). On the most active catalyst (Pt/SBA-15) the decomposition starts above 200 °C 

and ~4 % conversion was reached at 300 °C. 

In the case of Pt/SF, selectivity towards acetaldehyde was ~2 times higher (55%) compared to 

the Pt/MCF-17 (29%) and Pt/SBA-15 (25%) catalysts (Fig. 2/B.). In the case of Pt/MCF-17 and 
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Pt/SBA-15, the methane to acetaldehyde ratio was 2.44 and 2.97, respectively, while it was ~ 4 

times lower (0.70) for Pt/SF catalyst. The selectivity towards ethene was insignificant in the case 

of all silica based catalysts, however the ethene selectivity was ~1.5 times higher in the case of 

Pt/SBA-15 (0.30%) compared to Pt/MCF-17 (0.21%) and Pt/SF (0.23%). In summary, Pt/SBA-

15 are the most active catalysts, however SF supported catalysts produces acetaldehyde with the 

highest selectivity, while Pt nanoparticles anchored onto the surface of MCF-17 and SBA-15 

form methane with the highest selectivity.  

In all cases, hydrogen, acetaldehyde, carbon-monoxide and ethene were produced. At higher 

temperatures the amount of acetaldehyde decreased, and those of ethene and methane increased. 

Selectivity towards hydrogen (calculation based on the total hydrogen input) for all silica sup-

ported Pt catalysts reach the highest value at > 220 °C (Fig. 2/C.). All catalysts are produces hy-

drogen with a similar selectivity. 

After the catalytic tests up to 300 °C, the deactivation of the silica supported catalysts were mon-

itored at 300 °C for 4 hours (Fig. 2/D.). The catalysts were continuously deactivated during the 

catalyst aging process. In the case of the Pt/SBA-15, Pt/MCF-17 and Pt/SF the activation de-

crease to 65 %, 42 % and 23 %, respectively. 
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Figure 2. Ethanol decompostion to methane, acetaldehyde and ethene over MCF-17, SBA-15 

and SF supported 6.6 nm Pt nanoparticles at 100 – 300 °C. (A) The turnover frequency of the Pt 

nanoparticles supported on the different silicas at 300 °C, (B) The selectivity towards 

acetaldehyde, methane and ethene at 250 °C, (C) The hydrogen selectivity in the range of 150-

300 °C and (D) the deactivation of the catalysts at 300 °C. 

 

Meso- and Surface Fine Structure Study based on Small Angle X-ray Scattering & N2 Ad-

sorption Isotherms 

Several methods are known for the characterization of the structural and surface properties of 

nano-structured materials, mainly based on adsorption15-19 or photoelectron scattering20-21 meth-

ods. These methods are based on the connection between the surface roughness and the fractal 

dimensions22 and the results from the different investigation methods are usually in good agree-

ment, however, significant differences can be also possible23.  
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Small Angle X-ray Scattering (SAXS) (see Supplementary Information for details) as well as 

surface fractal calculation based on the N2 adsorption isotherms18 was used to obtain structural 

and surface information about the different silica supports. Pt loaded catalysts before and after 

the ethanol decomposition reaction were also investigated by SAXS.  

The log-log plot (fractal plot) of the SAXS profiles for SBA-15, MCF-17 and SF silica supports 

presented differences in the ordering, packing, meso- and surface fine structure of the mesopo-

rous materials (Fig. 3/A). The SBA-15 silica shows a strong (100) and two weak (110) and (200) 

peaks (the ratio of the values belonging to the peaks is 1:√3:2), implying a high degree of two-

dimensional hexagonal (P6mm) structure24. The d-spacing calculated via the equation of d100 = 

2π/h100, and the unit cell parameter a = 2d100/√3 are d100 = 8.9 nm and a = 10.3 nm, which values 

are in good agreement with the pore and wall distances observed on the TEM images (Fig. 1/B.). 

