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Online and quasi-online colorings of wedges and intervals

Balázs Keszegh∗ Nathan Lemons† Dömötör Pálvölgyi‡

Abstract

We consider proper online colorings of hypergraphs defined by geometric regions.
We prove that there is an online coloring algorithm that colors N intervals of the
real line using Θ(logN/k) colors such that for every point p, contained in at least k
intervals, not all the intervals containing p have the same color. We also prove the
corresponding result about online coloring a family of wedges (quadrants) in the plane
that are the translates of a given fixed wedge. These results contrast the results of the
first and third author showing that in the quasi-online setting 12 colors are enough
to color wedges (independent of N and k). We also consider quasi-online coloring of
intervals. In all cases we present efficient coloring algorithms.

1 Introduction

The study of proper colorings of geometric hypergraphs has attracted much attention,
not only because this is a very basic and natural theoretical problem but also because
such problems have important applications. One such application area is resource allo-
cation: to determine the number of CPUs necessary to run several jobs, each with fixed
starting and stopping times is exactly the problem of finding the chromatic number of
the associated interval graph. Similarly, the coloring of geometric shapes in the plane
is related to the problems of cover decomposability and conflict free colorings; these
problems have applications in sensor networks and frequency assignment as well as
other areas. For surveys on these and related problems see Refs. [11, 12, 13, 14].

Despite the well-known applications of colorings of geometric graphs and hyper-
graphs, relatively little attention has been paid to the online and quasi-online versions
of these problems. Online and quasi online coloring problems are natural to consider
from both a theoretical point of view (as a means to better understand and relate
various geometrical hypergraphs) as well as from a practical point of view: many of
the natural applications require streaming/online algorithms.
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Before describing the contributions of this paper, we formally define the hyper-
graphs and colorings under consideration.

Definition 1.

Wedge: the set of points {(x, y) ∈ R × R | x < x0; y < y0} for a fixed (x0, y0) called
the apex.1

Octant: the set of points {(x, y, z) ∈ R × R × R | x < x0; y < y0; z < z0} for fixed
x0, y0, z0.

Bottomless rectangle: the set of points {(x, y) ∈ R × R | x0 < x < x1; y < y0} for
fixed x0, x1, y0.

Interval: the set of points {x ∈ R | x0 < x < x1} for fixed x0, x1.

Diagonal line: the set of points {x ∈ R× R | x+ y = c} for fixed c.

Each of the above geometric objects defines a natural class of objects: for example
the class of wedges in R

2 or the class of intervals in R. We consider hypergraphs which
can be induced through these classes of geometrical objects.

Let S be a set and let O be a family of its subsets. For any finite subset X of S,
the primal hypergraph induced by X and O is the following. Its vertices correspond
to the points in X and its hyperedges correspond to those subsets of X that can be
obtained as the intersection of X with a member of O. More precisely:

Definition 2 (Primal Hypergraph Construction). For a base set S and family O
of subsets of S, the points x1, x2, . . . , xn ∈ S induce, with respect to O, a primal
hypergraph, H, on n vertices v1, . . . , vn where for each I ⊂ 2[n]

eI = {vi : i ∈ I} is a hyperedge of H iff ∃O ∈ O : O ∩ {x1, x2, . . . , xn} = {xi : i ∈ I}.

For geometric objects, S is the space in which the objects are defined in Definition 1,
e.g., for “wedges” it is R2.

Example 1. Let S = R
2 and let O be the collection of all wedges. Then the points

(0, 0), (1, 0) and (0, 1) induce the primal hypergraph H consisting of the hyperedges
{v1, v2, v3}, {v1, v2}, {v1, v3}, {v1}, and ∅.

There is a second, dual way to create a hypergraph from a set system. Let S be
a set and let O be a family of its subsets. For any O′ finite subfamily of O, the dual
hypergraph induced by O′ with respect to S is the following. Its vertices correspond
to the sets in O′ and its hyperedges correspond to those subfamilies of O′ that can be
obtained as the subfamily of sets in O′ that contain a point x of S. More precisely:

Definition 3 (Dual Hypergraph Construction). For a base set S and family O of
subsets of S, the objects O1, O2, . . . , On ∈ O induce with respect to S a dual hypergraph,
H, on n vertices v1, . . . , vn where for each I ⊂ 2[n]

eI = {vi : i ∈ I} is a hyperedge of H iff ∃x ∈ S : {i : x ∈ Oi, 1 ≤ i ≤ n} = I.

1Here, and similarly at the later definitions as well, we also allow x0 = ∞ and y0 = ∞.
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In general, for a fixed geometric space S and set of objects O, the class of hyper-
graphs which can be formed through the primal construction is not the same as the
class of hypergraphs which can be formed through the dual construction. However,
as observed in Pach [10], in some important cases, these two classes are actually the
same.

Proposition 1. Let O be the family of the translates of some fixed Euclidean geometric
set, e.g., a wedge W . If H is a hypergraph induced (through the primal construction)
by the points x1, x2, . . . , xn, then there exist O1, O2, . . . , On ∈ O which also induce
H through the dual construction. Similarly if H is a geometric hypergraph induced
(through the dual construction) by the wedges O1, O2, . . . , On ∈ O, then there exist
points x1, x2, . . . , xn which also induce H through the primal construction.

Proof. Fix a point c ∈ W which we call the center of W and we say that W is centered
at c. Denote the centrally reflected translates of W by W̄ and call the reflection of
the center of W the center of W̄ . Consider the operation Ψ that takes each wedge to
its center and each point c to a reflected translate W̄ centered on c. By definition, Ψ
preserves point-object incidences. As the family of translates of W and W̄ induce the
same hypergraphs, we have proved the equivalence.

Definition 4. Given a finite hypergraph H, a (partial) coloring of the vertices of H
is a k-proper (partial) c-coloring if it uses c colors and no hyperedge of size at least k
is monochromatic.

When obvious from the context, we may refer to a k-proper (partial) c-coloring
simply as a proper coloring. We will consider the proper coloring problem for both ge-
ometric hypergraphs induced by the primal as well as the dual constructions. To sim-
plify the exposition, we will avoid referring to the hypergraph H explicitly. Rather we
will speak of coloring points with respect to objects (primal construction) or of coloring
objects with respect to points (dual construction). In particular, if the points/vertices
are colored in a primal construction we say that an object is monochromatic if the
corresponding hyperedge is monochromatic. The size of a geometric object (e.g., size
of a wedge) will refer to the number of points in the geometric object in the primal
construction, and the depth of a point will refer to the number of objects containing a
point in the dual construction.

In online coloring problems, the set of objects to be colored is not known beforehand;
objects come to be colored one-by-one and a proper coloring must be maintained at
all times. This problem has several variants, below we give an exact definition of the
types interesting to us. To emphasize the difference, we refer to proper colorings as
offline colorings.