Similarly, the SAXS pattern of MCF-17 exhibits a primary and some higher-ordered peaks with 

decreasing intensities that suggests typical cellular foam mesostructure25. For SF silica support, 

no significant ordering was observed which is in agreement with the TEM images of SF 

(Fig.1/C). 

The surface fractal dimension values resulted from the fractal-plot gives information about the 

surface roughness properties of the materials (Table S1.). In the case of MCF-17 (DS=1.95) and 

SF (p=1.7), the object has a compact structure with an insignificant surface roughness and sharp 

or diffuse phase boundary, respectively (Fig. 4.). However, SBA-15 shows ~1.5-2 times higher 

surface fractal dimension value (DS=3.2) compared to MCF-17 and SF showing a loose structure 

with a significant rough surface characteristic for surface fractal type structures in the micro- and 

meso-scale regime of 0.3-5 nm.  
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 Surface fractal dimensions determined based on the adsorption isotherms of the silica 

supports (Fig. 3/B.) shows similar roughness tendencies compared to the SAXS measurements. 

The surface roughness was the highest for SBA-15 (Ds=2.73) compared to MCF-17 (Ds=2.64) 

and SF (Ds=2.43). The differences in the surface fractal dimension values were also reported by 

Malekani et al23. 

 

Figure 3. (A) The fractal plot of the Small Angle X-ray Scattering (SAXS) curves of the MCF-

17, SBA-15 and SF supports. (dashed lines indicate the power-law exponents for calculating the 

surface fractal dimensions; the vertical lines indicate the validity range of the power-law.) (B) 

Logarithmic plot of the adsorption isotherms for the MCF-17, SBA-15 and SF samples to deter-

mine the surface roughness (equations of the linear trend lines and the calculated surface fractal 

dimensions are indicated.) 

 

The fractal plot as well as the calculation based on the N2 adsorption isotherms gives reliable 

information about the quality of the surface roughness with a quantitative information based on 
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the surface fractal dimensions (Ds=2 presents smooth surface, while Ds=3 denote for rough sur-

face). In the case of the SAXS studies, applying the Porod plot instead of the fractal plot, gives 

information about the nature (sharp or diffuse phase boundary or electron density fluctuation) as 

well as the dimension of the surface inhomogeneity can be determined (Fig. S2 and Table S1). 

Considering to the Porod plots of pure MCF-17, SBA-15 and SF (Fig. 4/A.), it can be established 

that in the case of MCF-17 the fitted curve has no significant deviation from a flat slope which 

fact suggests a sharp phase boundary in between the pores and the walls resulted in a smooth 

silica surface in the nanometer scale (Fig. 4/B.). For SBA-15 silica, the positive slope indicates 

the presence of small scattering centers as well as sharp electron density fluctuations, which are 

the result of the highly rough surface. In the case of the SF silica, the negative slopes show the 

presence of diffuse phase boundary which can be attributed to the highly amorphous nature of 

the support evidenced by TEM and XRD studies (Fig. S3.). The differences of the silica supports 

may resulted in different amount as well nature of surface hydroxyl groups which has an effect 

of the total surface charge as well as the number of Pt-silica bonds8. As the Pt-SiO2 interface9 as 

well as the surface roughness19 plays an important role in heterogeneous catalytic reactions and 

the lack of sintering of the Pt nanoparticles during the catalytic process (Fig. S1.), the striking 

differences in the nature of the surface of the different silica supports can be responsible for the 

activation and selectivity deviation in ethanol decomposition reactions. The high mesostructured 

roughness of the SBA-15 may resulted in the high catalytic activity, as well as the diffuse phase 

boundaries may be responsible for the selectivity differences observed at SF-based catalysts in 

ethanol decomposition reactions. As the amount of surface hydroxyl group  

MCF-17, SBA-15 and SF supports loaded with 6.6 nm Pt nanoparticles before and after 

the ethanol decomposition reaction were also subjected to SAXS investigations (Fig. S4.). The 
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surface fractal properties as well as the nature of the surface roughness of MCF-17, SBA-15 and 

SF samples change negligibly with the anchoring of the Pt nanoparticles and no other changes 

are observed after the catalyst were tested in ethanol decomposition reaction.  

The calculated specific surface area values based on the Kp/Q value by SAXS are in good 

agreement with data obtained from nitrogen sorption measurements using the Brunauer-Emmett-

Teller theory26 (BET measurements) based on the Barrett-Joyner-Halenda (BJH) method27 (Ta-

ble S1.). The wall thickness (Ls) resulted from the inhomogeneity length of the structure for 

MCF-17, SBA-15 and SF were 8.3 nm, 5.7 nm and 2.7 nm, respectively, which is in agreement 

with the broadened SiO2 (101) diffractions at 2Θ = 23° of the XRD studies (Fig. S3/A.) and the 

TEM images of the pure silica supports (Fig. 1.). 

The pore diameters (Lp) were 30.7 nm for MCF-17, 8.5 nm for SBA-15 and 4.7 nm for SF before 

the deposition of the Pt nanoparticles. These values are in good agreement with the TEM studies, 

however in case of MCF-17 the pore size calculated from the BET studies was smaller. The E 

value (the length of the inhomogeneity at the interfaces) was showing the amount of the extent of 

the surface fine structure calculated from the Porod plot. These value is almost 1.5 times higher 

for SBA-15 (1.27 nm) compared to the SF support (E = 0.83 nm). 
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Figure 4. (A) Porod-plot of the Small Angle X-ray scattering (SAXS) curves of MCF-17, SBA-

15 and SF silica supports. (B) Schematic view of the X-ray scattering angle for the silica sup-

ports and the fine structure of the surfaces represents the nano-scaled physical differences corre-

sponding to the different catalytic activity and selectivity of the Pt/SiO2 catalysts. (C) Schematic 

view of the electron density differences resulted from the SAXS measurements. 

  

Investigation of the MCF-17, SBA-15 and SF Silica Supports by N2 Adsorption, X-ray Dif-

fraction & Transmission Electron Microscopy 

Beside the SAXS measurements, the samples were investigated by regular physico-chemical 

techniques used in surface chemistry and heterogeneous catalysis. Powder XRD studies of MCF-

17, SBA-15 and SF in the range of 2 Θ  = 10-80° show the absence of highly intensive peaks for 

all the silica supports (Fig. S3/A.). The only presence of a broadened SiO2 (101) diffraction at 

2 Θ = 23° with low intensity indicate amorphous silica based catalyst supports. In the case of the 

MCF-17, this diffraction was more significant compared to SBA-15 and SF. 

The N2 adsorption/desorption studies of the supports show isotherms with hysteresis loop 

characteristic for mesoporous materials (Fig. S3/B.). The shapes of the isotherms for all supports 
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are similar, however, in the case of the SBA-15, type IV isotherm shape are observed, while 

MCF-17 and SF are grouped into the mesoporous materials with type V isotherms28. The 

difference is mild however we may conclude that the surface of the SBA-15 shows a stronger 

adhesion with the adsorbent molecules compared to MCF-17 and SF which may be also 

responsible for the higher activity of the Pt/SBA-15 catalyst. In the case of SBA-15 and SF, the 

hysteresis loop of type H1 showing the ordered structure of the material. For MCF-17, type H2 

characteristic can be fitted showing the presence of some structural disorder in the material. The 

specific surface areas are 518 m2·g-1, 798 m2·g-1 and 666 m2·g-1 for MCF-17, SBA-15 and SF, 

respectively (Table S1.). 