Definition 5. Let H be a hypergraph on n vertices and let v1, v2, . . . , vn be an ordering
of the vertices. For each i let Hi be the hypergraph on the vertices Vi = {v1, v2, . . . , vi}
with edges {e|Vi

, e ∈ E(H)}. A k-proper c-coloring algorithm A of H for which each
Hi is k-properly partially c-colored is called

online if at the beginning A knows nothing about H, in step i, Hi is presented to A
and A colors vi (the vertices vj for j < i retain their colors from the previous
steps). Note that A knows nothing about the future vertices vj, j > i;
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semi-online if at the beginning A knows nothing about H, in step i Hi is presented
to A and A colors some (maybe zero) of the as yet uncolored vertices (the vertices
vj for j < i retain their colors from the previous steps). Again A knows nothing
about the vertices that come later;

quasi-online2 if A colors the vertices knowing the full hypergraph H.

By definition the above types are ordered by hardness in the way they are presented.

Observation 1. Every online algorithm is also a semi-online algorithm. Every semi-
online algorithm is also a quasi-online algorithm. Every quasi-online algorithm is also
an offline algorithm.

Usually semi-online algorithms are presented when a quasi-online algorithm is
needed (e.g., for coloring points with respect to intervals [2]), yet in other cases this
is not a possible route as a quasi-online algorithm exists while a semi-online algorithm
does not (e.g., for coloring wedges [7, 3]). In this paper we consider quasi-online and
online colorings of wedges and intervals.

One major motivation to study quasi-online colorings is that it can be used to solve
corresponding offline higher dimensional problems. In particular, it was shown that
octants can be offline colored using two colors such that there is no monochromatic
octant of size at least 12 [7]. Indeed by projecting the octants on the xy plane and
ordering them by the z-coordinates of their apices, it was shown that quasi-online
coloring the resulting wedges is equivalent to offline coloring the original octants [7].

Knowing that one can properly color wedges quasi-online using a constant number
of colors, motivated Tardos [15] to ask whether a proper coloring can be achieved in
the online setting also, possibly with a larger k and more colors. It is easy to see
that 2 colors are not enough to guarantee non-monochromatic wedges (i.e., there may
be arbitrarily large monochromatic wedges), even when the points are restricted to a
diagonal line. While it is possible to 2-properly 3-color if the points are restricted to a
diagonal line [7], for general point sets the answer turns out to be more complicated.

Answering the question of Tardos, Theorem 2 shows that in general no finite number
of colors are enough. Formally, for any c and k, and any online c-coloring algorithm,
there exists a finite set of points in the plane for which the algorithm produces a
monochromatic wedge of size at least k. This implies that the same holds for coloring
intervals with respect to points, that is, there is no online algorithm that k-properly
c-colors intervals with respect to points.

In [3] it was proved (independently to and after us, but with very similar methods)
that for any c and k, and any semi-online c-coloring algorithm, there exists a finite
set of points for which the algorithm produces a monochromatic wedge of size at least
k, thus, this stronger version of Theorem 2 remains true. In [3] it was also shown
that there is no semi-online algorithm that k-properly c-colors intervals with respect
to points.

Knowing that a constant number of colors are not enough in the online setting, we
can ask for the dependence of the needed number of colors c on the number of points N
and on k. We consider the cases when either c or k is fixed. For c = 3 fixed, Theorem

2Quasi-online colorings are also known as colorings of dynamic point sets [2] or as colorings of ordered
point sets [7, 8]. We shall use the quasi-online notation to emphasize that it lies between the offline and
online coloring models.
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3 determines exactly the maximum number of points that can always be k-properly
3-colored online, the answer is quadratic in k. If c ≥ 4 is fixed or if k is fixed, the
behavior is different, Theorem 5 shows that the maximum number of points that can
always be k-properly c-colored is exponential in ck. Theorem 8 gives an online coloring
algorithm which achieves this even without knowing the number of points in advance,
that is for an arbitrary point set at an arbitrary step N , the N points are k-properly
c-colored using c = Θ(logN/k) colors. Recall that the primal and dual problems are
equivalent for wedges.

In Section 2.2 we show how our results on properly coloring wedges online yield
the same results about proper coloring intervals online. Recall that the dual problem
of online coloring points with respect to intervals is not equivalent with the primal
problem of coloring intervals. Moreover, the online version of the dual problem is not
really interesting as it is easy to see that two colors are not enough to properly color
points with respect to intervals, whatever we choose k, while 3 colors are already enough
for any point set, even for k = 2 [7]. Note that this is equivalent to the aforementioned
problem of properly coloring points on the diagonal line with respect to wedges.

So far we investigated primal and dual versions of online coloring wedges and inter-
vals. In [7] quasi-online coloring wedges was investigated (in which case the problems
in the primal and dual settings are equivalent). Similarly as in the case of octants and
wedges, coloring quasi-online intervals is equivalent to (offline) coloring bottomless
rectangles and also coloring points quasi-online with respect to intervals is equivalent
to (offline) coloring points with respect to bottomless rectangles. Both of these were
regarded in [4, 5] and exact results were proved. However, in the primal version the
coloring algorithms were overly complicated and computationally not efficient, thus in
Section 3 we revisit this topic and give simpler and efficient algorithms to properly
color intervals quasi-online (and thus also to offline properly color bottomless rectan-
gles). The proofs are different from the ones in [4, 5] and utilize and generalize the
tool from [7] to online build a tree whose offline coloring gives the desired quasi-online
coloring. Thus, they also serve as further demonstrations for the usefulness of this tool
for quasi-online coloring problems.

2 Online coloring wedges and intervals

2.1 Online coloring wedges

Our first result is a negative answer to the question of Tardos [15].

Theorem 2. For every c and k and every online c-coloring algorithm there exists an
ordered set of N = 2ck − 1 points for which the algorithm produces a monochromatic
wedge of size at least k + 1.

We start with some definitions.

Definition 6. Let A and B be disjoint sets of points in the plane. We say A is
south-east of B if there exist x0, y0 ∈ R such that

1. ∀(x, y) ∈ A, x > x0 and y < y0,

2. ∀(x, y) ∈ B, x < x0 and y > y0.
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We will use the other 3 directions, north-west, south-west, and north-east in a
similar manner.

The next definition is similar to what was used for an unrelated problem in [1] and
recently (independently) in [3].

Definition 7. For a collection of c-colored points in the plane, we define the associated
color-vector to be a vector of length c where the ith coordinate is the size of a largest
(containing most points) wedge consisting only of points with color i. The size of the
color-vector is the sum of its coordinates.

To prove Theorem 2 we prove a stronger statement, which immediately implies
Theorem 2.

Lemma 1. For n ≥ 2 and for any online c-coloring algorithm there exists an ordered
set of N = 2n−1 points for which the algorithm will produce a coloring whose associated
color-vector has size at least n+ 1.

Given an online coloring algorithm, we show how to explicitly produce such an
ordered set of points. In particular, we give an inductive method of generating the
ordered set of points: the position of the nth point will be determined by the coloring
the algorithm gives to the first n− 1 points.

Proof. We prove by induction on n. When n = 2, we must produce an ordered set
of 3 points. These will all be placed on the line ℓ = {(x, y) | y = −x}. Place the
first two points at distinct positions on the line ℓ. If they are given the same color
by the algorithm, place the third point south-east of the first two (and on the line ℓ).
Otherwise, if the first two points are given different colors by the algorithm, place the
third point on the line ℓ between the first two points. In either case, the color-vector
of the resulting colored point set will have size 3.

By the inductive hypothesis, using at most 2n−1 − 1 points, we can produce a
set S1 for which the algorithm produces a color-vector of size at least n. Continuing
we can produce a second disjoint set, S2, south-east from S1 again using at most
2n−1 − 1 points for which the algorithm produces a color-vector of size at least n.
If the two color-vectors are different, then the whole point set S1 ∪ S2 has a color-
vector of size at least n + 1. Otherwise, if the color vectors are the same, then we
put an additional point p as follows. As S2 is south-east from S1, let x0 and y0 be
as in Definition 6. Then we let p = (x, y0) where x = min{x | (x, y) ∈ S1}. Note
that p is south-west from S1 and that S2 is south-east from p. Then as this point is
colored with some color, i, the ith coordinate of the color-vector of S1 ∪ {p} is one
bigger than the ith coordinate of the color-vector of S1 (the rest of its coordinates
is 0.) By the monochromatic wedge corresponding to this coordinate (containing p)
together with the monochromatic wedges guaranteed by the color-vector of S2, we get
that S1 ∪S2 ∪ {p} has a color-vector of size at least n+1. Altogether we used at most
2(2n−1 − 1) + 1 = 2n − 1 points, as desired.

What happens if c or k is fixed? The case when c = 2 was considered, e.g., in [7].
It is not hard to see that using 2k − 1 points, the size of the largest monochromatic
wedge can be forced to be at least k and this is the best possible. The next theorem
states that For c = 3 exactly k2 points are needed to force a monochromatic wedge of
size k.
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Figure 1: The point p borders the 3 mamos with color 2 and 4 denoted by solid lines and
threatens the mamos denoted by dotted lines. These are the mamos that p is a potential
member of. The points a and b are as required in Proposition 4. In a general step of the
coloring in the proof of Theorem 5 the new vertex p cannot be colored 2 or 4. By the order
of our preference p is colored with 3, thus introducing a (monochromatic) wedge of size 2.

Theorem 3. For any k > 0 and any online 3-coloring algorithm there exists a set of
k2 points for which the algorithm produces a monochromatic wedge of size k. This is
best possible as for any k > 0 there exists an online 3-coloring algorithm which colors
any ordered set of k2 − 1 points without producing a monochromatic wedge of size k.

Before the proof, we need a few more definitions.

Definition 8. Let X be a set of colored points in the plane. A non-empty wedge W
is maximal monochromatic, or simply mamo, if it is monochromatic and there is no
monochromatic wedge that contains it. Two mamos are called neighbors if they are
contained within a larger (non-monochromatic) wedge which contains no other mamo.
For a new point p /∈ X and a (not necessarily maximal) monochromatic wedge W we
say that

• p threatens W if all points of W ∩X are north-east from p;

• p borders W if p does not threaten W , and there is a wedge that contains p and
some (possibly all) points of W ∩X, but no point from X \W ;

• p is a potential member of W if p threatens or borders W .

For an example see Figure 1, where for visual readability mamos are slightly
shrinked (by doing that the hyperedges induced by the monochromatic wedges remain
the same).

Definition 9. If during an online coloring algorithm at time t the point p arrives, then
it is initially not destroyed. Further, after coloring p at step t, p destroys all points (and
thus such a point becomes destroyed at this step) that are north-east from p, were not
destroyed at an earlier step and are colored a different color than p. If p gets a color
that differs from the color of a point south-west from it, then p is also destroyed (by
this point).

Similarly, a wedge W which is monochromatic before step t is destroyed by p in step
t if after step t there is no monochromatic wedge with the same set of points as W .
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Figure 2: First and second part of the Proof of Theorem 3

Note that during an online coloring algorithm a point is destroyed at most once
and when it is destroyed it cannot be in a monochromatic wedge anymore.

Proposition 4. In a colored point set X, if for a point p /∈ X there is no point of X
south-west from p, then there are two colors, such that any mamo that p borders, are
of one of these colors.

Proof. Let a be a southern-most point of the set of points in X which are north-west
of p. Let b be a western-most point of the set of points in X which are south-east of
p. Given a mamo W of X that contains p, if it contains a or b, then the color of W
is the same as the color of a or b. Otherwise, W contains only points of X that are
north-east from p, i.e., W is is threatened by p (and thus not bordered by p). For an
example see Figure 1.

The colors of the mamos bordering a point are denoted the border colors in the
sequel.

Proof of Theorem 3. To prove the first statement, we will maintain three (possibly
empty) monochromatic wedges, Lt, Mt, and Rt, of distinct colors, such that the points
from Mt are south-east of the points from Lt and the points of Rt are south-east of
the points of Mt. At the beginning all three wedges are empty, L0 = M0 = R0 = ∅.
Denote the size of Lt, Mt, and Rt by ℓt,mt, and rt, respectively. We maintain that
(ℓt+1

2

)

+mt+
(rt+1

2

)

increases by at least one with the addition of each new point. This
implies that after k2 steps at least one of the values will be k, since if ℓt = mt = rt ≤
k − 1, then the expression is at most

(k
2

)

+ (k − 1) +
(k
2

)

= k2 − 1.
If at any time mt > rt, then we change to the wedges Lt = Lt, Mt = ∅, and

Rt = Mt. This preserves the condition and
(ℓt+1

2

)

+mt +
(rt+1

2

)

cannot decrease. We
similarly proceed if mt > ℓt. Thus we can assume that mt ≤ min{ℓt, rt}.

We place a new point p south-west of the points in Mt−1 but south-east from the
points of Lt−1 and north-west from the points of Rt−1 (see left of Figure 2). This way p
is a potential member of all three wedges but only threatensMt−1. For any coloring of p,
we have to pick Lt, Mt, andRt such that

(

ℓt+1
2

)

+mt+
(

rt+1
2

)

>
(

ℓt−1+1
2

)

+mt−1+
(

rt−1+1
2

)

.
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If p is given the color of Mt−1, then let Lt = Lt−1, Mt = Mt−1∪{p}, and Rt = Rt−1,
the sum increases by one. Otherwise p is colored with the color of, say, Lt−1. In this
case let Lt = Lt−1 ∪ {p}, Mt = ∅, and Rt = Rt−1. Now

(

ℓt + 1

2

)

+mt +

(

rt + 1

2

)

=

(

ℓt−1 + 2

2

)

+ 0 +

(

rt + 1

2

)

=

(

ℓt−1 + 1

2

)

+ ℓt−1 + 1 +

(

rt−1 + 1

2

)

≥

(

ℓt−1 + 1

2

)

+mt−1 + 1 +

(

rt−1 + 1

2

)

.