The pore size distribution for MCF-17 is monodisperse showing an average pore diameter of 3.9 

nm with a total pore volume of 0.9 cm3·g-1. In the case of SBA-15, the average pore diameter 

was 4.2 nm with a total pore volume of 0.8 cm3·g-1. SF support showed a broadened size 

distribution of the pore diameter (3-9 nm) with an average of 4.6 nm. The total pore volume was 

~50% higher (1.3 cm3·g-1) compared to the other silica based supports. In summary, the SBA-15 

has higher specific surface area  (20-50 %), however the SF supports showed the highest total 

pore volume. 

The anchoring of the 6.6 nm Pt nanoparticles onto the different silica supports was successful. 

Mostly single Pt particles are presented in the case of MCF-17, SBA-15 and SF (Fig. S1.). After 

the catalyst pretreatment in oxygen and hydrogen at 300 °C and after the ethanol decomposition 

reaction at 100-300 °C, the sintering of adjacent nanoparticles was not observed. The size of the 

Pt nanoparticles stayed in the regime of 6.1 – 6.7 nm. In case of the SBA-15, the surface diffu-

sion of the Pt nanoparticles was occurred resulted in clusters of 4-5 nanoparticles on the surface 

after the catalytic reaction. It is well known that Pt nanoparticles with different diameters can 
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show different activity and selectivity in heterogeneous catalytic reactions29. In this study, no 

significant sintering was observed may exclude a strong effect of Pt shape and size on the differ-

ent catalytic activity and selectivity.  

 

CONCLUSION 

In this study, three zeo-type silica supports (MCF-17, SBA-15 and SF) were synthesized with 

similar chemical and different pore and wall structure. 6.6 nm Pt nanoparticles were anchored on 

the surface of the supports and the as-prepared catalysts were tested in ethanol decomposition 

reactions in the gas phase at <300 °C. The reaction on the Pt/SBA-15 was ~2 times faster (0.073 

molecules·site-1·s-1) compared to Pt/MCF-17 (0.042 molecules·site-1·s-1) and Pt/SF (0.040 mole-

cules·site-1·s-1) at 300 °C. In the case of Pt/SF, selectivity towards acetaldehyde was ~2 times 

higher (55%) compared to the Pt/MCF-17 (29%) and Pt/SBA-15 (25%) catalysts. In the case of 

Pt/MCF-17 and Pt/SBA-15, the methane to acetaldehyde ratio was ~ 4 times higher compared to 

the Pt/SF catalyst. 

SBA-15, MCF-17 and SF are amorphous mesostructured silicas with high specific surface area. 

SAXS studies showed striking differences in the surface, porosity, the pore- and mesostructure 

of the silica supports as well as the Pt nanoparticles decorated catalysts. MCF-17 and SBA-15 

has ordered mesostructure, while SF is disordered. There is also a striking difference in the sur-

face fine structure of the different silica supports. In the case of MCF-17, a smooth silica surface 

was dominant. However, for SBA-15 silica, the small scattering centers as well as sharp electron 

density fluctuations are resulted from the special pore structure (pore-matter alteration). In the 

case of SF silica, diffuse phase boundary was presented. As the Pt-SiO2 interface plays an im-

portant role in heterogeneous catalytic reactions, we believe that the striking differences in the 
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nature of the surface of the different silica supports can be responsible for the activation and se-

lectivity deviation in ethanol decomposition reactions. We believe that the high activity of SBA-

15 supported Pt nanoparticle catalyst can be attributed to the high mesostructured roughness of 

the support. In the case of SF-based catalyst, The diffuse phase boundaries may be responsible 

for the significant selectivity differences compared to MCF-17 and SBA-15 supported catalysts.  

 

In this study, we support the idea that the silica has a striking effect on the activity and selectivity 

of the catalysts in heterogeneous catalytic reactions and we also demonstrated new evidences of 

surface effects by SAXS studies in addition to the TEM, XRD, BET methods. In the future, we 

will focus on the exact connection between meso- and surface fine structure by SAXS and sur-

face chemical processes such as catalytic performance. 
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