To prove the second statement, we must assign colors online to at most k2−1 points
to avoid a monochromatic wedge of size k. If at time t the new point p is north-east
from some earlier point q then we color it to a different color from q, this way we do
not introduce new monochromatic wedges (but may destroy some). Otherwise, using
Proposition 4, when the new point, p, arrives, there are two colors that bordering
mamos can have. Consider the largest size of these of each color and denote them by
Lt−1 and Rt−1, and their sizes by ℓt−1 and rt−1 such that ℓt−1 ≤ rt−1, and let their
colors be red and blue. Denote by mt−1 the size of the largest mamo Mt−1 threatened
by p having the third color, green. See right of Figure 2. If ℓt−1 ≤ mt−1, then color p
red, otherwise color it green. That is, we always color p to the color of a smallest mamo
among the three differently colored mamos Lt−1,Mt−1, Rt−1 of which p is a potential
member.

We claim that if at ≤ bt are the sizes of the largest pair of mamos with different
colors at the end of the step at time t, then at least

(

at
2

)

+
(

bt
2

)

points have been
destroyed by the end of the step at time t. To prove this, first see that at one step we
add and color only one point thus at most one of at and bt can increase and only by
at most 1. Further,

(at
2

)

+
(bt
2

)

can be greater than
(at−1

2

)

+
(bt−1

2

)

only if all three of
mt−1, ℓt−1, and rt−1 are at least at−1, and at least two of them is equal to at−1. In
this case {at, bt} = {at−1 +1, bt−1} (as an unordered pair of integers) and we color the

new point p red and destroy at least at−1 =
(at−1+1

2

)

+
(bt−1

2

)

−
(

(at−1

2

)

+
(bt−1

2

)

)

green

points, proving the claim.
Suppose the first time we obtain a mamo of size k is at the end of step t, then we

must have at−1 = bt−1 = k − 1, thus we destroyed by the end of step at time t − 1
at least 2

(k−1
2

)

points. Further, we must have ℓt−1 = rt−1 = mt−1 = k − 1, thus
the three differently colored mamos Lt−1,Mt−1, Rt−1 contain 3(k − 1) non-destroyed
points. Together with the 1 point we add at step t, in total we have at least 2

(k−1
2

)

+
3(k − 1) + 1 = k2 points.

For c ≥ 4 we can give an exponential (in ck) lower bound for the number of points
we can color.

Theorem 5. For c ≥ 4 we can color online with c colors any set of at most 1.22074c(k−2)+1

points such that throughout the process there is no monochromatic wedge of size k.
Moreover, if c is large enough, then we can even color online any set of at most
1.46557c(k−2)+1 points without creating a monochromatic wedge of size k. For large c,
we can color online any set of at most 1.46557c points without creating any monochro-
matic wedges of size 2.
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Before proving the theorem we introduce some notations.

Definition 10. Let A be an online coloring algorithm of points in R
2. Before step t,

let p1, p2 . . . , pt−1 be the t − 1 points the algorithm has colored so far. In step t the
point pt appears and is colored. Define the weights of the points after step t, wt(pi),
i ≤ t as

wt(pi) =











0, if pi is destroyed by pt in step t,

1 +
∑

pj is destroyed by pt in step t wt−1(pj), if i = t,

wt−1(pi) otherwise.

(1)

The weight of a wedge is the sum of the weights of the points in the wedge.
Given an online coloring algorithm A, let wA(i, j) be the minimal weight of a

monochromatic wedge of size i and color ≥ j OR size > i and any color over all online
point sets colored using algorithm A. If A is such that there is never such a wedge,
then define wA(i, j) = ∞.

Note that after any step t a point that was destroyed at any earlier time has zero
weight and that the sum of all the weights after any time t is always equal to the number
of arrived points t. Note that wA(i, 1) is a lower bound on the minimal number of points
in an online point set which contains a monochromatic wedge of size i when colored
by A.

Proof of Theorem 5. First we describe the algorithm how to color a new point. If the
new point p is north-east from an earlier point, it is given a different color from one
such point. In this case no new monochromatic wedge, and in particular, no new mamo
is created. Using Proposition 4, for any new point p, there are at most two colors (the
border colors) such that any mamos that p borders, are of one of these colors. Every
other mamo containing p is threatened. Choose from the non-border colors the color
which first minimizes the size of the largest mamo containing p and secondly minimizes
the color (as a number from 1 to c). Thus our preference is first to have a size 1 wedge
of color 1, then a size 1 wedge of color 2, . . ., size 1 wedge of color c, size 2 wedge
of color 1, . . . etc. (with border colors excluded). Figure 1 is an illustration of the
algorithm for a 5-coloring.

We now show that this coloring algorithm A can indeed color the requisite number
of points without creating a wedge of size k or more. We will give a lower bound on
wA(i, j) as wA(k, 1) lower bounds the number of points required to make a monochro-
matic wedge of size k. To simplify notation, define bc(i−1)+j = wA(i, j) for 1 ≤ j ≤ c
and bn = 0 for n ≤ 0. It follows from the definition that bi ≤ bj if i ≤ j. Our goal is
to give a good lower bound on wA(k, 1) = bc(k−1)+1.

For a mamo of size i and color j, order its points in the order as they appeared
p1, . . . pi. Consider the time when the hth point, ph is added as a new point. Notice
that when ph arrives as a new point and we color it, all points of many, previously
monochromatic, possibly intersecting wedges will be destroyed. More precisely, from
our preferences we have that all points of at least c−3 mamos of different colors that are
“almost as big” as the one we create by adding p are destroyed. These sizes are at least
h−1 (and can be more, as when we add p we might create a bigger mamo than h) and
can be best expressed with the below formula using bn. Denote r = c(h− 1)+ j. From
the above, using that bn is a monotone increasing sequence, we can show that after
adding ph, its weight is at least 1+ br−3 + br−4 + . . .+ br−c+1. Note that br−1 and br−2
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are missing from this sum; this is because we had to choose the best available color that
is not one of the (at most) two colors of a bordering mamo. This leaves c−2 options, of
which the mamo whose weight is smallest has weight at least br−c, the next has weight
at least br−c+1 and so on, the last has weight at least br−3. Therefore, after choosing
the best color, we get that at this step ph destroys at least br−3 + br−4 + . . . + br−c+1

points, that is
w(ph) ≥ br−3 + br−4 + . . .+ br−c+1.

Therefore, by lower bounding the sum of the weights of the points in a mamo of
size i and color j, we lower bound bc(i−1)+j and get

bc(i−1)+j ≥
∑

h=1,...,i

w(ph) ≥
∑

r=j,c+j,...,c(i−1)+j

1 + br−3 + br−4 + . . .+ br−c+1.

To get a lower bound for br, we introduce ar with a non-homogeneous linear recur-
sion ar = 1 + ar−3 + ar−4 + . . . + ar−c starting with ar = 0 for r ≤ 0. Notice that for
r ≤ c we even have ar = 1 + ar−3 + ar−4 + . . . + ar−c+1 as ar−c = 0 in this case. We
claim that we have ar ≤ br: for r ≤ 0 this follows from the definition and for r > 0 we
can use induction with the above formula to get

bc(i−1)+j ≥
∑

r=j,c+j,...,c(i−1)+j

1 + br−3 + br−4 + . . .+ br−c+1 ≥

∑

r=j,c+j,...,c(i−1)+j

1+ar−3+ar−4+ . . .+ar−c+1 =
∑

r=j,c+j,...,c(i−1)+j

ar−ar−c = ac(i−1)+j .

We can reduce the above recursion for ar to a homogeneous linear recursion in
several standard ways: by using ar+1 − ar = ar−2 − ar−c; or if c ≥ 4, by defining
a′r = ar + 1/(c− 3); or simply omitting the additive term as it anyway does not affect
the order of magnitude. Using either of the above, we can conclude that the magnitude
of ar, and thus of br, is at least q

r where q is the real, root of the equation

qc − qc−3 − qc−4 . . . − 1 = 0, (2)

which is unique if c ≥ 4. In order to get an explicit lower bound, notice that ar ≥
1 ≥ qr−c if 1 ≤ r ≤ c, and so from the recursion using (2) we also have ar ≥ qr−c for
all r. Among c ≥ 4, this root is the smallest for c = 4, in which case we look for the
root of q4 − q − 1 = 0, and a simple numerical calculation shows that this number is
larger than 1.22074. Therefore we have bc(k−1)+1 ≥ 1.22074c(k−1)+1−c, just what was
needed. In fact, for c = 4, the sequence we get is ar = 1+ar−3+ar−4. Using standard
methods, from the recursion we could determine the exact asymptotics of ar for any
c. As c tends to infinity, the sequence br is getting closer and closer to the Narayana’s
cows sequence Nr = Nr−1 + Nr−3 [9], and q tends (from below) to the real root of
q3 − q2 − 1 = 0, which is bigger than 1.46557. Therefore, ar ≥ 1.46557r , if c is large
enough. From this we obtain that ac(k−1)+1 ≥ 1.46557c(k−2)+1 if c is large.

To obtain bounds for k = 2, we should be more careful with the first few terms
of the sequence as our initial estimate ar ≥ 1 ≥ qr−c for 1 ≤ r ≤ c is not strong
enough. The values for small c can be calculated manually, while for larger values
we can use the exact value for Nr, the rth term of the Narayana’s cows sequence (by
Benoit Cloitre [9]) to conclude that ar > 0.6 · 1.465571r−1 − 0.5. From this we obtain
that bc+1 ≥ 1.46557c if c is large.
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In conclusion, if there are c ≥ 4 colors, the smallest number of points that could
force a monochromatic wedge of size k is exponential in ck. These bounds can be
used to estimate the size of the largest monochromatic wedge when coloring N points
with c colors to be Θ(logN/c) in the worst case. Similarly for fixed k ≥ 1, to avoid a
monochromatic wedge of size k when coloring N points, Θ(logN/k) colors are necessary
and sufficient.

Corollary 6. There is an algorithm to color online N points in the plane using
Θ(logN/k) colors such that all monochromatic wedges have size strictly less than k.

Recall that Lemma 1 stated that N = 2n − 1 points can always force a size n + 1
color-vector. Theorem 5 implies a lower bound close to this upper bound. Indeed, fix,
e.g., c = 4 and k = ⌈n/4⌉. If the number of points is at most N = O(1.22074n) =
O(1.22074ck), then by Theorem 5 there is an online coloring such that at any time
there is no monochromatic wedge of size k, thus the size of the color-vector is always
at most 4(k − 1) < n.

Observe that the coloring algorithm in the proof of Theorem 5 was oblivious to k,
thus in fact it implies the following stronger statement.

Corollary 7. For fixed c ≥ 4 we can color a countable set of points such that for any
k, and any n < 1.22074c(k−2)+1, the first n points of the set are k-properly c-colored.

This gives an algorithm when c is fixed. Suppose now that k is fixed and we want to
use as few colors as possible without knowing in advance how many points will come,
i.e., for fixed k we want to minimize c without knowing N . To solve this, we alter our
previous algorithm. (Note that similarly it is possible to adjust the algorithm for the
cases when for an unknown N we want to minimize min(c, k), or ck, and the answer is
still logarithmic in N .) All this comes with the price of loosing a bit on the base of the
exponent. The following theorem implies that for k = 2 (and thus also for any k ≥ 2)
we can color online any set of N = O(1.0905ck) points and if k is big enough, then we
can color any set of N = O(1.1892ck) points without a monochromatic wedge of size k.

Theorem 8. For fixed k ≥ 1 we can color a countable set of points such that for any c,
and any n < 2(k−1)⌈(c−3)/4⌉+1 − 1, the first n points of the set are k-properly c-colored.

Proof. We need to define a coloring algorithm and prove that it uses many colors only
if there are many points. Both the coloring and the proof are similar to those in
Theorem 5, we only need to change our preferences when coloring. Because of this the
analysis of the performance of the algorithm also differs slightly. We fix a c and an
N < 2(k−1)⌈(c−3)/4⌉+1−1 for which we will prove the claim of the theorem (the coloring
we define will not depend on c or N , but only on k). Denote the colors by the numbers
{1, 2, . . . , c, . . .}.

We again avoid the colors of the mamos that border the new point p. Denote
by cp the color to be assigned to p (as an integer.) Our primary preference now is
that we want to keep ⌊(cp − 1)/4⌋ small. That is, we use one of the four colors cp
that minimizes ⌊(cp − 1)/4⌋ under the condition that using one of these colors we can
avoid a monochromatic wedge of size k. Once we have these four colors, our secondary
preference is that we choose the color from these four colors that minimizes the size of
the largest mamo containing p. This means that our order of preference is first to have
size 1 wedge of color 1, 2, 3, or 4, then a size 2 wedge of color 1–4, . . ., a size k − 1
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wedge of color 1–4, then a size 1 wedge of color 5–8, . . . etc. These rules determine
our algorithm, except for the choice when more than one of the four colors is possible
according to our secondary preference, in which case the chosen color can be arbitrary.

Again let A be this algorithm and recall that wA(i, j) refers to the minimal weight
of a monochromatic wedge of size i and color ≥ j or size > i and any color in an online
point set colored using algorithm A. To simplify notations let b(i, j) = wA(i, 4j). Note
that by the definition of A, it makes no difference whether we consider 4j − 3, 4j − 2,
4j − 1, or 4j, we get the same values, that is wA(i, j) = b(i, ⌈j/4⌉). Because of this,
when it makes no difference, we simply write 4j for the color.

We only need to prove that b(i, j) ≥ 2(k−1)(j−1)+i − 1 as this means that if the
algorithm uses the color c+ 1, then we had at least wA(1, c + 1) = b(1, ⌈(c + 1)/4⌉) ≥
2(k−1)⌈(c−3)/4⌉+1 − 1 > N points, a contradiction. We prove by induction, b(1, 1) = 1.
If we introduce a wedge of size i > 1, we have to destroy all points of at least one
mamo of size i − 1 that had a different color from the same 4-set, and merged an old
mamo of size i− 1 that had the same color to the new mamo.

Similarly to the proof of Theorem 5, for a mamo of size i and color 4j, order its
points in the order as they appeared p1, . . . pi and consider the time when the hth point,
ph is added as a new point. From the above argument, we get w(ph) ≥ 1+b(h−1, j) ≥
2(k−1)(j−1)+h−1 by induction.

Therefore, by lower bounding the sum of the weights of the points in a mamo of
size i and color 4j, we get

bi,j ≥
i

∑

h=1

w(ph) ≥
i

∑

h=1

2(k−1)(j−1)+h−1 = 2(k−1)(j−1)+i − 1.

Finally, we have to check what happens if i = 1, i.e., if we color a point p with a
color 4j that has not yet been used. In this case we have to destroy all points of at
least two mamos of size k−1 having a color from 4j−7, 4j−6, 4j−5, or 4j−4. Thus
w(p) ≥ 1 + 2b(k − 1, j − 1) ≥ 1 + 2 · (2(k−1)(j−2)+k−1 − 1) = 2(k−1)(j−1)+1 − 1. This
means that any point of a wedge of color 4j has at least this much weight, therefore
b(1, j) ≥ 2(k−1)(j−1)+1 − 1.

Proposition 9. The online coloring algorithms guaranteed by the second part of The-
orem 3, Theorem 5 and Theorem 8 run in O(n log n) time to color the first n points
(even if we have a countable number of points and n is not known in advance).

The proof of this proposition is omitted as it follows easily from the analysis of the
algorithms.

2.2 Online coloring intervals

This section deals with the following interval coloring problem. Given a finite family
of intervals on the real line, we want to color them online with c colors such that
throughout the process if a point is covered by at least k intervals, then not all of these
intervals have the same color.

Proposition 10. The (online, quasi-online, semi-online) interval coloring problem is
equivalent to a restricted case of the problem of k-properly (online, quasi-online, semi-
online) coloring points with respect to wedges, where we consider only wedges whose
apex is on the diagonal line (defined by y = −x).
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Proof. Associate to every point p of the diagonal the wedge with apex p and associate
with every interval I = ((x1,−x1), (x2,−x2)) of the diagonal line the point (x1,−x2).
It is easy to see that p ∈ I if and only if the point associated to I is contained in the
wedge associated to p.

Corollary 11. Any upper bound on the number of colors necessary to (online, quasi-
online, semi-online) color wedges in the plane is also an upper bound for the number
of colors necessary to (online, quasi-online, semi-online) color intervals in R.

Also the lower bounds of Theorem 2 and of Theorem 3 follow for intervals easily
by either repeating the proofs for intervals or by the following observation.

Observation 2. The proofs of Theorem 2 and of the first part of Theorem 3 can be
easily modified such that all the relevant wedges have their apex on the diagonal line.

In particular, we have the following.

Corollary 12. There is an algorithm to color online N intervals in R using Θ(logN/k)
colors such that for every point x, contained in at least k intervals, there exist two
intervals of different colors containing x.

As we have seen, positive results for intervals follow directly from the corresponding
results for wedges. Thus all the statements we proved hold for online coloring wedges,
also hold for intervals, however, it seems unlikely that the exact bounds are the same.
Thus, we would be happy to see (small) examples where there is a distinction. As
the next section shows, there is a difference between the exact bounds for quasi-online
coloring wedges and intervals.

3 Quasi-online coloring intervals

In this section we consider proper quasi-online coloring an ordered collection of inter-
vals {It}

n
t=1, i.e., proper quasi-online coloring of the dual hypergraph defined by these

intervals.

Theorem 13. Any finite ordered family of intervals on the line can be quasi-online
3-properly 2-colored, i.e., colored quasi-online with red and blue such that at any time,
for any point contained in at least 3 intervals, at least one of these intervals is red and
another one is blue.

We exploit an idea used in [7]; instead of coloring online the intervals, we online build
a labelled acyclic graph (i.e., a forest) with the following properties. At any time t, each
vertex of the current graph corresponds to an interval on the line, such that for every
original interval (i.e., an interval in {Ii}

t
i=1) there is a corresponding vertex. There

might be other vertices in the graph corresponding to auxiliary intervals. In notation,
we usually identify a vertex with the corresponding interval, without causing confusion.
The final coloring of the intervals is then generated from this graph. In particular, to
define a 2-coloring, we assign each edge in the forest one of two labels, “different” or
“same.” For an arbitrary coloring of exactly one vertex in each component (tree) of
the graph, there is a unique extension to a coloring of the whole graph compatible with
the labelling, i.e., such that each edge labelled “same” is incident to vertices of the
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same color and each edge labelled “different” is incident to vertices of different colors.
We say that a property is forced by the labelling if every compatible coloring has this
property. At the end we prove that the forest we built forces the original intervals to
be 3-properly 2-colored at any time. In [7] all the edges were labelled “different,” so it
was actually a simpler variant of our current scheme. As we will see, this idea can also
be generalized to more than two colors.

We denote the color of an interval I by φ(I), the left endvertex of I by ℓ(I) and
the right endvertex of I by r(I). These vertices are real numbers, and so they can be
compared. We can suppose that they are all different, as slightly perturbing them can
only make the coloring problem more difficult.

Proof of Theorem 13. Let {It}
n
t=1 be the given ordered family which has to be quasi-

online 3-properly 2-colored. We first build the forest and then show that any coloring
compatible with this forest is a quasi-online 3-proper 2-coloring of the original intervals,
as required. As we build the forest we also maintain a family of intervals (corresponding
to a subset of the vertices of the forest), called the active intervals. The family of active
intervals will change during the process. An interval corresponding to a vertex is not
necessarily one of the original intervals, {It}

n
t=1, it might be an auxiliary interval created

during the process. At any time t the vertices of the actual forest correspond to the first
t original intervals and the auxiliary intervals created up to time t. After coloring the
forest of the original and auxiliary intervals, we get the desired coloring. We maintain
that the following properties hold any time, i.e., for any t after adding interval It and
running step t of the forest-building algorithm (defined later) the following properties
hold.

1. Every point of the line is covered by at most two active intervals.

2. No active interval contains another active interval.

3. For any point on the line (at least) one of the following holds.

(a) The point is contained in the same number of active intervals as original
intervals, and additionally the labelling forces these original intervals and
these active intervals to have the same set of colors.

(b) The labelling forces that the point is contained in original intervals of different
colors.

4. The graph is a forest and each tree in the forest contains exactly one vertex that
corresponds to an active interval.

During the forest-building process for an arbitrary point property 3(a) will hold
until some moment and then property 3(b) will hold from that moment on. Note that
if for some point property 3(b) holds, then it will remain so later, as adding vertices and
edges to the graph cannot ruin property 3(b). By property 1, this will guarantee that
points in at least 3 original intervals are contained in both colors. Property 4 ensures
that a coloring of the active intervals determines a unique coloring of all the intervals,
such that this coloring is compatible with the labelling of the forest. Property 2 is a
technical condition.

Now we define the forest-building algorithm. For the first step we simply make
the first interval active; our forest will consist of a single vertex corresponding to this
interval. In general, at the beginning of step t, we have a list of active intervals, Jt−1.
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Figure 3: A case in the proof of Theorem 13. Active intervals are represented by solid lines,
deactivated intervals by dashed lines.

Now we add the tth interval, It, to the forest. See Figure 3 for an example. If It is
covered by at least one active interval, then we choose one, J ∈ Jt−1 and connect It
to J with an edge labelled “different.” If there is no active interval containing It, we
add It to the family of active intervals. Now if there are active intervals contained
in It, then we deactivate all of them (remove from the family of active intervals) and
connect each of them to It in the graph with an edge labelled “different.” This way
properties 2 and 4 remain true. For a point p if property 3(a) did hold before adding
It then if it is contained in a just deactivated interval, then at this moment of our
algorithm property 3(b) will hold for p, otherwise property 3(a) remains true (as the
possible change in the set of active intervals containing p is the addition of It, which is
an original interval as well).

The last thing we do in step t of our forest-building algorithm is to ensure property
1, i.e., that no point is contained in three active intervals. If there exist such points,
they must be contained within It (as before adding It by the first property there were
no such points). Using the first property, let L1 and L2 be the (at most) two active
intervals covering ℓ(It) such that ℓ(L1) < ℓ(L2) (if both of them exist). Similarly, let R1

and R2 be the (at most) two active intervals covering r(It) such that ℓ(R1) < ℓ(R2) (if
both of them exist). No Li and Rj can coincide, as such an interval would cover It. No
other active interval can intersect It, as it would necessarily be completely contained
in It, but all such intervals are already deactivated. Depending on how many of these
four intervals exists, we proceed slightly differently.

First, suppose that there is no L2 and R2, only L1 and R1. L1 and R1 have to
intersect, otherwise there is no point covered 3-fold. This implies that L1 ∪ R2 cover
It. We deactivate all three of them and add a new interval N = L1 ∪ It ∪ R1 to the
graph and make N active. In the graph, connect L1 and R1 to N with edges labelled
“same” and It to N with edge labelled “different.”

Next, suppose that all of L1, L2, R1 and R2 exist. Deactivate L1, L2, It, R1 and R2,
and activate a new interval N = L1∪ It∪R2. In the graph, connect L1, It and R2 to N
with edges labelled “same.” Connect L2 and R1 to N with edges labelled “different.”

Otherwise, without loss of generality, suppose that L1, L2 exists and R2 does not
exist (R1 may or may not exist). Deactivate L1, L2 and It, and connect them to the
new active interval N = L1 ∪ It again with the edges of L1 and It labelled “same” and
the edge of L2 labelled “different.” (Notice that in fact this last case is the same as
the first, with L2 playing the role of It.)

This way we ensured that property 1 holds and it is easy to check that properties
2 and 4 remain true. Similarly as above, it is easy to check that if for a point property
3(a) did hold then now either property 3(a) or 3(b) holds. Recalling that property 3(b)
cannot be ruined we get that property 3 remains true for every point.
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By property 4, at the end of the process any coloring of the final family of active
intervals extends to a coloring of all the intervals (compatible with the labelling of the
graph). We have to prove that for this coloring at any time t any point p contained by
at least 3 of the original intervals is non-monochromatic. At time t, by property 1 we
have that for such a p property 3(a) cannot hold (as we cannot have 3 active intervals
covering p). Thus property 3(b) must hold, which is exactly that p is contained in
original intervals of both colors.

Before proceeding with the next proof we define explicitly the structure that the
active intervals have during our algorithms (in the previous and in the next proof as
well). We call an ordered family of intervals J1, . . . Jℓ a chain if ℓ(Ji) < ℓ(Jj) and
r(Ji) < r(Jj) for every i < j and Ji ∩ Ji+1 6= ∅ for every i < ℓ and no point of the
real line is contained in three of the intervals. Observe that in a chain any interval Ji
intersects exactly Ji−1 and Ji+1 (if they exist). Two chains are disjoint if the intervals
in the first chain is disjoint from the union of the intervals of the second chain.

Theorem 14. Any finite ordered family of intervals on the line can be quasi-online
2-properly 3-colored, i.e., colored quasi-online with 3 colors such that at any time for
any point p contained by at least 2 of the intervals, the intervals covering p are not all
of the same color.

Proof. We again build an edge-labelled graph G, in which vertices correspond to (orig-
inal and auxiliary) intervals and the label of a directed edge is again one of two labels,
“different” or “same.” Again some of the intervals are active. An order on the non-
active intervals is appropriate, if putting all active intervals arbitrarily ordered at the
end of this order we get an order for which every non-active interval is appropriate:
either has at most two forward edges labelled different or at most one forward edge
labelled same. Suppose that we could color the active intervals compatibly with G,
then given an appropriate ordering of the non-active intervals, it is easy to 3-color
these intervals in backwards order to get a 3-coloring compatible with G. During the
graph-building algorithm we will maintain such an order of the non-active intervals
and also that G induces a union of paths on the active intervals, thus a compatible
coloring of G will exist. At the end we prove that such a compatible 3-coloring of the
final graph is necessarily a 2-proper 3-coloring at any time.

In the proof we say that we are coloring an interval I differently from (resp. same
as) another interval J when we add an edge IJ to G with label different (resp. same).
Now we state the required properties.

1. Every point of the line is covered by at most two active intervals.

2. No active interval contains another active interval.

3. For any point on the line (at least) one of the following holds.

(a) The point is contained in the same number of active intervals as original
intervals, and additionally the labelling forces these original intervals and
these active intervals to have the same set of colors.

(b) The labelling forces that the point is contained in original intervals of different
colors.

4. The order <a of the non-active intervals is appropriate. Also, the family of active
intervals induces a union of paths in G, more precisely, two active intervals are
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Figure 4: Case i) of Theorem 14

connected and the connecting edge has label different if and only if they are
consecutive in a chain.

Note that the first two properties ensure that, just like in the proof of Theorem 13,
at any step the active intervals have a unique partition into disjoint (maximal) chains,
thus property 4 is well-defined.

Unlike in the previous proof, now points covered by only two active intervals are also
important to us, so property 4 ensures that any two intersecting active intervals receive
a different color. In particular, property 3(b) must hold for every point contained in
at least 2 original intervals. Apart from this, the arguments are similar to the ones in
the previous proof.

Now we define the graph-building algorithm. During the process, when an interval
is deactivated, in <a it is placed after all previously deactivated intervals, that is, at
the top of the order <a. Also, during the process we never add nor delete an edge
incident to any interval that was deactivated earlier, this way all previously deacti-
vated intervals will necessarily remain appropriate. Note that we can and will indeed
delete edges sometimes, in which case at the same time we add some edges that force
that a compatible coloring with the new graph is necessarily also compatible with the
deleted edge, thus the deleted edges are redundant. We do this solely to simplify our
presentation.

In the first step we add I1 to the (previously empty) graph and activate it. In the
inductive step we add It to the graph and also to the family of active intervals. If It is
covered by an active interval or by the union of two (consecutive) intervals of a chain,
then we deactivate It and color it differently from the interval(s) covering it, i.e., we
add at most two edges from It to active intervals, labelled different. This way It will
be appropriate.

Properties 2 and 4 remain true. For a point p if property 3(a) did hold before
adding It, then if it is contained in a just deactivated interval, then at this moment
of our algorithm property 3(b) will hold for p, otherwise property 3(a) remains true
(as the possible change in the set of active intervals containing p is the addition of It,
which is an original interval as well).

Again, the last thing we do in step t of our graph-building algorithm is to ensure
property 1, i.e., that no point is contained in three active intervals. If there is no such
point, we are done. Otherwise, such points must be in It. Denote (if exists) by L the
active interval with ℓ(L) < ℓ(It) with the leftmost left end, and by R the active interval
with r(It) < r(R) with the rightmost right end that covers a triple covered point. They
necessarily intersect It. We distinguish two cases.

Case i) If It is not covered by the union of the intervals in one chain, then either
L or R does not exist, or L and R are not in the same chain. In either case, It is not
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covered by L ∪ R. We deactivate all active intervals covered by L ∪ It ∪ R, except for
L, It and R. The rule to color the now deactivated intervals is that they get a color
different from It, i.e., for each deactivated interval J we add an edge to It labelled
different. The order in which we deactivate these intervals (and add them to the top
of <a) is that one-by-one for each chain involved (the chain of L, R and the chains
in-between) we add first a left-most or right-most interval (in the chain containing L
(resp. R) it must be the rightmost (resp. leftmost)) and then one-by-one its neighbors.
Adding the deactivated intervals in this order to <a ensures that by property 4 such
a deactivated interval has at most two forward going edges (one to It and at most one
to one of its neighbors in the path corresponding to this chain).

In the remaining cases L and R exist and are in one chain and It is covered by
the union of the intervals in this chain. Denote by L− and L+ (resp. R− and R+) the
intervals preceding and succeeding L (resp. R) in the chain (if they exist).

Case ii) First assume that there are even many intervals in the chain between L and
R. We insert a new active interval N that we get by taking the union of L and these
intervals. We connect N to L− (if it exists) and to R with edges labelled different.
Now we deactivate L and color it the same as we color N (we add the edge NL to the
graph labelled same and delete the other at most two edges from L to L− and L+).
We deactivate the intervals between L and R in the chain and color them differently
from It. We deactivate them in the left-to-right order, thus they will be appropriate
in <a (they have at most two forward edges, one to It and one to their right neighbor
in the chain). We deactivate It and color differently from the color of N and R (we
add the edges ItN and ItR to the graph). We need to check that the deleted edges
became redundant. In a compatible coloring L has the same color as N , different from
L−, as required, and also different from R, which must get the same color as L+ (this
is forced by a chain (a path in G) of active intervals all colored differently from It and
thus alternating), as required.

Case iii) Next assume that there are odd many intervals between L and R. We
insert the new active interval N = L ∪ It ∪ R and connect it to L− and R+ (if they
exist) with edges labelled different. Now we again deactivate L and color it the same
as we color N (we add the edge NL to the graph labelled same and delete the other
at most two edges from L to L− and L+). We also deactivate R and color it the same
as we color N (we add the edge NR to the graph labelled same and delete the edge
from R to R+; note that we do not delete the edge RR−). We deactivate the intervals
in the chain between L and R and color them differently from It. We deactivate them
in the left-to-right order, thus they will be appropriate in <a (they have at most two
forward edges, one to It and one to their right neighbor in the chain). We deactivate
It and color differently from the color of N (we add the edge ItN to the graph). We
need to check that the deleted edges became redundant. In a compatible coloring L
has the same color as N , different from L−, as required; R has the same color as N ,
different from R+, as required; the deactivated intervals from L+ to R get the two
colors different from the color of It alternatingly (forced by a chain which is a path in
the graph), which ensures that L and L+ have different colors, as required.

This way we made sure that property 1 holds and it is easy to check that properties
2 and 4 remain true. It is again easy to check that property 3 also remains true for
every point.

By property 4 at the end the active intervals induce a family of paths, which can be
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Figure 6: Case iii) of Theorem 14

easily colored properly (even with 2 colors). As the ordering <a is appropriate, coloring
the non-active intervals in backwards order the coloring extends to a coloring of all the
intervals compatible with the labelling of the graph. We have to prove that for this
coloring at any time t any point p contained by at least 2 of the original intervals is
non-monochromatic. During the process we just added edges and deleted redundant
edges, thus a coloring compatible with the final graph is also compatible with the graph
at time t. Thus at time t, by property 1 we have that such a p is contained in at most
two active intervals. If it is contained in exactly two active intervals then by property
4 it is contained in intervals of both colors. Otherwise p is contained in at most one
active interval but at least two original intervals, thus property 3(a) cannot hold. Thus
property 3(b) must hold, which is exactly that p is contained in original intervals of
both colors.

Theorem 15. Colorings guaranteed by Theorem 13 and Theorem 14 can be found in
O(n log n) time.

Proof. Instead of a rigorous proof we provide only a sketch, the easy details are left
to the reader. In both algorithms we have n intervals, thus n steps. In each step we
define a bounded number of new active intervals, thus altogether we have cn original
and auxiliary intervals. We always maintain the (well-defined) left-to-right order of
the active intervals. We also maintain an order of the (original and auxiliary) intervals
such that an interval’s color depends only on the color of one or two intervals’ that
are later in this order. This order can be easily maintained as in each step the new
interval and the new active intervals come at the end of the order. We also save for
each interval the one or two intervals which it depends on. This can be imagined as
the intervals represented by vertices on the horizontal line arranged according to this
order and an acyclic directed graph on them representing the dependency relations,
thus each edge goes backwards and each vertex has in-degree at most two (at most one
in the first algorithm, i.e., the graph is a directed forest in that case). In each step we
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have to update the order of active intervals and the acyclic graph of all the intervals,
this can be done in c log n time plus the time needed for the deletion of intervals from
the order. Although the latter can be linear in one step, yet altogether during the
whole process it remains cn. At the end we just color the vertices one by one from
right to left following the rules, which again takes only cn time. Altogether this is
cn log n time.

As we noted earlier, these problems are equivalent to (offline) colorings of bottomless
rectangles in the plane. Using this phrasing, Theorem 14 and Theorem 13 were proved
already in [5, 4], yet those proofs are quite involved and they only give quadratic
time algorithms, so these results are improvements regarding simplicity of proofs and
efficiency of the algorithms. The algorithms in [5, 4] proceed with the intervals in
backwards order and the intervals are colored immediately, yet in each step many
intervals have to be recolored, this might be a reason why a lot of re-colorings are
needed there (which we do not need in the above proofs), adding up to quadratic time
algorithms (contrasting the near-linear time algorithms above).
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